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SUMMARY

We consider a cross-section model that contains an individual component, a deterministic time trend
and an unobserved latent common time series component. We show the following oracle property: the
parameters of the latent time series and the parameters of the deterministic time trend can be estimated
with the same asymptotic accuracy as if the parameters of the individual component were known. We
consider this model in two settings: least squares fits of linear specifications of the individual component
and the parameters of the deterministic time trend and, more generally, quasilikelihood estimation in a
generalized linear time series model.

Some key words: Cross-section; Generalized linear time series model; Latent time series; Linear model.

1. INTRODUCTION

Often time series data do not directly lend themselves to a classical analysis, because the series of
interest is unobserved. In econometrics, one finds recent extensions of classical panel data models where
calendar effects are modelled as genuine time series to allow future forecasts. See, for example, the recent
study of Linton et al. (2009), which gives a review of panel data in this particular context, adds a latent
time series to a standard nonparametric regression problem, and shows that under certain assumptions
one can analyse the estimated latent time series as if it had been fully observed from the beginning.
In this paper, we consider a broad class of parametric models with latent time series and we show the
analogous oracle property. One motivation for our analysis comes from an econometric labour market
application with an additional identifiability issue arising in demographical age-period-cohort models.
In demography, the principle of a latent time series has long been used in mortality estimation and pre-
diction, in particular since the appearance of Lee & Carter (1992) and Carter & Lee (1992), which first
consider the in-sample mortality model in two steps. After the in-sample parameters have been estimated,
the estimated calendar effect is redefined into a time series and is analysed as such. In this paper, we
prove that under certain regularity assumptions this procedure is valid also when the latent time series is
incorporated into the model from the outset. While Lee & Carter (1992) and Carter & Lee (1992) only
consider calendar and age effects on mortality, recent studies also model cohort effects; see, for example,
Cairns et al. (2009) and our labour market example. This adds two important issues: identification of the
model and forecasting. The identification issue arises because the calendar time is a simple addition of
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cohort year and age. The forecasting issue arises from the fact that the forecast can be poorly specified
even when in-sample parameters are fully identified. Kuang et al. (2008a, 2008b) address these two prob-
lems. In this paper, we consider one important additive version of the age-period-cohort model and we
show that one can estimate the calendar effect and forecast it as if it were fully known from the begin-
ning (Fitzenberger et al., 2001; Fitzenberger & Wunderlich, 2002). For some related nonparametric mod-
els, see Park et al. (2009) and Linton et al. (2009). While the full model formulation approach has for
some time been used in demographics and actuarial science (Lee & Miller, 2001; Renshaw & Haberman,
2003a, 2003b; Wong-Fupuy & Haberman, 2004; Li & Chan, 2005), it has only recently found its way into
econometrics and empirical finance (Fengler et al., 2007; Park et al., 2009).

2. ESTIMATION IN A LINEAR TIME SERIES MODEL

In this section, we consider a linear time series cross-section model

Yit = X T
i tβ + (Z T

i tθ)(RT
t γ + ηt ) + εi t (t = 1, . . . , T ; i = 1, . . . , I ). (1)

For simplicity of notation, we assume that the upper limit I of individuals i does not depend on time t .
We observe the response Yit and the random covariables Xit and Zit . The vectors Rt are deterministic
covariates to model the time trend. The process ηt is a common unobserved latent time series. We assume
that the first elements of Zit and θ are equal to unity. This linear model is related to the one factor models
of Bai & Ng (2006) and Bai (2009).

We consider estimation of the time trend parameter γ and parametric fits for the time series structure
of the process ηt . The parameter β is the regression parameter. We propose to estimate β and γ by least
squares. Our main result is to show the following oracle property. Asymptotically the least squares esti-
mator of γ and estimators of the time series parameters of ηt work as well as if the nuisance parameter β

were known. We put μt = RT
t γ + ηt , νt = θμt and we consider the following estimator of β and fit of μt ,

(β̂, ν̂t ) = arg min
β,νt

∑
i=1,...,I ; t=1,...,T

(Yit − X T
i tβ − Z T

i tνt )
2,

(θ̂ , μ̂t ) = arg min
θ,μt

∑
i=1,...,I ; t=1,...,T

{Z T
i t (ν̂t − θμt )}2, (2)

where the second argmin runs over vectors θ with first element equal to one. The time trend parameter γ

is estimated by

γ̂ = arg min
γ

T∑
t=1

(μ̂t − RT
t γ )2. (3)

Fits of the time series model for ηt are based on the estimation of its autocovariances

ρ̂h = T −1
T−h∑
t=1

η̂t η̂t+h (h � 0), (4)

with η̂t = μ̂t − Rt γ̂ . We assume that:

Assumption 1. The variables εi t have conditional mean zero E(εi t |X ) = 0 and they fulfil the
conditional dependence condition: |E(εi tε js |X )| � 	(|i − j |, |s − t |), |E(ηuηvεi tε js |X )| � 	(|i − j |,
|s − t |) (i, j = 1, . . . , I ; u, v, s, t = 1, . . . , T ) for a function 	 with

∑∞
i,s=0 	(i, s) < ∞. Here the condi-

tioning variable X equals {Xit , Zit : i = 1, . . . , I ; t = 1, . . . , T }.
Assumption 2. The process ηt is mean zero and the terms T −1/2

∑T−h
t=1 Rtηt+h , T −1/2

∑T−h
t=1 Rt+hηt

(h � 0) and T −1
∑T

t=1 η2
t and (T −1

∑T

t=1 η2
t )

−1 are absolutely bounded in probability.

Assumption 3. It holds that I, T → ∞ and T = o(I 2).
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Assumption 4. The matrix T −1 I −1
∑

i=1,...,I ; t=1,...,T X̃it X̃ T
i t converges in probability to a matrix 
 that

has full rank. Here, X̃ T
i t is the vector X T

i t − Z T
i t A−1

t I −1
∑I

j=1 Z jt X T
j t and At is the matrix I −1

∑I
j=1 Z jt Z T

j t .

The norms of the elements of matrices I −1
∑I

i=1 Zit X T
i t and I −1

∑I
i=1 Rt Xit (t = 1, . . . , T ) are uniformly

bounded in probability. The operator norm of At and A−1
t is uniformly stochastically bounded.

Assumption 5. The covariables Rt may depend on T and T −1
∑T

t=1 Rt RT
t converges to a full rank

matrix �.

Assumption 1 allows dependencies between the errors that are local in time and after a suitable reorder-
ing of the individuals also local in i . In applications the reordering may correspond to closeness of the
individuals in age, region or other characteristics. Assumption 5 can be achieved by normalizing of Rt

such that T −1
∑T

t=1 Rt RT
t equals the identity matrix. Assumptions 2 and 4 hold, for example, under appro-

priate stationarity and ergodicity assumptions on Xit and Zt .
We compare γ̂ and ρ̂h with the theoretical oracle estimators

γ̃ =
(

T∑
t=1

Rt RT
t

)−1 T∑
t=1

Rtμt , ρ̃h = T −1
T−h∑
t=1

ηtηt+h .

Our main result is that the difference between γ̂ and γ̃ and the difference between ρ̂h and ρ̃h is asymp-
totically negligible. This means that asymptotically the least squares estimator of γ and the estimators of
the time series parameters of ηt work as well as if the nuisance parameter β were known. These oracle
properties are stated in the following theorem.

THEOREM 1. Under Assumptions 1–5, γ̂ = γ̃ + oP(T −1/2) and ρ̂h = ρ̃h + oP(T −1/2), for h � 0.

The basic argument in the proof of this theorem is to show that μ̂t − μt is asymptotically equivalent
to a weighted average of the error variables εi t . In the calculation of the least squares estimator of γ and
of the empirical autocovariances, this term is averaged such that it does not contribute to any first order
differences for these estimators and one gets the asymptotic equivalences stated in Theorem 1. Our model
contains as a special case Z T

i tθ ≡ 1. Then the theorem holds without the assumption T = o(I 2) and it is only
required that I, T → ∞. In the general model the additional requirement T = o(I 2) is needed to control
the rate of θ̂ − θ .

Example 1. We use German labour market data, from a 2% random sample of employees subject to
social security, grouped by year and age for the time period 1980–2004. Fitzenberger et al. (2001) and
Fitzenberger & Wunderlich (2002) used earlier versions of these data. The data also involve information
about receipt of unemployment benefits. We analyse annual observations of log median real wages, deflated
by the consumer price index, for full-time working males with a completed vocational training degree who
work full-time. We measure the age-year group specific unemployment rate by the share of benefit recip-
ients. We model log wages as a function of age, cohort and year effects as well as the unemployment rate
by Vit = αi + ξt + κt−i + Uitβ + eit with Vit log median wages, Uit unemployment rate, i age, t time,
t − i cohort. Here, αi , κt−i and β are parameters, ξt is a time series. The aim is inference on the dynamics
of ξt . Note the identification problem arising from the linear relationship between age, cohort and year.
Therefore, we focus on the second differences Yit = Vi+1,t+2 − Vi,t+1 − Vi+1,t+1 + Vit , Xit = Ui+1,t+2 −
Ui,t+1 − Ui+1,t+1 + Uit , εi t = ei+1,t+2 − ei,t+1 − ei+1,t+1 + eit and μt = ξt+2 − 2ξt+1 + ξt . For these sec-
ond differences, the parameters αi and κt−i cancel and

Yit = X T
i tβ + μt + εi t . (5)

This is an example of model (1). Analogously, we could take the second order differences Yit = Vi+2,t+1 −
Vi+1,t − Vi+1,t+1 + Vit to eliminate ξt and ρt−i , or Yit = Vi,t+1 − Vi,t − Vi+1,t+1 + Vi+1,t to eliminate ξt

and αi , respectively, in order to estimate the age or the cohort process.
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Table 1. Ratios of mean squared differences for the oracle estimator and sample estimator in scenarios (i)–
(iv). Monte Carlo standard deviation is in parentheses and the calculation is based on the delta method

Ratios (i) (ii) (iii) (iv)

Oracle-to-sample(φ1) 0·995 (0·008) 0·996 (0·004) 0·997 (0·011) 0·885 (0·048)
Oracle-minus-sample(φ1) 0·015 (0·040) 0·004 (0·050) 0·038 (0·040) 0·800 (0·050)
Oracle-to-sample(φ2) 0·996 (0·007) 0·993 (0·003) 0·981 (0·010) 0·588 (0·041)
Oracle-minus-sample(φ2) 0·010 (0·050) 0·002 (0·040) 0·021 (0·040) 0·654 (0·040)

Our proposal is to first treat μt as a parameter and to estimate μt and β in equation (5) by least squares;
we estimate heteroscedasticity robust standard errors. The coefficient of the unemployment rate β is esti-
mated as 0·097 (0·042), here and henceforth standard errors in parentheses. This significantly positive
effect of unemployment likely reflects an inverse labour demand relationship (Card & Lemieux, 2001).
Our estimates suggest that μt is fairly precisely estimated, based on standard errors that are estimated,
here and in the following, as if μt were known; our theory says that the difference is asymptotically neg-
ligible. Next, we investigate the time series process governing μt . The estimated first and second order
autocorrelations are −0·002 (0·209) and −0·476 (0·209), respectively. A Dickey–Fuller test suggests that
μt is not nonstationary. Estimating an autoregressive process of order 2, i.e., μt = φ1μt−1 + φ2μt−2 + et ,
yields φ̂1 = 0·0089 (0·202) and φ̂2 = −0·498 (0·202). We find no autocorrelation in the error term et .
Further detailed analysis suggests that the cumulated process of μt is stationary.

To illustrate the usefulness of our theory, we simulate data based on an idealized version of our sample
data. We hold the unemployment rates fixed and we replicate their values when we increase the sample
size. We use the model estimates for β, φ1 and φ2 to simulate data. We draw the error terms from a normal
distribution with zero mean and a variance corresponding to the estimated sample variance. We simulate
1000 random samples for each scenario. We focus on the estimation of φ1 and φ2. Table 1 reports the ratio of
the mean squared error between the oracle estimators, which assumes knowledge of the true simulated μt ,
and the estimators based on the estimated μt , which we denote by oracle-to-sample(φ), where φ ∈ {φ1, φ2},
and the ratio between the mean squared difference between the sample estimator and the oracle estimator
divided by the mean squared error of the sample estimator, which we denote by oracle-minus-sample(φ).
These ratios are defined as: oracle-to-sample (φ) =∑1000

s=1 (φ̃s − φ̂)2/
∑1000

s=1 (φ̂s − φ̂)2 and oracle-minus-
sample (φ) =∑1000

s=1 (φ̃s − φ̂s)
2/
∑1000

s=1 (φ̂s − φ̂)2, where s denotes the simulated sample, φ̂ is the parameter
used to simulate the data, φ̂s is the sample estimator in the sth simulated sample and φ̃s is the oracle
estimator. We consider four scenarios: (i) the same sample size as in the data application with I = 34
and T = 23, (ii) T = 100 and I = 100, (iii) I = 15 and T = 23 using only age up to 40, (iv) as in (i) but
increasing the standard deviation of the error term in model (1) by a factor 10. For scenario (i), the mean
squared error of the oracle estimator for φ1 are φ2 are 0·995 times and 0·996 times, respectively, as large
as the mean squared error for the sample estimator, referring to the oracle-to-sample ratios reported in
Table 1, i.e., for the original sample type the result in Theorem 1 is strongly supported. Furthermore,
the oracle-minus-sample ratio is only 1·5 and 1·0% showing the difference between the two estimators is
small. Considering scenarios (ii) and (iii), the oracle-to-sample ratio is nondecreasing in the sample size,
subject to the Monte Carlo simulation error, and the oracle-minus-sample ratio falls with the sample size.
Considering scenario (iv), the oracle-to-sample ratio falls considerably with a larger variance of the error
term. These results show that the theoretical considerations are useful for the sample sizes considered here.
Further simulation results show that also for estimating the first order autocorrelation of the cumulated
process of μt we obtain an oracle-to-sample ratio close to one for scenario (i), even though this is beyond
the scope of our theory.

Example 2. Our general model (1), with covariates Zit and parameter θ , can be used in a labour/health
study, where health outcomes depend upon macroconditions, i.e., γt and ηt , interacting with workplace
conditions Zit . When there is a lot of overtime in a cyclical boom, stressful jobs may result in worse health
outcomes. In contrast, when recessionary periods increase the fear of unemployment, this may make health
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worse. Portrait et al. (2010) provides an example, where the cohort process could be modelled as a time
series, as in Example 1.

3. GENERALIZED LINEAR TIME SERIES MODEL

In this section, we introduce our generalization through the link function G:

Yit = G{X T
i tβ + (Z T

i tθ)(RT
t γ + ηt )} + εi t (t = 1, . . . , T ; i = 1, . . . , I ). (6)

The function G is a known link function. Again as in § 2, we observe the response Yit and the random
covariables Xit and Zit . As above, the vectors Rt are deterministic covariates to model the time trend and
we put μt = RT

t γ + ηt and νt = θμt .
For the theoretical discussion, we assume that for a weighting function w the estimator m̂it = X T

i t β̂ +
Z T

i t ν̂t is defined by Assumption 6.

Assumption 6. The estimators are approximate solutions of the score equations

sup
t=1,...,T

∣∣∣∣∣I −1
I∑

i=1

{Yit − G(m̂it )}w(m̂it)

∣∣∣∣∣= oP(T −1/2),

I −1T −1
∑

i=1,...,I ; t=1,...,T

{Yit − G(m̂it )}w(m̂it)Xit = oP(T −1/2).

Examples for estimators that fulfil Assumption 6 are quasilikelihood estimators in generalized linear
time series models. For a positive function V the quasilikelihood function is defined as Q(τ ; y) =∫ y

τ
(s − y)V (s)−1 ds where τ is the expectation of Y , i.e., in our case τ = G(X Tβ + Z Tν). The quasilike-

lihood estimator satisfies the two equations in Assumption 6 with w(u) = G ′(u)/V {G(u)}. In particular,
the equations hold with the right-hand sides replaced by zero. In the next assumption, we assume that
w has bounded support. This simplifies the asymptotic discussion but allows only truncated versions of
quasilikelihood estimation.

Assumption 7. The functions G and w are twice differentiable and have a bounded second derivative.
The weight function w has bounded support.

Assumption 8. It holds that

sup
t=1,...,T

‖ν̂t − νt‖ = oP(T −1/4), ‖β̂ − β‖ = oP(T −1/4).

We conjecture that Assumption 7 could be weakened to allow a sequence of weight functions with
increasing support or even to allow weight functions with unbounded support. But in both cases, one would
need rather technical tail conditions. These theoretical discussions are beyond the scope of this paper.
In applications we would propose to use the quasilikelihood estimator that corresponds to a weighting
function with unbounded support. Assumption 8 is motivated by Assumption 3. For each parameter νt

one has I observations. This suggests a rate of order Op(I −1/2) which is equal to oP(T −1/4) according to
Assumption 3. A formal mathematical theory under which technical Assumption 8 holds is also beyond
the scope of this paper.

As in the last section, the time series μt and the parameter θ is estimated as in (2). The trend parameter
γ is estimated by least squares (3). Again, we consider fits of time series models for ηt that are based on
the estimation of its autocovariances ρ̂h for h � 0, see (4). We compare γ̂ and ρ̂h with their theoretical
oracle estimators γ̃ and ρ̃h that are defined as in the last section. We now state an oracle property for (6).

THEOREM 2. Under Assumptions 1–8, it holds that γ̂ = γ̃ + oP(T −1/2) and ρ̂h = ρ̃h + oP(T −1/2)

(h � 0).
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Example 3. Using (6) one can combine the traditional chain-ladder approach with a well-defined time
series analysis of the calendar effect. Consider the case where Yit is the number of claims in an insurance
portfolio and where X T

i tβ is the sum of two functions. The first function depends on the underwriting year
i . The second function depends on the development period t − i , i.e., the time it takes for a claim to develop
to the point t where the claim is reported to the insurance company. Without the calendar effects this model
exactly amounts to the celebrated chain-ladder model when G is the exponential link function. For many
companies the value of such outstanding liabilities is several times the market value of the company. This
illustrates the importance of improving the econometric methodology for this problem. Our model above
for the first time gives a way to assess the chain-ladder type of regression estimates along with consistently
and well-defined time series effect that can be analysed as a standard time series. For a recent extension
of the chain-ladder model allowing for calendar effects see Kuang et al. (2008a, 2008b) that derive the
nontrivial rules of identification and forecasting in this context.

Example 4. Similar to Example 1, Fitzenberger & Wunderlich (2004) investigate age, time and cohort
effects in labour force participation by females. This analysis could be implemented by estimating a gen-
eralized linear time series model using a probit or logit link function. Estimating the time series of labour
force participation of females helps to analyse the contributions in the pay-as-you-go social security system
or the need for child care.

4. GENERALIZED TIME SERIES REGRESSION

In this section, we briefly consider our final and most general model:

Yit = G
{

hβ (Xit ) + gθ (Zit ) (RT
t γ + ηt )

}+ εi t . (7)

The model is as in (6) but with the extension of our introduction of two parametric families of functionals
hβ and gθ . This last model has the Lee–Carter model as a special case and it can, for example, also serve
to modify the applications of the models (1) and (6).

The model of Lee & Carter (1992) and Carter & Lee (1992) is a special case of (7). Our more general
formulation allows the applied statistician to modify Lee and Carter’s original model. For some recent
literature estimating the Lee–Carter parameters based on Poisson regression, see Brouhns et al. (2002), and
see Cairns et al. (2009) for modifications of the Lee–Carter structure that are also contained in our model
framework. For recent applications to the financial construction of survivor linked bonds, see Blake et al.
(2006) and Dowd et al. (2006).
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APPENDIX

Proof of Theorem 1. First

β̂ − β =
(

T −1 I −1
∑

i=1,...,I,t=1,...,T

X̃it X̃ T
i t

)−1

T −1 I −1
∑

i=1,...,I,t=1,...,T

X̃itεi t , (A1)

ν̂t − νt = I −1 A−1
t

I∑
i=1

Zitεi t − I −1 A−1
t

I∑
i=1

Zit X T
i t (β̂ − β). (A2)
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It can be checked that E(‖β̂ − β‖2 |X ) = OP(T −1 I −1) and thus ‖β̂ − β‖ = OP(T −1/2 I −1/2). Because of
Assumptions 4 and 5 this implies that

sup
t=1,...,T

∥∥∥∥∥ν̂t − νt − I −1 A−1
t

I∑
i=1

Zitεi t

∥∥∥∥∥= OP(I −1/2T −1/2), (A3)

T −1/2 I −1
∑

i=1,...,I,t=1,...,T

Rt X T
i t (β̂ − β) = OP(I −1/2).

From (2) we get that I
∑

t=1,...,T (ν̂t,1 − μ̂t )
2 �
∑

i=1,...,I,t=1,...,T {Z T
i t (ν̂t − θ̂ μ̂t )}2 �

∑
i=1,...,I,t=1,...,T

{Z T
i t (ν̂t − νt )}2. This bound and (A3) can be used to show that θ̂ − θ = OP(I −1/2) and T −1

∑T

t=1
(μ̂t − μt )

2 = OP(I −1). With these expansions, one can approximate the score function that is the deriva-
tives of the left-hand side of (2) with respect to θ and μt . After some algebra one gets that θ̂ − θ =
OP(T −1/2 + I −1) where the rate I −1 is a quadratic approximation error coming from the above bounds of
order OP(I −1/2) for θ̂ − θ and μ̂t − μt . This bound and the linearized score equation can be used to show
that

μ̂t − μt = T −1/2 I −1
I∑

i=1

wi tεi t + OP(δt ) (A4)

with wi t = (θ T Zit )/(θ
T Atθ) and δt = (T −1/2 I −1/2 + I −1)(1 + ‖ν̂t − νt‖ + ‖μt‖). For γ̂ = γ̃ + oP(T −1/2)

we have to show

T −1/2
T∑

t=1

Rt (μ̂t − μt ) = oP(1). (A5)

For the proof of this claim note first that, because of (A4), T −1/2
∑T

t=1 Rt (μ̂t − μt ) =
T −1/2 I −1

∑
i=1,...,I,t=1,...,T Rtwi tεi t + OP(I −1/2). Because of (A1), (A4) and (A5) the right-hand

side of this equation is of order OP(I −1/2). This shows (A5). Thus, γ̂ = γ̃ + oP(T −1/2) is shown.
We now show ρ̂h = ρ̃h + oP(T −1/2). We have to show for h � 0 that T 1/2(ρ̂h − ρ̃h) = T −1/2

∑T−h
t=1

{(μ̂t − RT
t γ̂ )(μ̂t+h − RT

t+h γ̂ ) − ηtηt+h} = oP(1). For this claim we will show that

T −1/2
T−h∑
t=1

ηt+h(μ̂t − RT
t γ̂ − ηt ) = OP(T −1/2 + I −1/2), (A6)

T −1/2
T−h∑
t=1

ηt (μ̂t+h − RT
t+h γ̂ − ηt+h) = OP(T −1/2 + I −1/2), (A7)

T −1/2
T−h∑
t=1

(μ̂t+h − RT
t+h γ̂ − ηt+h)(μ̂t − RT

t γ̂ − ηt ) = OP(T −1/2 + I −1/2). (A8)

Because of (A4), we have that uniformly for t = 1, . . . , T , μ̂t − RT
t γ̂ − ηt = I −1

∑I
i=1 wi tεi t − RT

t (γ̂ −
γ ) + OP(δt ). Using this expansion, it can be easily seen that (A6) and (A7) follow from Assumption 3
and γ̂ − γ = OP(T −1/2), T −1/2 I −1

∑T−h
t=1

∑I
i=1 ηtwi tεi t+h = OP(I −1/2T −1/2) and T −1/2 I −1

∑T−h
t=1

∑I
i=1

ηt+hwi tεi t = OP(I −1/2T −1/2). The latter expansions follow from Assumption 1.
For ρ̂h = ρ̃h + oP(T −1/2) it remains to check (A8). This can be done by showing that

T −1/2
∑T−h

t=1 RT
t (γ̂ − γ )RT

t+h(γ̂ − γ ) = OP(T −1/2), T −1/2 I −1
∑T−h

t=1

∑I
i=1 εi t RT

t+h(γ̂ − γ ) = OP(I −1/2

T −1/2), T −1/2 I −1
∑T−h

t=1

∑I
i=1 εi t+h RT

t (γ̂ − γ ) = OP(I −1/2T −1/2) and T −1/2 I −2
∑T−h

t=1

∑I
i=1

∑I
j=1

εi t+hε j t = OP(I −1). These expansions can be shown by using Assumptions 1 and 5. �
Proof of Theorem 2. By expanding the score functions in Assumption 6 we get stochastic expansions of
β̂ − β and ν̂t − νt where the first terms are weighted modifications of the right-hand side of (A1) or (A2),
respectively. These expansions are of order oP(T −1/2). To get these expansions, one applies that ‖β̂ − β‖2
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and ‖ν̂t − νt‖2 are of order oP(T −1/2), see Assumption 8. The further proof of Theorem 2 can be carried
out by similar arguments as in the proof of Theorem 1. �
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