1,280 research outputs found

    On the bulk-skin temperature difference and its impact on satellite remote sensing of sea surface temperature

    No full text
    Satellite infrared sensors only observe the temperature of the skin of the ocean rather than the bulk sea surface temperature (SST) traditionally measured from ships and buoys. In order to examine the differences and similarities between skin and bulk temperatures, radiometric measurements of skin temperature were made in the North Atlantic Ocean from a research vessel along with coincident measurements of subsurface bulk temperatures, radiative fluxes, and meteorological variables. Over the entire 6-week data set the bulk-skin temperature differences (AT) range between -1.0 and 1.0 K with mean differences of 0.1 to 0.2 K depending on wind and surface heat flux conditions. The bulk-skin temperature difference varied between day and night (mean differences 0.11 and 0.30 K, respectively) as well as with different cloud conditions, which can mask the horizontal variability of SST in regions of weak horizontal temperature gradients. A coherency analysis reveals strong correlations between skin and bulk temperatures at longer length scales in regions with relatively weak horizontal temperature gradients. The skin-bulk temperature difference is pararneterized in terms of heat and momentum fluxes (or their related variables) with a resulting accuracy of 0.11 K and 0.17 K for night and daytime. A recommendation is made to calibrate satellite derived SST's during night with buoy measurements and the additional aid of meteorological variables to properly handle AT variations

    Asymptotics for In-Sample Density Forecasting

    Get PDF
    This paper generalizes recent proposals of density forecasting models and it develops theory for this class of models. In density forecasting the density of observations is estimated in regions where the density is not observed. Identification of the density in such regions is guaranteed by structural assumptions on the density that allows exact extrapolation. In this paper the structural assumption is made that the density is a product of one-dimensional functions. The theory is quite general in assuming the shape of the region where the density is observed. Such models naturally arise when the time point of an observation can be written as the sum of two terms (e.g. onset and incubation period of a disease). The developed theory also allows for a multiplicative factor of seasonal effects. Seasonal effects are present in many actuarial, biostatistical, econometric and statistical studies. Smoothing estimators are proposed that are based on backfitting. Full asymptotic theory is derived for them. A practical example from the insurance business is given producing a within year budget of reported insurance claims. A small sample study supports the theoretical results

    Spatial and temporal clustering of dengue virus transmission in Thai villages.

    Get PDF
    BackgroundTransmission of dengue viruses (DENV), the leading cause of arboviral disease worldwide, is known to vary through time and space, likely owing to a combination of factors related to the human host, virus, mosquito vector, and environment. An improved understanding of variation in transmission patterns is fundamental to conducting surveillance and implementing disease prevention strategies. To test the hypothesis that DENV transmission is spatially and temporally focal, we compared geographic and temporal characteristics within Thai villages where DENV are and are not being actively transmitted.Methods and findingsCluster investigations were conducted within 100 m of homes where febrile index children with (positive clusters) and without (negative clusters) acute dengue lived during two seasons of peak DENV transmission. Data on human infection and mosquito infection/density were examined to precisely (1) define the spatial and temporal dimensions of DENV transmission, (2) correlate these factors with variation in DENV transmission, and (3) determine the burden of inapparent and symptomatic infections. Among 556 village children enrolled as neighbors of 12 dengue-positive and 22 dengue-negative index cases, all 27 DENV infections (4.9% of enrollees) occurred in positive clusters (p < 0.01; attributable risk [AR] = 10.4 per 100; 95% confidence interval 1-19.8 per 100]. In positive clusters, 12.4% of enrollees became infected in a 15-d period and DENV infections were aggregated centrally near homes of index cases. As only 1 of 217 pairs of serologic specimens tested in positive clusters revealed a recent DENV infection that occurred prior to cluster initiation, we attribute the observed DENV transmission subsequent to cluster investigation to recent DENV transmission activity. Of the 1,022 female adult Ae. aegypti collected, all eight (0.8%) dengue-infected mosquitoes came from houses in positive clusters; none from control clusters or schools. Distinguishing features between positive and negative clusters were greater availability of piped water in negative clusters (p < 0.01) and greater number of Ae. aegypti pupae per person in positive clusters (p = 0.04). During primarily DENV-4 transmission seasons, the ratio of inapparent to symptomatic infections was nearly 1:1 among child enrollees. Study limitations included inability to sample all children and mosquitoes within each cluster and our reliance on serologic rather than virologic evidence of interval infections in enrollees given restrictions on the frequency of blood collections in children.ConclusionsOur data reveal the remarkably focal nature of DENV transmission within a hyperendemic rural area of Thailand. These data suggest that active school-based dengue case detection prompting local spraying could contain recent virus introductions and reduce the longitudinal risk of virus spread within rural areas. Our results should prompt future cluster studies to explore how host immune and behavioral aspects may impact DENV transmission and prevention strategies. Cluster methodology could serve as a useful research tool for investigation of other temporally and spatially clustered infectious diseases
    • ā€¦
    corecore