
              

City, University of London Institutional Repository

Citation: Lee, Y. K., Mammen, E., Nielsen, J. P. ORCID: 0000-0002-2798-0817 and Park, 
B. U. (2019). Generalised additive dependency inflated models including aggregated 
covariates. Electronic Journal of Statistics, 13(1), pp. 67-93. doi: 10.1214/18-EJS1515 

This is the published version of the paper. 

This version of the publication may differ from the final published 
version. 

Permanent repository link:  http://openaccess.city.ac.uk/21056/

Link to published version: http://dx.doi.org/10.1214/18-EJS1515

Copyright and reuse: City Research Online aims to make research 
outputs of City, University of London available to a wider audience. 
Copyright and Moral Rights remain with the author(s) and/or copyright 
holders. URLs from City Research Online may be freely distributed and 
linked to.

City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

City Research Online

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/163076661?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Electronic Journal of Statistics
Vol. 13 (2019) 67–93
ISSN: 1935-7524
https://doi.org/10.1214/18-EJS1515

Generalised additive dependency

inflated models including aggregated

covariates

Young K. Lee∗

Kangwon National University
e-mail: youngklee@kangwon.ac.kr

Enno Mammen†

Heidelberg University
e-mail: mammen@math.uni-heidelberg.de

Jens P. Nielsen‡

City, University of London
e-mail: jens.nielsen.1@city.ac.uk

Byeong U. Park§

Seoul National University
e-mail: bupark@stats.snu.ac.kr

Abstract: Let us assume that X, Y and U are observed and that the
conditional mean of U given X and Y can be expressed via an additive
dependency of X, λ(X)Y and X + Y for some unspecified function λ.
This structured regression model can be transferred to a hazard model
or a density model when applied on some appropriate grid, and has im-
portant forecasting applications via structured marker dependent hazards
models or structured density models including age-period-cohort relation-
ships. The structured regression model is also important when the severity
of the dependent variable has a complicated dependency on waiting times
X, Y and the total waiting time X + Y . In case the conditional mean of
U approximates a density, the regression model can be used to analyse the
age-period-cohort model, also when exposure data are not available. In case
the conditional mean of U approximates a marker dependent hazard, the
regression model introduces new relevant age-period-cohort time scale in-
terdependencies in understanding longevity. A direct use of the regression
relationship introduced in this paper is the estimation of the severity of
outstanding liabilities in non-life insurance companies. The technical ap-
proach taken is to use B-splines to capture the underlying one-dimensional
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unspecified functions. It is shown via finite sample simulation studies and
an application for forecasting future asbestos related deaths in the UK that
the B-spline approach works well in practice. Special consideration has been
given to ensure identifiability of all models considered.

MSC 2010 subject classifications: Primary 62G08; secondary 62G20.
Keywords and phrases: Structured nonparametric models, age-period-
cohort model, identifiability, B-splines, UK mesothelioma mortality.
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1. Introduction

Let us assume that X, Y and U are observed and that the conditional mean of
U given X and Y can be expressed via an additive dependency of X, λ(X)Y and
X + Y for some unspecified funtion λ, leading to the following mathematical
definition of the ”Generalised Additive Dependency Inflated Model including
Aggregated Covariate” (GADIMAC): for a link function G

U = G (m0 +m1(X) +m2(λ(X)Y ) +m3(X + Y )) + ε, (1.1)

where the constant m0 and the functions m1, m2, m3, λ are unknown. Notice
that this is a special case of the generalised structured regression model consid-
ered in Mammen and Nielsen (2003). In the case where U is the number of events
within a suitable grid of X and Y , the conditional mean of U is essentially a den-
sity and one can use the GADIMAC model to identify and analyse the density
version of the age-period-cohort model. Without the time acceleration λ(X),
the density age-period-cohort model is known to be hard to visualize, analyse
and forecast, because the entering effects are only identifiable up to a line, see
Kuang et al. (2008a,b, 2011) and Antonczyk et al. (2017). Also, one is left with
complicated second order differences in the discrete case and complicated sec-
ond order derivatives in our continuous case when working with canonical and
well-defined parametrisation, see Nielsen and Nielsen (2014), O’Brien (2014),
Riebler et al. (2012), Smith and Wakefield (2016) and Beutner et al. (2017).

The relevant age-period-cohort density version of GADIMAC is used to fore-
cast the future asbestos-related deaths in the United Kingdom in the application
in Section 4.3. Asbestos mortality data is characterized by its lack of proper ex-
posure data and its complicated dependency structures on the entering time
effects, see Peto et al. (1995) for an early approach and Hodgson et al. (2005),
Rake et al. (2009), and Tan et al. (2010, 2011) for later approaches building var-
ious micro models to overcome the lack of exposure data. The recent approach
by Martinez-Miranda et al. (2015, 2016) uses updated data and is simpler be-
cause exposure is directly modelled and estimated from the observed deaths.
This paper adds to this latter approach by including further time scales, fore-
casting the peak of asbestos related deaths in the UK to be 2572 in the year
2018 and the total future UK asbestos-related deaths until the year 2032 to be
forty eight thousands.

There are many potential applications of GADIMAC. One further potential
application provides a solution to an omnipresent challenge in non-life insurance
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when estimating the severity of outstanding liabilities. Here X is the waiting
time from an insurance claim has happened till it is reported, Y is the waiting
time from the claim being reported till its final settlement and U is the size
of the claim. Another potential further application is within the current and
important theme of longevity estimation, where X, Y and X + Y represent
cohort, age and period and U represents raw occurrence divided by exposure
of some grid-points of discretised X’s and Y ’s. In the longevity forecasting case
the conditional mean of U is approximately equal to a two-dimensional hazard
function as a function of cohort X and age Y . The GADIMAC model introduced
by this paper provides a structured nonparametric representation of both past
and future mortality when the calendar effect of X +Y is extrapolated into the
future. An authoritative exposition of current efforts on longevity forecasting
could be the six models reviewed in Cairns et al. (2011), where a discrete
time series is used to forecast calendar effects in all models as have become
standard, see also some of the original proposals of Lee and Carter (1992), Lee
and Miller (2001) and Renshaw and Haberman (2006). The GADIMAC model
could introduce a welcome alternative modeling deterministic trends first before
time series or other uncertainties complicate the visual and analytic impression
of future mortality.

This paper develops theory identifying the GADIMAC model and introduces
estimation techniques and asymptotic theory of GADIMAC models based on
B-splines. Finite sample simulation studies show good performance of our new
methodology and the usefulness of the new class of regression models is illus-
trated via a timely application to forecasting future asbestos related deaths in
the UK. In Section 2 below the B-spline based estimation of the nonparametric
structured model is constructed and the asymptotic theory is derived. Iden-
tifiability is discussed in Section 3. Practical implementation is considered in
Section 4 with an implementation guide in Section 4.1 and finite sample simu-
lation studies in Section 4.2 showing good performance of the estimation of the
model. Finally the important practical forecast of future UK asbestos related
deaths is given in Section 4.3.

2. Estimation and asymptotic properties of GADIMAC models

We assume that one observes independent real valued random variables Ui for
1 ≤ i ≤ n with mean μ(xi, yi) where x1, . . . , xn, y1, . . . , yn are some deterministic
design points on the real line. The regression function μ(x, y) satisfies

μ(x, y) = G (m0 +m1(x) +m2(λ(x)y) +m3(x+ y)) (2.1)

for some unknown functions m1,m2,m3, λ and for a known invertible link func-
tion G. Later, we will also apply this model to a random design case where
one observes i.i.d. copies (Xi, Yi, Ui) of (X,Y, U) such that ((2.1)) holds for the
conditional mean μ(x, y) = E(U |X = x, Y = y). We assume that the tuples
(xi, yi) lie in a connected subset I of a two-dimensional bounded rectangle.
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Let I1 denote the projection of I onto the x-axis, I2(λ) = {λ(x)y : (x, y) ∈ I}
and I3 = {x + y : (x, y) ∈ I}. In this section we discuss the estimation of the
regression function μ with this structure using a set of observations Ui and
design points (Xi, Yi) ∈ I. We will show that the function μ can be estimated
with a one-dimensional nonparametric rate. Throughout this paper, we assume
that I contains a rectangle [α, β]× [0, γ] for some β > α > 0 and γ > 0. Without
loss of generality, we take α = 0, since otherwise we may shift I along the x-axis
and redefine the component functions m1,m3 and λ accordingly.

For k ≥ 2 we consider the following estimator m̂ = (m̂0, m̂1, m̂2, m̂3, λ̂) that
minimizes

n−1
n∑

i=1

[
Ui −G

(
m̂0 + m̂1(xi) + m̂2(λ̂(xi)yi) + m̂3(xi + yi)

)]2
+ (penalty)

(2.2)

over m̂ ∈ M = {(m0,m1,m2,m3, λ) : m1(0) = m2(0) = m3(0) = 0,m′
2(0) = 1}.

For the penalty, we consider

(penalty) = ρ1,n T1(m̂1) + ρ2,n T2(λ̂)
(2k−1)/2

∫
I2(λ̂)

m̂
(k)
2 (z)2 dz

+ ρ3,n T2(λ̂)
1/2

∫
I2(λ̂)

m̂′
2(z)

2 dz + ρ4,n T3(m̂3),

(2.3)

where Tj(m) =
∫
Ij
m′(x)2 dx+

∫
Ij
m(k)(x)2 dx for j = 1, 3, and

T2(λ) =

∫
I1

λ(x)2 dx+

∫
I1

λ′(x)2 dx+

∫
I1

λ(k)(x)2 dx.

We present theory for the estimator μ̂ of the composite function μ, defined
by

μ̂(x, y) = G
(
m̂0 + m̂1(x) + m̂2(λ̂(x)y) + m̂3(x+ y)

)
.

Later we will use a simplified version of μ̂ in our numerical studies, where we
replace M by a subspace containing only linear λ and spline functions mj .
In our theory and also in our numerical studies we will choose ρn = ρ1,n =
ρ2,n = ρ3,n = ρ4,n. The following theorem shows that, under the assumption
that the functions m1, m2, m3 and λ allow derivatives up to order k, the choice
ρn � n−2k/(2k+1) leads to an estimator μ̂ that achieves a one-dimensional non-
parametric rate.

Theorem 1. For the components (m0,m1,m2,m3, λ) ∈ M of the underlying
regression function suppose that m1, m2, m3 and λ have derivatives of order k
with bounded L2-norm, where k is the constant in (2.3). Furthermore, we assume
that G has an absolutely bounded derivative which is continuous at the point m0

with G′(m0) > 0, that the distributions of the error variables εi = Ui −μ(xi, yi)
have subexponential tails,

sup
1≤i≤n

E
(
exp(c−1|εi|)

)
≤ c for c > 0 large enough.
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Furthermore, we assume that there exists a sequence δn → 0 with nk/(2k+1)δn →
∞ such that the number of indices i with |xi| ≤ δn and |yi| ≤ δn can be bounded
from below by Cδnδ

2
n for some constant Cδ > 0. Then, it holds with ρ−1

n =
OP (n

2k/(2k+1)) and ρn = OP (n
−2k/(2k+1)) that

n−1
n∑

i=1

(μ̂(xi, yi)− μ(xi, yi))
2

= n−1
n∑

i=1

[
G
(
m̂0 + m̂1(xi) + m̂2(λ̂(xi)yi) + m̂3(xi + yi)

)

− G
(
m0 +m1(xi) +m2(λ(xi)yi) +m3(xi + yi)

)]2
= OP (n

−2k/(2k+1)).

We note that this result does not imply that the functions m1, m2, m3 and
λ can be estimated with the rate OP (n

−k/(2k+1)). A first step to such kind
of results are identification results for our model that we discuss in the next
section, which constitute the main contributions of this paper.

Now for the random design case, let m̂ = (m̂0, m̂1, m̂2, m̂3, λ̂) be defined as
the minmizer of

n−1
n∑

i=1

[
Ui −G

(
m̂0 + m̂1(Xi) + m̂2(λ̂(Xi)Yi) + m̂3(Xi + Yi)

)]2
+ (penalty)

(2.4)

over m̂ ∈ M = {(m0,m1,m2,m3, λ) : m1(0) = m2(0) = m3(0) = 0,m′
2(0) = 1}.

Then, we obtain the following analogue of Theorem 1.

Theorem 2. Suppose that one observes i.i.d. copies (Xi, Yi, Ui) of (X,Y, U) for
1 ≤ i ≤ n, where μ(x, y) = E(U |X = x, Y = y) satisfies (2.1) and the distribu-
tion of (X,Y ) is supported on I. We assume that the conditions of Theorem 1
on m1, m2, m3, λ and G hold, and that the conditional distributions of the error
variables εi = Ui − μ(Xi, Yi) have subexponential tails,

sup
1≤i≤n

E
(
exp(c−1|εi|)|Xi, Yi

)
≤ c a.s., for c > 0 large enough.

Furthermore, we assume that there exists a sequence δn → 0 with nk/(2k+1)δn →
∞ such that P (|X| ≤ δn, |Y | ≤ δn) ≥ Cδδ

2
n for some constant Cδ > 0. Then, it

holds with ρ−1
n = OP (n

2k/(2k+1)) and ρn = OP (n
−2k/(2k+1)) that

n−1
n∑

i=1

(μ̂(Xi, Yi)− μ(Xi, Yi))
2

= n−1
n∑

i=1

[
G
(
m̂0 + m̂1(Xi) + m̂2(λ̂(Xi)Yi) + m̂3(Xi + Yi)

)

− G
(
m0 +m1(Xi) +m2(λ(Xi)Yi) +m3(Xi + Yi)

)]2
= OP (n

−2k/(2k+1)).
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3. Identification of GADIMAC models

We discuss identification of the model. Suppose that there exists a consistent
estimator μ̂ of the function μ defined by

μ(x, y) = G (m0 +m1(x) +m2(λ(x)y) +m3(x+ y)) . (3.1)

The question is if this implies that there exist consistent estimators of the func-
tions m1, m2, m3 and λ. We study the following question: Given a function
(x, y) → μ(x, y), does this function identify m1, m2, m3 and λ up to a constant
in the model (3.1)? Note that the same question arises in in-sample density fore-
casting where the model f(x, y) = f1(x)f2(λ(x)y)f3(x+y) can be transferred to
this model by putting μ(x, y) = log f(x, y),m1(x) = log f1(x),m2(z) = log f2(z)
and m3(v) = log f3(v).

We say that m1, m2, m3 and λ in (3.1) are identified up to a constant if
μ(x, y) = G

(
m̄1(x) + m̄2(λ̄(x)y) + m̄3(x+ y)

)
for some functions m̄1, m̄2, m̄3

and λ̄ implies that

m1(x) = m̄1(x)− c1 for x ∈ I1,

m2(x) = m̄2(x)− c2 for x ∈ I2,

m3(x) = m̄3(x)− c3 for x ∈ I3,

λ(x) = λ̄(x) for x ∈ I1

for some real numbers c1, c2, and c3. We first discuss identification in case λ is
known, and then in case λ is a linear function. We treat a more general case at
the end.

3.1. The case of known λ

Let us assume that λ is known. The following theorem demonstrates that, in
this case, mj are identified up to a constant under some smoothness conditions
and conditions on the shape of λ. This theorem serves as a basic building block
for the discussion of the identification of mj and λ in more general cases. For the
formulation of the theorem we need the following additional notation. Denote
by I0 the interior of I. Put I01 = {x : (x, y) ∈ I0 for some y}, I02 = {λ(x)y :
(x, y) ∈ I0}, and I03 = {x+ y : (x, y) ∈ I0}.
Theorem 3. Suppose that λ is a fixed continuously differentiable strictly pos-
itive function that is not equal to the function x → (ξ1 + ξ0x)

−1 for some
ξ0, ξ1 ∈ R. In particular, we do not allow that λ is a constant function. Assume
that the closures of I01 , I

0
2 and I03 are equal to I1, I2 = I2(λ) and I3, respectively

and that I01 and I03 are connected sets. Furthermore, we assume that m1, m2

and m3 are twice continuously differentiable and that G is strictly monotone.
Then in model (3.1), m1, m2, and m3 are identified up to a constant.

Thus for known λ we have a clear picture. Given some smoothness conditions,
the model is identified up to constants if and only if λ is not equal to the function
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x → (ξ1 + ξ0x)
−1 for some ξ0, ξ1 ∈ R. Note that for constant λ, the functions

m1, m2 and m3 are only identified up to addition or substraction of linear
functions, see Antonczyk et al. (2017). If λ is not equal to the function x →
(ξ1 + ξ0x)

−1 for some ξ0, ξ1 ∈ R and if we put some constraints on m1, m2 and
m3 such as m1(0) = m2(0) = m3(0) = 0, then m1, m2 and m3 are completely
identified. On the other side, if λ(x) is equal to (ξ1 + ξ0x)

−1 for some ξ0, ξ1 ∈ R

then such a constraint does not lead to unique identification. To see this one
can choose arbitrary choices of m1, m2 and m3 and one can define m∗

1(x) =

m1(x) + ξ ln
(
1 + ξ0

ξ1
x
)
, m∗

2(z) = m2(z) + ξ ln (1 + ξ0z), and m∗
3(v) = m3(v) −

ξ ln
(
1 + ξ0

ξ1
v
)
. Then one can easily verify that for all choices of ξ ∈ R it holds

that

m1(x) +m2(λ(x)y) +m3(x+ y) = m∗
1(x) +m∗

2(λ(x)y) +m∗
3(x+ y).

Thus we have no unique identification.

3.2. The case of unknown linear λ

Recall that, in our setting, I contains a nontrivial rectangle [0, β] × [0, γ] for
some β, γ > 0. We note that this implies that J1(0) ≡ {x : (x, 0) ∈ I} contains
[0, β] and J2(0) ≡ {y : (0, y) ∈ I} contains [0, γ]. We consider the following
constraints:

m1(0) = m2(0) = m3(0) = 0, m′
2(0) = 1. (3.2)

The first three conditions can be always achieved by redefining the functions
m1, m2 and m3. For the fourth condition this can be done if m′

2(0) > 0. If
m′

2(0) < 0, we consider the link G̃(z) = G(−z) so that the model (3.1) can be
written as

U = G̃ ((−m0) + (−m1)(X) + (−m2)(λ(X)Y ) + (−m3)(X + Y )) + ε.

We consider the case where λ is an unknown linear function λ(x) = ax + b
with a 	= 0. We note that, if a equals zero, then the functions mj are not
identifiable. The following theorem demonstrates that λ is identifiable under
these conditions if m2 is not linear, and that λ is identifiable only up to a
constant if m2 is linear. In the case where m2 is linear, it follows that m2(z) = z
from the constraints on m2 in (3.2). This means that the model (3.1) reduces
to G−1(μ(x, y)) = m0 + m1(x) + (ax + b)y + m3(x + y). In this case, we may
have different sets of (m1,m3, b) that give the same function μ. For example,
we have

m1(x) + (ax+ b)y +m3(x+ y) = m̄1(x) + (ax+ b̄)y + m̄3(x+ y)

with m̄1(x) = m1(x) + (b̄− b)x and m̄3(z) = m3(z) + (b− b̄)z.

Theorem 4. Suppose that λ(x) = ax+ b for some nonzero constant a. Assume
that I contains a nontrivial rectangle [0, β]× [0, γ] with β, γ > 0. Furthermore,
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we assume that m1 is differentiable, m2 is two times continuously differentiable
and G is strictly monotone. Then in model (3.1) under the constraints (3.2),
m1, m2, m3 and λ are identified if m2 is not linear. In case m2 is linear, the
function λ is identified up to a constant.

We now give a heuristic explanation why m1, m2, m3 and λ can be con-
sistently estimated under the assumptions of Theorem 4. For a rigorous proof
of identifiability of the functions we refer to the appendix. We make the addi-
tional assumption that there exists an estimator ν̂ of ν(x, y) ≡ m0 +m1(x) +
m2(λ(x)y) +m3(x+ y) such that ‖ν̂ − ν‖∞ = oP (1), ‖ν̂x − νx‖∞ = oP (1) and
‖ν̂y − νy‖∞ = oP (1), where fx(x, y) and fy(x, y) for a bivariate function f(x, y)
denote its partial derivatives with respect to x or y, respectively. For the case
where G is the identity function, such an estimator can be achieved by kernel
smoothing of the estimator μ̂, i.e.

ν̂(x, y) =

∫
μ̂(u, v)K

(
u−x
h

)
K

(
v−y
h

)
du dv∫

K
(
u−x
h

)
K

(
v−y
h

)
du dv

for x and y in the interior of the support of μ and with boundary corrections of
the kernel K at the boundary of the support. Let

q(x, y) =
m2((ax+ b)y)

ax+ b
− y

for ax+ b 	= 0 and q(x, y) = 0 for ax+ b = 0. We have that uniformly in x and
y

ν̂(x, y) = m0 +m1(x) +m2((ax+ b)y) +m3(x+ y) + op(1), (3.3)

ν̂(x, 0) = m0 +m1(x) +m3(x) + op(1), (3.4)

ν̂y(x, 0) = ax+ b+m′
3(x) + op(1). (3.5)

Furthermore, by more lengthy but straightforward calculations one can show
that ∫ y

0

1

v
[ν̂x(x, v)− ν̂x(x, 0)− ν̂y(x+ v, 0) + ν̂y(x, 0)] dv

= a · q(x, y) + op(1),∫ y

0

[
ν̂y(x, v)− ν̂y(x+ v, 0)− x

v

(
ν̂x(x, v)− ν̂x(x, 0)− ν̂y(x+ v, 0)

+ ν̂y(x, 0)
)]

dv

= b · q(x, y)− 1

2
ay2 + op(1).

(3.6)

For linear functions m2 we have q(x, y) ≡ 0 under our norming conditions.
For nonlinear m2, the functions q(x, y) and y2 are linearly independent. Thus
(3.6) can be used to get a consistent estimator â of a in the case of a linear
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function m2, and consistent estimators (â, b̂) of (a, b) can be achieved in the
case of a nonlinear function m2. In the latter case we can replace a and b by â
and b̂ in (3.5) which gives a consistent estimator of m′

3(x). Integration of this
estimator results in a consistent estimator m̂3 of m3. Using this estimator we
get with the help of (3.4) a consistent estimator of m1. Finally using all these
estimators we can use (3.3) and we get a consistent estimator of m2. Thus, we
can consistently estimate all component functions m1, m2, m3 and λ. Note that
for this estimation we only need estimators of ν and of the integrals of partial
derivatives of ν. In Theorem 1 we have argued that ν can be estimated with
a one-dimensional nonparametric rate. We conjecture that, as in many other
nonparametric models, the integrals of partial derivatives of ν can be estimated
with the same rate as ν, see Lee et al. (2017) for example. This would imply
that m1, m2, m3 and λ can be estimated with a one-dimensional nonparametric
rate.

3.3. More general cases

We now come to a more general case that includes nonlinear λ. The next lemma
is a first step for analyzing identification of the component functions in the
general case. We continue to make the norming constraints (3.2).

Lemma 1. Suppose that the functions m2 and m̄2 are continuously differen-
tiable, that the functions m1, m2, m3 and m̄1, m̄2, m̄3 fulfill the norming con-
straints (3.2), and that the functions λ and λ̄ with mj and m̄j satisfy

m1(x) +m2(λ(x)y) +m3(x+ y) = m̄1(x) + m̄2(λ̄(x)y) + m̄3(x+ y). (3.7)

Also, we assume that λ̄(0) 	= 0. Then, for all (x, y) ∈ I with x+y ∈ J1(0)∩J2(0)
and λ̄(x)y/λ̄(0) ∈ J1(0) ∩ J2(0), it holds that

0 =
λ̄(x)

λ̄(0)

[
λ̄

(
λ̄(x)

λ̄(0)
y

)
− λ

(
λ̄(x)

λ̄(0)
y

)]
−
[
λ̄(x+ y)− λ(x+ y)

]
+

λ̄(x)

λ̄(0)
λ(0)m′

2

(
λ(0)

λ̄(x)

λ̄(0)
y

)
− λ(x)m′

2(λ(x)y).

(3.8)

We make use of Lemma 1 for identification of unknown λ under the assump-
tion that λ is linear in a small neighborhood of zero. Specifically, we assume
that λ(0) 	= 0 and there exists ε > 0 such that

λ(x) = λ(0) + λ′(0)x, 0 ≤ x ≤ ε. (3.9)

The assumption is clearly more general than the one in Theorem 4. It only
requires linearity in an arbitrarily small neighborhood of zero and thus allows a
general class of nonlinear functions λ. The following theorem demonstrates that
λ is identifiable within this wider class if m2 is not linear in any neighborhood
of zero and if J1(0)∩J2(0) equals I1, the domain of λ. The theorem is based on
the same set of conditions for mj in Theorem 4. The condition that m2 is not
linear in any neighborhood of zero is implied by the condition that m′′

2(0) 	= 0
if m′′

2 is continuous.
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Theorem 5. Assume that λ is differentiable, λ(0) 	= 0 and λ′(0) 	= 0, and
that I contains a nontrivial rectangle [0, β] × [0, γ] with β, γ > 0. Assume also
that (3.9) holds for some ε > 0, and that mj and G fulfill the conditions in
Theorem 4. Then in model (3.1) under the constraints (3.2), m1, m2, m3 and
λ are identified if J1(0) ∩ J2(0) = I1 and m2 is not linear in any neighborhood
of zero.

4. Finite sample studies and an application forecasting asbestos
related deaths in UK

This section first introduces in Section 4.1 the necessary considerations when
implementing the method in practice, and Section 4.2 presents finite sample
simulation studies showing good performance of our B-spline estimation ap-
proach. The important forecasting result on future asbestos related deaths are
presented in Section 4.3 with some new and interesting forecasts that might be
of interest for some policy makers, health economists or non-life insurers. Note
that the methods considered here do not strictly belong to the recently defined
class of “in-sample forecasters”. To qualify as an in-sample forecaster, the fore-
cast should be a function of one-dimensional functions that are fully estimated
in-sample, see Martinez-Miranda et al. (2015), Lee et al. (2015, 2017) and Hiabu
et al. (2016). However, the calendar effect has to be extrapolated when applying
GADIMAC to the modeling of the age-period-cohort relationship of asbestos re-
lated deaths, disqualifying the approach as in-sample forecasting. The necessary
extrapolation of the calendar effect does compromise the otherwise simple inter-
pretation of the GADIMAC model making the forecasting exercise non-trivial
and non-automatic. There will be more comments on this in Section 4.3 below.

4.1. Practical implementation of GADIMAC models

Before we present the results of our simulation study and real data example, we
describe briefly how we get the estimators that minimize the objective function
(2.4). For simplicity, we choose λ to be linear and thus assume λ(x) = θ0+θ1x for
some unknown θ0 and θ1. The procedure may be generalized to any parametric
function or even to a nonparametric model for λ.

We are to minimize the objective function at (2.4) over (m0, θ0, θ1) ∈ R
3 and

(m1,m2,m3) with each mj in the space of cubic B-splines (k = 2) satisfying the
constraints

m1(0) = m2(0) = m3(0) = 0,m′
2(0) = 1. (4.1)

Instead of the penalty at (2.3) we use a simpler version given by

(penalty) = ρ1,n T̃1(m̂1) + ρ2,n T̃2(λ̂)
(2k−1)/2

∫
I2(λ̂)

m̂
(k)
2 (z)2 dz

+ ρ3,n T̃3(m̂3),

(4.2)
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where T̃j(m) =
∫
Ij
m(k)(x)2 dx for j = 1, 3, and T̃2(λ) =

∫
I1
λ(x)2 dx. For the

penalty at (4.2) we omit
∫
m̂′

j(u)
2 du for 1 ≤ j ≤ 3 in (2.3) since we may show

that Theorem 1 remains to hold under this change at the cost of much more
involved arguments based on a decomposition of the functions m̂j as sums of
a polynomial and a smooth function. In an additional technical step we have
to show that the polynomials can be estimated with the parametric rate n−1/2.
This would be more involved than the discussion of smoothing splines in van
de Geer (2000) because of the nonlinear nature of our model. Furthermore, we
omit

∫
λ′(u)2 du +

∫
λ(k)(u)2 du in T2(λ) because we use parametric linear fits

for λ.
The minimisation problem is nonlinear since we have a link function G. Even

if we choose the identity link, it is still a nonlinear optimization problem since
θ0 and θ1 enter the objective function in the arguments of the basis functions for
cubic B-splines. We suggest an iteration scheme, which we actually employed
in simulation study and real data example. The procedure starts by initializing
θ̂0 and θ̂1. Then, (i) find m̂0 and the B-spline coefficients of m̂j under the
constraints (4.1) that minimize (2.4); (ii) after we get the estimators m̂0 and

m̂j , we update θ̂0 and θ̂1 by minimizing (2.4) with the estimated m̂j being
plugged into (2.4). The minimization problem in (i) requires another iteration
if G is not the identity link, while the updating task in (ii) is nonlinear and thus
needs an iteration even if G is the identity link.

We iterate the above procedures (i) and (ii) until convergence. We stop the
iteration when the changes in m̂j are sufficiently small. To be more specific, let

m̂
[�]
j for 0 ≤ j ≤ 3 and λ̂[�] denote the component estimators at the �th iteration

step. When

(m̂
[�]
0 − m̂

[�−1]
0 )2 +

3∑
j=1

∫
(m̂

[�]
j (u)− m̂

[�−1]
j (u))2du+

∫
(λ̂[�](u)− λ̂[�−1](u))2du

falls below a threshold value, we stop the iteration for m̂j taking m̂j = m̂
[�]
j and

then find the final update λ̂[�] for λ̂ by minimizing (2.4). This iteration scheme
worked very well in our numerical studies. As the threshold value in the stopping
criterion, we chose 10−4.

4.2. Finite sample simulation study

We generated (X,Y ) from the uniform distribution over [0, 1]2 and U from the
model U = m0 +m1(X)+m2(λ(X)Y )+m3(X +Y )+ ε, where λ(z) = θ0 + θ1z
and ε ∼ N(0, σ2). We set m0 = 1, m1(z) = x2, m2(z) = z2/10 + z, m3(z) =
z3/8, θ0 = θ1 = 1. We chose three noise levels, σ2 = 0.01, 0.1, 0.3, and two
sample sizes n = 400 and 1, 000. The penalty constants ρj,n were set to ρn =
0.12× n−2k/(2k+1) = 0.12× n−4/5.

We found that the MISE (Mean Integrated Squared Error) properties of the

proposed estimators do not depend much on the choice of the initial values of θ̂0
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and θ̂1. The results presented in Table 1 are for the choice θ̂0 = 1.3 and θ̂1 = 0.5.
For these results, we also used equally spaced knots and chose the number of
knots that minimizes the mean integrated squared error

MISE = E

∫ 1

0

∫ 1

0

(μ̂(x, y)− μ(x, y))2 dx dy,

where μ̂(x, y) = m̂0 + m̂1(x) + m̂2(λ̂(x)y) + m̂3(x + y). The table includes the
values of MISE, as defined above, IV (Integrated Variance) and ISB (Integrated
Squared Bias) defined by

IV = E

∫ 1

0

∫ 1

0

(μ̂(x, y)− Eμ̂(x, y))2 dx dy,

ISB =

∫ 1

0

∫ 1

0

(Eμ̂(x, y)− μ(x, y))2 dx dy.

It also reports those values for each component estimator m̂j , where for m̂0 they
are the values of E(m̂0 −m0)

2, var(m̂0) and (Em̂0 −m0)
2, respectively.

The results in Table 1 support that our proposed method works very well for
finite sample sizes. Overall, the values of MISE, IV and ISB of the regression
function estimator μ̂(x, y) decrease very fast as the sample size n increases, or
as the noise level σ2 gets smaller. For the component function estimators m̂j

the values of MISE also decreases rather fast as n increases, except m̂2. For the
latter component the MISE goes down slowly. If we investigate the numbers more
closely, we find that the bias of m̂2 stays unchanged or even gets larger slightly
as n increases, which results in the slow decline in MISE. We think this is partly
owing to the structural complexity that the function m2 enters our model in the
form of m2(λ(x)y) with another unknown function λ. The bias of the estimator
comes from the inaccuracy of the spline approximation, which may be hard
to reduce, for this particular component, by choosing the tuning parameters
depending on the sample size and noise level. Indeed, we also find in the table
that the bias of m̂2 does not improve as the noise level σ2 decreases. The biases
of other component estimators m̂j do not change much as the sample size or
the noise level changes. However, the variances of all component estimators m̂j

decrease as n increases or σ2 decreases.

4.3. Forecasting asbestos related deaths in the UK

As an example of implementing our method, we considered the UK mesothe-
lioma mortality dataset. It consists of the counts of deaths caused by exposure
to asbestos, given by year (1980–2012) and age (25–94) at the time of death.
The total number of the deaths during the period and in the range of age is
46,348. Basically, for this dataset one may take the variable x to be the cohort
and y the age of death. Thus x = (year of death) − y. To put the support of
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Table 1

Mean integrated squared error (MISE), integrated square bias (ISB) and integrated variance
(IV) of the whole regression function estimator m̂ and of the component function estimators

m̂j and λ̂, based on 100 MC samples of sizes n = 400 and n = 1, 000.

n σ2 Criterion m̂0 m̂1 m̂2 m̂3 λ̂ m̂
MISE 0.0048 0.0041 0.0076 0.0090 0.0024 0.0043

0.01 IV 0.0005 0.0019 0.0004 0.0028 0.0009 0.0004
ISB 0.0043 0.0022 0.0072 0.0062 0.0015 0.0039
MISE 0.0095 0.0178 0.0104 0.0278 0.0084 0.0246

400 0.1 IV 0.0052 0.0156 0.0030 0.0217 0.0068 0.0037
ISB 0.0043 0.0022 0.0074 0.0061 0.0016 0.0209
MISE 0.0198 0.0461 0.0169 0.0725 0.0226 0.0663

0.3 IV 0.0156 0.0445 0.0090 0.0650 0.0207 0.0112
ISB 0.0042 0.0016 0.0079 0.0075 0.0019 0.0551
MISE 0.0029 0.0030 0.0072 0.0056 0.0018 0.0012

0.01 IV 0.0004 0.0006 0.0002 0.0014 0.0002 0.0002
ISB 0.0025 0.0024 0.0070 0.0042 0.0016 0.0010
MISE 0.0060 0.0077 0.0096 0.0189 0.0036 0.0055

1, 000 0.1 IV 0.0038 0.0056 0.0018 0.0140 0.0021 0.0014
ISB 0.0022 0.0021 0.0078 0.0049 0.0015 0.0041
MISE 0.0130 0.0182 0.0139 0.0468 0.0076 0.0156

0.3 IV 0.0113 0.0164 0.0054 0.0417 0.0061 0.0042
ISB 0.0017 0.0018 0.0085 0.0051 0.0015 0.0114

the data as a subset of [0, a] × [0, b] for some a, b > 0, we made the following
transformation:

x = (Year of Death)− 1980 + 69− y, y = (Age of Death)− 25. (4.3)

We note that a = 101 and b = 69 with the above transformation. The lowest
possible year of birth, 1980− 94 = 1886 for those who died in the year 1980 at
the age 94, is transformed to the cohort value x = 0 and the highest, 2012−25 =
1987 for those who died in 2012 at the age 25, to x = 101. The support set I of
the transformed (x, y) is a parallelogram given by

I = {(x, y) : 0 ≤ y ≤ 69, 69− y ≤ x ≤ 101− y}.

Let U(k, l) denote the death count at age k in year l. For each age k ∈
{25, 26, . . . , 94} and calendar year j ∈ {1980, 1981, . . . , 2012}, let x(k, l) = l −
1980 + 69− y(k, l) and y(k, l) = k − 25. We considered the model

U(k, l) = exp
[
m0 +m1

(
x(k, l)

)
+m2

(
λ(x(k, l))y(k, l)

)
+m3

(
x(k, l) + y(k, l)

)]
+ ε(k, l),

(4.4)

where λ is a linear function. In general, it is not easy to check if the dataset comes
from a distribution that satisfies the subexponentiality condition in Theorem 1.
However, the condition holds if U(k, l) for each given (k, l) follows a Poisson
distribution, which one typically assumes for count data such as ours. To choose
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Kj , the numbers of knots for the cubic B-splines in the approximation of mj ,
we employed a cross validatory (CV) criterion. For the CV criterion, we chose
100×α% among those ages in {25, 26, . . . , 94} for each calendar year l. Call the
set of chosen integers Vl. We then fitted the model at (4.4) with those remaining
100× (1− α)% of the data on the grid

T ≡
{
(k, l) : k ∈ {25, 26, . . . , 94} \ Vl, 1980 ≤ l ≤ 2012

}
.

Denote the estimated constant and component functions by m̂T
j and λ̂T . We

computed

(CV) =
∑

(k,l)∈T

(
U(k, l)− exp

[
m̂T

0 + m̂T
1

(
x(k, l)

)
+ m̂T

2

(
λ̂T (x(k, l))y(k, l)

)

+m̂T
3

(
x(k, l) + y(k, l)

)])2

.

In our application we chose α = 0.1 in the above CV criterion. The penalty
constants ρj,n were set to ρn = 0.0022. Actually, we found that the associated
Hessian matrix of the quadratic objective function at (2.4) was not invertible
for too small values of ρn. The results of the application of our method to the
mortality data are shown in Figures 1. We used the estimated model to forecast
the death counts in the future years 2012 + δ for δ ≥ 1. For this we considered
only the cohort group who were born during the years 1886–1987, among whom
the numbers of deaths in the future years were our target for forecasting. The
set of transformed (x, y) for those who will die in the year 2012 + δ is

Gδ = {(x, y) : x+ y + 1980− 69 = 2012 + δ, 0 ≤ x ≤ 101, 0 ≤ y ≤ 69}
= {(x, y) : x+ y = 101 + δ, 0 ≤ x ≤ 101, 0 ≤ y ≤ 69}

We computed the forecasted number for the year 2012 + δ by the formula

Nδ =
∑

(x,y)∈Gδ

exp [m̂0 + m̂1(x) + m̂2(λ(x)y) + m̂3(x+ y)] . (4.5)

Note that our estimate m̂3 is nonparametric and thus it is defined only on the
range of x+ y, which is the interval [0, 101]. We used a quadratic extrapolation
of m̂3 for future times x+y > 101 in the forecasting formula. We briefly compare
this forecasting methodology to the three forecast options I0, I1 and I2 from
the discrete age-period-cohort model considered in the applied claims study
of Kuang et al. (2011). Had we chosen to use a line instead of a quadratic
extrapolation then it would correspond to the I0 forecast as defined in the latter
paper. Had we used a minimum of recent information to estimate our quadratic
extrapolation, then it would have corresponded to the I2 forecast of the latter
paper that defines I1 as the extrapolated line based on a minimum of recent
information. In our method we used all available information on the calendar
time to estimate a quadratic extrapolation.
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Fig 1. Estimates of the three component functions mj and the time transformation λ obtained
by applying the model (4.4) to the asbestos mortality data.

The forecasting result is shown in Figure 2. The peak year is 2018 and the
peak number of deaths is 2,572. The total number of deaths during the period
2013–2032 is predicted to be 48,007. Martinez-Miranda et al. (2016) worked
on the male-subset of the same data set and estimated male asbestos related
deaths to peak in the year 2017 and to total around 2,100 deaths that year. Our
predictions are at a higher level because both males and females are considered.
However, the two studies do seem to be in a reasonable relationship to each other
given that more males than woman seemed to have been exposed to asbestos at
life threatening levels. While it is beyond the scope of this paper, it would be
interesting to undertake a detailed applied statistical study, where male, female
and joint male-female mortality rates of asbestos related deaths in the UK are
closely investigated and where the methodology of the current paper and that
of Martinez-Miranda et al. (2016) are implemented, compared and discussed.
Also, it would be interesting to collect data up till and including 2017 to see
whether short term forecasting of the two alternative methods do indeed work
around the peak year of number of deaths.

In Figure 1 we notice that time acceleration λ is decreasing indicating that
time goes slower implying increasing lifetimes in later calendar years. There is
a complicated interaction between the mortality with age component m2 that
has a reasonable mortality shape and then complicated m1 and m3 functions
that rapidly increase and decrease respectively and in this way to some extent
leveling each other out over time. The intuition of the four one-dimensional
functions and their interplay is not easy and it is the resulting forecasts, as
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Fig 2. Small circles indicate the observed numbers of asbestos deaths in the UK until the year
2012. Forecasted numbers of deaths are depicted as a dashed curve.

shown in Figure 2 with future number of deaths over the years, that perhaps is
the best driver of our intuition. However, the forecasts are based on just four
functions and that is after all easier to understand than hundreds of discretely
estimated parameters as in Martinez-Miranda et al. (2015, 2016). But it still
does take a trained applied statistician to do these forecasts well. It will most
likely never be a fully automatic exercise.

Appendix. Proofs

Proof of Theorem 1. The main idea of the proof is to apply uniform bounds from
empirical process theory and to proceed as e.g. in the proof of Theorem 10.2
in van de Geer (2000). For this purpose we have to check entropy conditions
for function classes defined by constraints of our penalty terms. For a related
proof in a neural network model, see also Horowitz and Mammen (2007). For a
constant c > |m∗

0|, where m∗
0 denotes the true value of m0, we define

Fc =

{
f : f(x, y) = G(m0 +m1(x) +m2(λ(x)y) +m3(x+ y)) :

(m0,m1,m2,m3, λ) ∈ Mc

}
,

F∗
c =

{
f : f(x, y) = G(m0 +m1(x) +m2(λ(x)y) +m3(x+ y)) :

(m0,m1,m2,m3, λ) ∈ M∗
c

}
,
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Mc =

{
(m0,m1,m2,m3, λ) : |m0| ≤ c,m1(0) = m2(0) = m3(0) = 0,

T2(λ) = 1

}
,

M∗
c =

{
(m0,m1,m2,m3, λ) ∈ Mc : J(m1,m2,m3, λ) ≤ 1

}
,

where

J(m1,m2,m3, λ) = T1(m1) + T2(λ)
(2k−1)/2

∫
I2(λ)

m
(k)
2 (z)2 dz

+T2(λ)
1/2

∫
I2(λ)

m′
2(z)

2 dz + T3(m3).

Note that we replace the norming condition m′
2(0) = 1 by T2(λ) = 1. This can

be done because the penalty function J is defined so that J(m1,m2,m3, λ) =
J(m1,m

d
2,m3, λ

d) for all d > 0 where md
2(z) = m2(d

−1z) and λd(x) = d · λ(x).
Note also that we added an additional constraint |m0| ≤ c for some constant
c > |m∗

0|. We will get rid of this constraint below.

We will show below that for c > 0 there exists a constant C > 0 with

HB(δ,F∗
c , ‖ · ‖∞) ≤ Cδ−1/k (A.1)

for δ > 0. Here, HB(δ,F∗
c , ‖ · ‖∞) denotes the δ-entropy with bracketing for the

class F∗
c with respect to the supnorm ‖ · ‖∞. We now argue that (A.1) implies

the statement of the theorem. For seeing this one can proceed as in the classical
empirical process results for penalized least squares, see van de Geer (2000). We
shortly outline this now. One first makes use of the basic inequality

‖Gm̂c −Gm∗‖2n + ρnJ(m̂
c) ≤ 2|〈ε,Gm̂c −Gm∗〉n|+ ρnJ(m

∗). (A.2)

Here, ε, Gm̂c and Gm∗ denote the n-dimensional vectors with elements εi,
G(m̂c

0+m̂c
1(xi)+m̂c

2(λ̂
c(xi)yi)+m̂c

3(xi+yi)) and G(m∗
0+m∗

1(xi)+m∗
2(λ

∗(xi)yi)+
m∗

3(xi + yi)), respectively. Also, by ‖x‖n we denote the empirical norm ‖x‖2n =
n−1

∑n
i=1 x

2
i for x ∈ R. The estimators m̂c

0, m̂
c
1, . . . are the penalized least

squares estimators in the model Mc where the additional constraint |m0| ≤ c
has been put. By m∗

0,m
∗
1, . . . we denote the components of the true regression

function. Note that we have assumed that c is large enough such that the true
regression function lies in Fc.

To get a bound for the first term on the right hand side of the basic inequality
(A.2) one can apply the following result:
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For deterministic values v1, ...vn in R
d for some d ≥ 1 and for independent

random variables εi in R (1 ≤ i ≤ n) suppose that E(εi) = 0 and that
E[exp(C−1|εi|)] ≤ C for C large enough. Then for a bounded class A of
functions from R

d to R with

sup
δ>0

δνHB(δ,A, ‖ · ‖∞) < ∞

for some 0 < ν < 2, it holds that

sup
a∈A

n−1
∑n

i=1 εia(vi)

(max{‖a‖n, n−1/(2+ν)})1−ν/2
= OP (n

−1/2),

where ‖a‖n is the empirical norm such that ‖a‖2n = n−1
∑n

i=1 a(vi)
2.

This result can be achieved from Corollary 8.8 in van de Geer (2000). See also
the remark after the statement of this corollary.

One can easily check that the elements of Gm̂c are absolutely bounded by
a constant times

√
J(m̂c). To see this, note that for a function f : [0, 1] → R

with
∫ 1

0
f(x)2dx ≤ J and

∫ 1

0
f ′(x)2dx ≤ J with a constant J one can find

an element x∗ ∈ [0, 1] with |f(x∗)| ≤
√
J . This gives for all x ∈ [0, 1] that

|f(x)| ≤ |f(x∗)|+ |
∫ x

x∗ f
′(u)du| ≤ |f(x∗)|+ (

∫ 1

0
f ′(u)2du)1/2 ≤ 2

√
J .

We apply the empirical process result with a = (Gm̂c−Gm∗)/(1+
√
J(m̂c)).

Put Ĵ1/2 = 1 +
√
J(m̂c) and Δ = ‖Gm̂c −Gm∗‖n. Then we get that

|〈ε,Gm̂c −Gm∗〉n| = OP

(
n−1/2

(
Δ

Ĵ1/2

)1−ν/2

Ĵ1/2

)

= OP

(
n−1/2Δ(2k−1)/(2k)Ĵ1/(4k)

)
on the event that ΔĴ−1/2 ≥ n−1/(2+ν) = n−k/(2k+1) and

|〈ε,Gm̂c −Gm∗〉n| = OP

(
n−1/2n− 1−ν/2

2+ν Ĵ1/2
)
= OP

(
n−2k/(2k+1)Ĵ1/2

)
on the event that ΔĴ−1/2 ≤ n−1/(2+ν) = n−k/(2k+1). For the first event we get
from the basic inequality (A.2) and Ĵ ≤ Δ2n2k/(2k+1) that

Δ2 = OP

(
n−1/2Δ(2k−1)/(2k)Ĵ1/(4k)

)
+OP (ρn)

= OP

(
n−1/2Δn1/(2(2k+1))

)
+OP (ρn)

= OP

(
n−k/(2k+1)Δ

)
+OP (ρn)

= OP

(
ρ1/2n Δ+ ρn

)
.

Thus we have Δ2 = OP (ρn) on the first event. Note that because of Ĵ ≤
Δ2n2k/(2k+1) this also implies that Ĵ = OP (1) on the first event. On the second
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event, we get from the basic inequality (A.2)

ρnĴ = OP

(
n−2k/(2k+1)Ĵ1/2 + ρn

)
= OP

(
ρnĴ

1/2 + ρn

)
.

Thus on this event we have Ĵ = OP (1) and because of ΔĴ−1/2 ≤ n−k/(2k+1) we
get that Δ = OP (n

−k/(2k+1)) . This shows that

‖Gm̂c −Gm∗‖2n = OP (n
−2k/(2k+1)). (A.3)

Compare also Mammen and van de Geer (1997) for a related application of the
above empirical process bound.

We now argue thatGm̂c = Gm̂ with probability tending to one. For this claim
we make use of the result J(m̂c) = OP (1) that we have just proved. We now

argue that this implies that the derivatives of m̂c
1, m̂

c
2, λ̂

c, and m̂c
3 are uniformly

bounded by a random variable that is of order OP (1). For a proof of this claim
we argue first that the L2 norms of the first order and second order derivatives
of these functions are of order OP (1). This gives a bound of order OP (1) for the
supnorm of the first order derivatives where in this step we make use of the same
argument used above for showing that the elements Gm̂c are absolutely bounded
by a constant times

√
J(m̂c). For bounding the L2 norms of the first order and

second order derivatives one can make use of interpolation inequalities: it holds
that

∫
(ϕ(j)(x))2dx ≤ Cγ−2j

∫
(ϕ(x))2dx+ Cγ2(l−j)

∫
(ϕ(l)(x))2dx for functions

ϕ with
∫
(ϕ(l)(x))2dx < ∞, for 1 ≤ j ≤ l and for γ > 0 with a constant C

depending only on the integration region, see Agmon (1965).
By applying these bounds for the first-order derivatives we obtain

|m̂c
1(x)| ≤ Rnδn, |m̂c

2(λ̂
c(x)y)| ≤ Rnδn, |m̂c

3(x+ y)| ≤ Rnδn, 0 ≤ x, y ≤ δn

for a random variable Rn = OP (1), where δn is defined in the statement of the
theorem and fulfills nk/(2k+1)δn → ∞ and δn → 0. Choose δ > 0. We get with
some further constants C1, C2, . . . > 0:

OP (δ
−2
n n−2k/(2k+1))

≥ 1

n
δ−2
n

n∑
i=1

(
G(m̂c

0 + m̂c
1(xi) +m2(λ̂

c(xi)yi) + m̂c
3(xi + yi))

−G(m∗
0 +m∗

1(xi) +m2(λ
∗(xi)yi) +m∗

3(xi + yi))
)2

×I[|xi|≤δn,|yi|≤δn,|m̂c
0−m∗

0 |≥δ]

≥ n−1δ−2
n C1

n∑
i=1

(|m̂c
0 −m∗

0| − C2Rnδn)
2I[|xi|≤δn,|yi|≤δn,|m̂c

0−m∗
0 |≥δ]

≥ C3δ
2I[|m̂c

0−m∗
0 |≥δ] + oP (1).

Thus we have that the probability of the event {|m̂c
0 − m∗

0| ≥ δ} converges to
0 and m̂c

0 = m∗
0 + oP (1). This shows that with probability tending to one the
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constraint |m0| ≤ c is not active in the calculation of m̂c
0, m̂

c
1, . . .. This implies

that Gm̂c = Gm̂ with probability tending to one.
We now come to the proof of the entropy bound (A.1). For the proof we make

use of the entropy bound for Sobolev classes,

HB

(
δ,

{
g : [0, 1] → R : ‖g‖∞ ≤ 1,

∫ 1

0

g(k)(x)2 dx ≤ 1

}
, ‖ · ‖∞

)
≤ C1δ

−1/k

(A.4)

for some constant C1 > 0. For (A.4) the reader is referred to Birman and
Solomjak (1967). Using similar arguments as above we now argue that λ,m1,m2

and m3 are uniformly absolutely bounded. Note that for (m0,m1,m2,m3, λ) ∈
M∗

c we have, because of T2(λ) = 1, that |λ(xλ)| < C2 for an element xλ of I1
depending on λ with some constant C2 > 0 (not depending on λ). Thus ‖λ‖∞ ≤
C2 +supx∗∈I1

∫
|λ′(x)|I[x∗≤x≤xλ or xλ≤x≤x∗]dx ≤ C2 +C3

(∫
I1

|λ′(x)|2dx
)1/2

≤
C2 + C3 for some constant C3 > 0. In particular, the length of the intervals
I2(λ) can be uniformly bounded. We have T1(m1) ≤ 1, T3(m3) ≤ 1 and∫

I2(λ)

m
(k)
2 (x)2 dx+

∫
I2(λ)

m′
2(x)

2 dx ≤ 1. (A.5)

From all these inequalities we get that ‖mj‖∞ ≤ C4 for 1 ≤ j ≤ 3 for some
constant C4 > 0. Thus, we can apply the entropy bound (A.4) for 1 ≤ j ≤ 3
to all functions mj with (m0,m1,m2,m3, λ) ∈ M∗

c for some mk(k 	= j) and λ,
and to the Sobolev class of all functions λ with (m0,m1,m2,m3, λ) ∈ M∗

c for
some m0,m1,m2,m3. Thus, the bound (A.1) follows if we prove that ‖m′

2‖∞ ≤
C5 for some constant C5 > 0 as long as (m0,m1,m2,m3, λ) ∈ M∗

c for some
m0,m1,m3 and λ. Such a bound for ‖m′

2‖∞ can be achieved by noting that∫
I2(λ)

m′′
2(x)

2 dx < C6 for some constant C6 > 0. This inequality follows with

j = 1, l = k − 1, ϕ = m′
2 from the interpolation inequality that we already

used above:
∫
(ϕ(j)(x))2dx ≤ Cγ−2j

∫
(ϕ(x))2dx + Cγ2(l−j)

∫
(ϕ(l)(x))2dx for

functions ϕ with
∫
(ϕ(l)(x))2dx < ∞, for 1 ≤ j ≤ l and for γ > 0 with a

constant C depending only on the integration region, see Agmon (1965). This
concludes the proof of the theorem.

Proof of Theorem 2. The theorem follows by a simple application of Theorem
1. Choose κn → ∞. Then, Theorem 1 implies that

P (n−1
n∑

i=1

(μ̂(Xi, Yi)− μ(Xi, Yi))
2
> κnn

−2k/(2k+1) |X1, Y1, . . . , Xn, Yn) → 0,

almost surely. This implies that the expectation of this conditional probability
converges to zero. Because this holds for all κn → ∞ we get the statement of
the theorem.

Proof of Theorem 3. Choose m̄1, m̄2, and m̄3 with

m1(x) +m2(λ(x)y) +m3(x+ y) = m̄1(x) + m̄2(λ(x)y) + m̄3(x+ y)
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for (x, y) ∈ I0. Put δj = m̄j −mj for j ∈ {1, 2, 3}. Then

δ1(x) + δ2(λ(x)y) + δ3(x+ y) = 0. (A.6)

We have to show that this equality implies

δj(x) = cj for x ∈ Ij (A.7)

for some real numbers cj for j ∈ {1, 2, 3}. From (A.6) we get

δ′1(x) + λ′(x)yδ′2(λ(x)y) + δ′3(x+ y) = 0,

λ(x)δ′2(λ(x)y) + δ′3(x+ y) = 0,
(A.8)

and thus

λ′(x)δ′2(λ(x)y) + λ′(x)λ(x)yδ′′2 (λ(x)y) + δ′′3 (x+ y) = 0,

λ2(x)δ′′2 (λ(x)y) + δ′′3 (x+ y) = 0.
(A.9)

By taking the difference of the last two equations we get

λ′(x)δ′2(λ(x)y) + [λ′(x)λ(x)y − λ2(x)]δ′′2 (λ(x)y) = 0. (A.10)

Choose (x1, y1) ∈ I0. We consider the following three cases of (x1, y1).

Case 1: There exists a tuple (x2, y2) ∈ I0 with λ(x2)y2 = λ(x1)y1 and
λ′(x2)/λ

2(x2) 	= λ′(x1)/λ
2(x1).

Case 2: For all ε > 0 there exist x ∈ I01 , |x − x1| ≤ ε with λ(x) 	= λ(x1)
and for all tuples (x2, y2) ∈ I0 with λ(x2)y2 = λ(x1)y1 it holds that
λ′(x2)/λ

2(x2) = λ′(x1)/λ
2(x1).

Case 3: There exists an ε > 0 such that λ(x) = λ(x1) for all x ∈ I01 , |x−x1| ≤ ε.

In Case 1 we put z = λ(x1)y1 = λ(x2)y2. Then, it holds that

ajδ
′
2(z) + bjδ

′′
2 (z) = 0,

where aj = λ′(xj) and bj = λ′(xj)z − λ2(xj) for j ∈ {1, 2}. Because of
λ′(x1)/λ

2(x1) 	= λ′(x2)/λ
2(x2) the matrix(

a1 a2
b1 b2

)

has full rank. Thus, we have that

δ′2(z) = δ′′2 (z) = 0. (A.11)

From (A.8) we also get that δ′3(x1 + y1) = 0 and δ′1(x1) = 0.
Consider now Case 2. In this case we have for x in a neighborhood of x1

that λ′(x)/λ2(x) = ρ0 with ρ0 = λ′(x1)/λ
2(x1). Solutions of this differential

equation fulfill that λ(x) = −(ρ1 + ρ0x)
−1 for x in a neighborhood of x1 with

some constant ρ1. From (A.10) we get for δ′2(z) for z in a neighborhood of
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y1λ(x1) the differential equation ρ0δ
′
2(z) + (ρ0z − 1)δ′′2 (z) = 0. Solutions of

this equation fulfill with a constant ρ2 for z in a neighborhood of y1λ(x1) that
δ′2(z) = ρ2(ρ0z − 1)−1. From (A.8) we get that

δ′3(x+ y) = −ρ2
(
ρ0(x+ y) + ρ1

)−1
.

Putting these expressions of λ, δ′2 and δ′3 into the first equation of (A.8) gives
δ′1(x) = ρ2(ρ1 + ρ0x)

−1.
We now come to Case 3. Now we have that λ(x) = λ(x1) for x in a neighbor-

hood of x1. From (A.9) we get that δ′′3 (x+y) = 0 and δ′′2 (λ(x)y) = 0 for all (x, y)
in a neighborhood of (x1, y1). Thus, δ

′
1(x), δ

′
2(z), and δ′3(x+ y) are constant for

all (x, y) in a neighborhood of (x1, y1) and z in a neighborhood of λ(x1)y1 and
satisfy δ′1(x) + δ′3(x+ y) = 0 and λδ′2(z) + δ′3(x+ y) = 0. In particular, we have
that δ′1(x) = γ1 for x in a neighborhood of x1 with γ1 = δ′1(x1).

Thus, with some constants γ0 > 0 and γ1, ρ0, ρ1, ρ2, we get for (x1, y1) ∈ I0

that there exist three possibilities: (1) δ′1(x1) = 0, δ′′1 (x1) = 0, δ′2(λ(x1)y1) = 0
and δ′3(x1+y1) = 0; (2) δ′1(x) = ρ2(ρ1+ρ0x)

−1, δ′′1 (x) = −ρ0ρ2(ρ1+ρ0x)
−2 and

λ(x) = −(ρ1 + ρ0x)
−1 for x in an interval that contains x1 and δ′2(λ(x1)y1) =

ρ2(ρ0λ(x1)y1 − 1)−1and δ′3(x1 + y1) = −ρ2
(
ρ0(x1 + y1) + ρ1

)−1
; (3) δ′1(x) = γ1,

δ′′1 (x) = 0 and λ(x) = γ0 for x in an interval that contains x1 and δ′2(λ(x1)y1) =
γ1/λ(x1)and δ′3(x1+y1) = −γ1. We can assume that γ1 > 0 and ρ2 > 0 because
for (x1, y1) in (2) with ρ2 = 0 or in (3) with γ1 = 0, respectively, we have that
(x1, y1) fulfills (1).

We now make use of the continuity of δ′1, δ
′′
1 and λ. This implies that intervals

of x in (2) can only overlap if they have the same constants ρ0, ρ1, ρ2. Further-
more, intervals of x in (3) can only overlap if they have the same constant γ1.
And, values of x1 with (1) cannot lie in intervals of (2) or in intervals of (3). We
conclude that for all x1 ∈ I01 the same case (1), (2) or (3) holds. By assumption,
we have excluded that λ(x) = −(ρ1+ρ0x)

−1 with some constants ρ0, ρ1 or that
λ is constant. Thus for all x1 ∈ I01 case (1) applies and we have that δ′1(x1) = 0,
δ′′1 (x1) = 0, δ′2(λ(x1)y1) = 0 and δ′3(x1 + y1) = 0 for all (x1, y1) ∈ I0.

Proof of Theorem 4 . Let the functions m1, m2, m3, λ, m̄1, m̄2, m̄3, λ̄ satisfy

m1(x) +m2(λ(x)y) +m3(x+ y)

= m̄1(x) + m̄2(λ̄(x)y) + m̄3(x+ y), (x, y) ∈ I,
λ(x) = ax+ b, λ̄(x) = āx+ b̄,

m2(0) = m̄2(0) = m3(0) = m̄3(0) = 0, m′
2(0) = m̄′

2(0) = 1

for some nonzero constants a, b, ā and b̄. Assume that m1 and m̄1 are differ-
entiable and that m2 and m̄2 are two times continuously differentiable. With
δ1(x) = m̄1(x)−m1(x) and δ3(x) = m̄3(x)−m3(x) we have

δ1(x) + m̄2((āx+ b̄)y)−m2((ax+ b)y) + δ3(x+ y) = 0, (x, y) ∈ I. (A.12)

By putting y = 0 into (A.12), it gives δ1(x) = −δ3(x) for all x ∈ J1(0) and
we get

δ1(x) + m̄2((āx+ b̄)y)−m2((ax+ b)y)− δ1(x+ y) = 0 (A.13)
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for all x and y with (x, y) ∈ I and x+ y ∈ J1(0). If we differentiate both sides
of the equation (A.13) with respect to y and if we put y = 0 afterwards, then
we obtain

δ′1(x) = (āx+ b̄)− (ax+ b) = (ā− a)x+ b̄− b, x ∈ J1(0).

Because of δ1(0) = 0 this shows

δ1(x) =
1

2
(ā− a)x2 + (b̄− b)x, x ∈ J1(0). (A.14)

By plugging this back into (A.13) we establish

m̄2((āx+ b̄)y)−m2((ax+ b)y) =
1

2
(ā− a)(2xy + y2) + (b̄− b)y (A.15)

for all x and y with (x, y) ∈ I and x + y ∈ J1(0). By taking second-order
derivatives of both sides of the equation (A.15), we get

ā2m̄′′
2((āx+ b̄)y)− a2m′′

2((ax+ b)y) = 0,

ā(āx+ b̄)m̄′′
2((āx+ b̄)y)− a(ax+ b)m′′

2((ax+ b)y) = 0
(A.16)

for all x and y with (x, y) ∈ I and x+ y ∈ J1(0).
Now let v1(x, y) = m̄′′

2((āx + b̄)y) and v2(x, y) = m′′
2((ax + b)y). Then, v =

(v1, v2)
� solves the linear equations

ā2v1(x, y)− a2v2(x, y) = 0,

ā(āx+ b̄)v1(x, y)− a(ax+ b)v2(x, y) = 0.

These equations have the unique solution v(x, y) = 0 if

0 	= ā2a(ax+ b)− āa2(āx+ b̄) = āa[āb− ab̄].

We have two cases ab̄ 	= āb and ab̄ = āb. In the first case, m̄′′
2((āx + b̄)y) and

m′′
2((ax + b)y) are zero for all x and y with (x, y) ∈ I and x + y ∈ J1(0), so

that m̄2 and m2 are linear on a nontrivial interval that includes {0}. Due to the
constraints that m̄′

2(0) = m′
2(0) = 1 and m̄2(0) = m2(0) = 0, we must have

m̄2(z) = z = m2(z)

for all z in the nontrivial interval. Putting this back to (A.15) we get

1

2
(ā− a)y2 = 0. (A.17)

for infinitely many y. Thus we conclude ā = a.
Now we consider the second case where ab̄ = āb. Since a 	= 0 and ā 	= 0,

the latter happens either (i) when b = b̄ = 0 or (ii) when b 	= 0 and b̄ 	= 0. In
the case (i), differentiating (A.15) with respect to y and putting x = 0 gives
(ā − a)y = 0 for all y ∈ J1(0) ∩ J2(0). This gives a = ā. In the case (ii), let
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c = ā/a = b̄/b. Differentiating both sides of (A.15) with respect to x and then
putting x = 0 gives

ā · m̄′
2(b̄y)− a ·m′

2(by) = ā− a, y ∈ J1(0) ∩ J2(0).

Using the identity ab̄ = āb, we get ā · m̄′
2(cz) − a ·m′

2(z) = ā − a. By integrat-
ing both sides of the resulting identity and utilizing the constraints m̄2(0) =
m2(0) = 0, we obtain

m̄2(cz)−m2(z) = (c− 1)z

for all z in an interval [0, α] with some α > 0. This and the identity (A.15) entail

1

2
(ā− a)(2xy + y2) + (b̄− b)y = m̄2((āx+ b̄)y)−m2((ax+ b)y)

= m̄2(c(ax+ b)y)−m2((ax+ b)y)

= (c− 1)(ax+ b)y

(A.18)

for infinitely many pairs (x, y). Comparing the coefficients of both sides of the
identity (A.18), we establish (A.17) again for infinitely many y. This implies
ā = a so that c = 1 and thus b̄ = b. This completes the proof.

Proof of Lemma 1. From (3.2) and (3.7) with y = 0 we get

m̄1(x) + m̄3(x) = m1(x) +m3(x), x ∈ J1(0).

Together with (3.7) this gives

m2(λ(x)y) +m3(x+ y)−m3(x) = m̄2(λ̄(x)y) + m̄3(x+ y)− m̄3(x) (A.19)

for all (x, y) ∈ I with x ∈ J1(0). For x = 0 we have that m2(λ(0)y) +m3(y) =
m̄2(λ̄(0)y) + m̄3(y) for all y ∈ J2(0). This with (A.19) entails that

m2(λ(x)y) +m3(x+ y) +m2(λ(0)x)

= m̄2(λ̄(x)y) + m̄3(x+ y) + m̄2(λ(0)x)
(A.20)

for all (x, y) ∈ I with x ∈ J1(0) ∩ J2(0). Furthermore, it holds that

m2(λ(0)(x+ y)) +m3(x+ y) = m̄2(λ̄(0)(x+ y) + m̄3(x+ y),

x+ y ∈ J2(0).
(A.21)

Thus, by taking the difference the two equations (A.20) and (A.21) we obtain

m2(λ(x)y)−m2(λ(0)(x+ y)) +m2(λ(0)x)

= m̄2(λ̄(x)y)− m̄2(λ̄(0)(x+ y)) + m̄2(λ̄(0)x)
(A.22)

for all (x, y) ∈ I with x ∈ J1(0) ∩ J2(0) and x + y ∈ J2(0). By taking the
derivatives of both sides of (A.22) we get

λ(x)m′
2(λ(x)y)− λ(0)m′

2(λ(0)(x+ y))

= λ̄(x)m̄′
2(λ̄(x)y)− λ̄(0)m̄′

2(λ̄(0)(x+ y))
(A.23)
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for all (x, y) ∈ I with x ∈ J1(0) ∩ J2(0) and x + y ∈ J2(0). In particular for
y = 0, this writes as

λ(x)− λ(0)m′
2(λ(0)x) = λ̄(x)− λ̄(0)m̄′

2(λ̄(0)x), x ∈ J1(0) ∩ J2(0). (A.24)

By plugging (A.24) two times into (A.23) we get that, for all (x, y) ∈ I with
x+ y ∈ J1(0) ∩ J2(0) and λ̄(x)y/λ̄(0) ∈ J1(0) ∩ J2(0),

0 = λ̄(x)m̄′
2(λ̄(x)y)− λ̄(0)m̄′

2(λ̄(0)(x+ y))

− λ(x)m′
2(λ(x)y) + λ(0)m′

2(λ(0)(x+ y))

= λ̄(x)m̄′
2(λ̄(x)y)− λ̄(x+ y)− λ(x)m′

2(λ(x)y) + λ(x+ y)

=
λ̄(x)

λ̄(0)
λ̄(0)m̄′

2

(
λ̄(0)

λ̄(x)

λ̄(0)
y

)
− λ(x)m′

2(λ(x)y)− λ̄(x+ y) + λ(x+ y)

=
λ̄(x)

λ̄(0)
λ̄

(
λ̄(x)

λ̄(0)
y

)
− λ̄(x)

λ̄(0)
λ

(
λ̄(x)

λ̄(0)
y

)
+

λ̄(x)

λ̄(0)
λ(0)m′

2

(
λ(0)

λ̄(x)

λ̄(0)
y

)
− λ(x)m′

2(λ(x)y)− λ̄(x+ y) + λ(x+ y).

This shows the claim of the lemma.

Proof of Theorem 5. Let the functions m1, m2, m3, λ, m̄1, m̄2, m̄3, λ̄ satisfy

m1(x) +m2(λ(x)y) +m3(x+ y) = m̄1(x) + m̄2(λ̄(x)y) + m̄3(x+ y),

λ(x) = λ′(0)x+ λ(0), λ̄(x) = λ̄′(0)x+ λ̄(0), x ∈ [0, ε]

m2(0) = m̄2(0) = m3(0) = m̄3(0) = 0, m′
2(0) = m̄′

2(0) = 1

for some ε > 0. We first note that, with the local linearity of λ and λ̄ at zero,
we may follow the arguments in the proof of Theorem 4 for sufficiently small
x, y ≥ 0. Thus, if λ′(0)λ̄(0) 	= λ̄′(0)λ(0), then m2 and m̄2 are linear in a small
neighborhood of zero. This means that, if both m2 and m̄2 are not linear in any
small neighborhood of zero, then we must have λ′(0)λ̄(0) = λ̄′(0)λ(0), so that
we may conclude λ(0) = λ̄(0) and λ′(0) = λ̄′(0) as in the proof of Theorem 4.

We now use Lemma 1. If we differentiate both sides of (3.8) with respect to
x and put x = 0 afterwards, then we get

0 =
λ̄′(0)

λ̄(0)

(
λ̄(y)− λ(y)

)
+

(
λ̄′(0)

λ̄(0)
y − 1

)(
λ̄′(y)− λ′(y)

)

+ λ(0)

(
λ̄′(0)

λ̄(0)
− λ′(0)

λ(0)

)
m′

2(λ(0)y)

+ λ(0)2
(
λ̄′(0)

λ̄(0)
− λ′(0)

λ(0)

)
ym′′

2(λ(0)y), y ∈ J1(0) ∩ J2(0).

(A.25)

By integrating both sides of (A.25) we obtain(
λ̄′(0)

λ̄(0)
y − 1

)(
λ̄(y)− λ(y)

)
+ λ(0)

(
λ̄′(0)

λ̄(0)
− λ′(0)

λ(0)

)
ym′

2(λ(0)y)

= λ(0)− λ̄(0), y ∈ J1(0) ∩ J2(0).

(A.26)
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Since λ(0) = λ̄(0) and λ′(0) = λ̄′(0), the identity (A.26) gives that λ̄(y)−λ(y) =
0 for all y ∈ J1(0)∩ J2(0) with y · λ̄′(0)/λ̄(0) 	= 1. Since λ and λ̄ are continuous,
this implies λ̄ ≡ λ on J1(0) ∩ J2(0).
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