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Abstract

In-sample forecasting is a recent continuous modification of well-known forecasting methods based on ag-

gregated data. These aggregated methods are known as age-cohort methods in demography, economics,

epidemiology and sociology and as chain ladder in non-life insurance. Data is organized in a two-way table

with age and cohort as indices, but without measures of exposure. It has recently been established that such

structured forecasting methods based on aggregated data can be interpreted as structured histogram estima-

tors. Continuous in-sample forecasting transfers these classical forecasting models into a modern statistical

world including smoothing methodology that is more efficient than smoothing via histograms. All in-sample

forecasting estimators are collected and their performance is compared via a finite sample simulation study.

All methods are extended via multiplicative bias correction. Asymptotic theory is being developed for the

histogram-type method of sieves and for the multiplicatively corrected estimators. The multiplicative bias

corrected estimators improve all other known in-sample forecasters in the simulation study. The density

projection approach seems to have the best performance with forecasting based on survival densities being

the runner-up.

Keywords: age-cohort model, chain ladder method, in-sample forecasting, multiplicative bias correction,

nonparametric estimation.

1. Introduction

In a period where mathematical statistical fitting of big data via machine learning type of algorithms

gets a lot of attention in computational driven advances of prediction, it is worth to remember that some

of the most important problems in mathematical statistics are forecasting problems. While a major field

of econometrics, mathematical statistics, finance and other fields have researched time series approaches to5

forecasting, in practice age-cohort methods have often been used as a simpler and more stable alternative

to time series. In this paper, we study in-sample forecasting. In-sample forecasting is a recently suggested

continuous modification of age-cohort methods that takes advantage of modern smoothing technology. In
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particular, we will present a detailed simulation study comparing several estimators proposed for in-sample

forecasting.10

In age-cohort models, a cohort is a group of individuals or objects with shared characteristics. Analysis

of cohorts is considered in many academic fields, with cohorts representing a common date: date of birth

(longevity), admission date to a hospital or prison (longitudinal studies, epidemiology), start date of un-

employment (economics), underwriting date of an insurance policy (actuarial science), etc. When modeling

different cohorts it is implicitly assumed that individuals in the same cohort have similarities due to a shared15

environment that differentiates them from other cohorts. In an age-period-cohort model one additionally

considers age, i.e., the time from the initial date until onset of an event, and period, i.e., the calendar date

of the event. The outcome of interest, µ, for cohort i and age k is modeled log-linearly:

logµik = αi + βk + γj , (age-period-cohort model) (1)

where α is the effect of cohort i, β corresponds to age k and γ to period j. The parameters α, β, γ are

assumed fixed but unknown and have to be estimated from the data. The dependence on the period, j, is20

implicit via j = i + k − 1. Model (1) is omnipresent in a wide array of fields often arising from repeated

cross-sectional studies. Recent contributions among many others include aging (Yang, 2011), blood pressure

(Tu et al., 2011), health inequalities (Jeon et al., 2016), social capital (Schwadel and Stout, 2012), social

acceptability of biotechnology (Rousselière and Rousselière, 2017), household savings (Fukuda, 2006) and

obesity epidemic (Reither et al., 2009).25

Nested within the age-period-cohort model is the simpler age-cohort model which arises for γ ≡ 0,

meaning that there is no period effect:

logµik = αi + βk. (age-cohort model) (2)

The age-cohort model in comparison to the age-period-cohort model has two major advantages. Firstly, the

parameters are identifiable up to a constant. In contrast, in model (1), a solution (α, β, γ) can be shifted by

an arbitrary linear trend without altering the outcome. This makes interpretation and extrapolation of the30

parameter estimates difficult. Secondly, forecasting, i.e., estimation for i+k−1 = j > today, is possible “in-

sample”, i.e., without time series extrapolation: Assume that cohorts are observed for i = 1, . . . , d1, and that

age is observed for k = 1, . . . , d2. Period is given by i+k. Once the parameter values (αi), (βk), i = 1, . . . , d1,

k = 1, . . . , d2 are fitted, forecasts for the effect µ for observed cohorts, i.e., i = 1, . . . , d1, are given up to d2

units ahead via (2). If one further assumes that d2 is an upper bound of age, then complete forecasts are35

indeed available for all observed cohorts without the need of extrapolation. Clearly, mathematical ease alone

can not justify the choice of a model. But in many cases period-effects seem indeed not significant. Hence,

often the age-cohort model (2) ensures both a better model fit and mathematical tractability.

The motivating example for the study in this paper is reserving in non-life insurance. Given data of

past claims, insurance companies are interested in forecasting the number of future claims for accidents that40
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have already happened but are not reported yet. This number plays an important role for estimating the

reserve: the amount the company sets aside for claims that have to be paid in the following years. The

reserve is usually the largest number on the balance sheet of a non-life insurance provider. Estimating the

reserve is regulated by law meaning that the mathematical model and the method of estimation have to be

approved by regulators. The challenging problem of forecasting the number of so-called IBNR (incurred but45

not reported) claims is often solved via model (2): For each past claim, one considers the date (cohort i)

when the accident had happened and the delay (age k) there was until the claim was reported to the insurer.

Hence, cohort and age satisfy i+ k − 1 ≤ today; given a certain year-wise aggregation. This information is

then used to estimate the number of future claims µik, i+k−1 > today, for accidents in the past, i ≤ today.

Under model (2), the parameters αi and βk for each cohort i and age k can be estimated from past data.50

Assuming a maximum delay (usually 7 to 10 years in practice, depending on the business line), the estimates

of the parameters can be used to forecast the number of future claims with i+ k − 1 > today. More details

of this age-cohort-reserving example are given in the recent contribution Harnau and Nielsen (2018) and are

also included in the highly-cited overview paper of actuarial reserving (England and Verrall, 2002).

Other examples where no significant period effect has been found include among many others cancer stud-55

ies (Leung et al., 2002; Remontet et al., 2003), returns due to education (Duraisamy, 2002), unemployment

numbers (Wilke, 2017), mesothelioma mortality (Peto et al., 1995; Mart́ınez-Miranda et al., 2014).

Given the importance of age-period-cohort models and age-cohort models, it is surprising that con-

tinuous versions have not been considered much in the literature. Continuous modeling avoids inefficient

pre-smoothing and is in line with recent trends around big data and the drive of modeling and understanding60

every individual separately. Modeling every individual separately, possibly with additional covariates, results

in the estimation of a large number of parameters. An increase of dimension means that data is more sparse

so that smoothing methods become necessary. Section 8.3 is devoted to a small simulation study showing

how a non-smoothed estimator breaks down when the sample sizes are too small; hence making forecasts

unreliable. A series of recent papers introduced several continuous versions of (1), (2) and extensions thereof65

in what are coined there as in-sample forecasters (Mart́ınez-Miranda et al., 2013; Mammen et al., 2015; Lee

et al., 2015; Hiabu et al., 2016; Gámiz et al., 2016; Lee et al., 2017).

This paper is devoted to the continuous analogue of the simple age-cohort model, equation (2):

f(x, y) = f1(x)f2(y), x, y ∈ [0, T ], (3)

for T > 0 and where f is a two-dimensional density function as considered in Mart́ınez-Miranda et al. (2013),

Mammen et al. (2015), Hiabu et al. (2016), Gámiz et al. (2016). If µik in (2) denotes occurrence, then (3)70

arises from (2) by replacing the discrete arguments (i, k) by continuous arguments (x, y). Note that age x

and cohort y are values of independent continuous random variables as the effects of cohort i and age k on

µik are independent from each other in model (2). Analogue to model (2), f1 represents the effect of age
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and f2 that of cohort. Instead of estimating the effects αi and βk for all i, k, we now estimate the marginal

distributions f1 and f2 from the data and thus get an estimate for the joint distribution under the assumption75

of independence. The estimated joint distribution then provides information, without extrapolation, about

the future, i.e., density values for x + y > T . The estimation problem of model (3) is different to classical

statistical literature because observations are not available on the full set [0, T ]2, with interest often exactly

in the unobserved area, x+ y > T .

In-sample forecasters generate a unified approach to the class of age-cohort and age-period-cohort mod-80

els and therefore provide opportunity for a general improvement across disciplines. Generally, consider a

distribution on a set S where data generated from that distribution is only available for observation on a

strict subset S1 ⊂ S. Our particular interest is in the density on S2 = S \ S1. An in-sample forecaster

is a structured model with the property that the distribution on S2 is known from the distribution on S1.

In most of the applications we are aware of, S1 represents the past and S2 represents the future — hence85

the term forecasting. One necessary assumption for this methodology to work is that the parameters of

the distribution can be estimated from the observations in S1. For example unspecified nonparametric one-

dimensional functions are sufficient to describe the distribution on S2. More generally, the distribution on

S1 is a function of some components and the distribution on S2 is another function of the very same com-

ponents. It is therefore necessary to work inside the world of structured models. Summarizing, the guiding90

principle of in-sample forecasting is that a forecaster can be constructed from in-sample estimators without

further extrapolation. This often seems more intuitive, simpler and more stable than time series forecasting

that requires first estimation and then extrapolation. Variations of in-sample forecasters have therefore been

developed by practitioners who wish to have a hands-on understanding of all entering components and their

relative importance for the forecast. Practitioners often deviate from standard statistical estimation when95

prior knowledge provide them with extra information. It is of course extremely important that the practi-

tioners understand all entering components to be able to perform such manual corrections in a reliable way.

Therefore in-sample forecasting is a powerful methodology in many practical forecasting settings.

Another common two-dimensional application, besides reserving in non-life insurance, appears in medical

studies, specifically in the research of the mortality of a disease. Typically, patients enter the study when100

the disease is diagnosed and they are observed until current calendar time or until some event happens.

That event could be death, see for example Mart́ınez-Miranda et al. (2016) forecasting future asbestos

related deaths in the UK via a structure as above. Mart́ınez-Miranda et al. (2016) does not coin their

methodology in-sample forecasting and they use a discrete non-smooth estimating technique that is common

in age-cohort, age-period, period-cohort or age-period-cohort studies. But the structure is the same as the105

in-sample forecasting methodology considered in this paper and the likelihood based approach of Mart́ınez-

Miranda et al. (2016) is referred to as method of sieves in this paper. When this paper explores comparable

in-sample forecasting procedures and includes the method of sieves in the optimization considerations, it is
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including the vast age-cohort type of studies in the overall comparison. The unsurprising conclusion that the

method of sieves, a histogram type estimator, is not efficient leads us to suggest that continuous in-sample110

forecasting methodology should be introduced more broadly in the vast number of applications in age-period

and age-cohort type of studies.

In the above mentioned example about future asbestos related deaths, we have data about past deaths

in S1 and future deaths will happen in S2. The event under observation is death; future deaths are of course

unknown at the day the data collection ends. Only the number of deaths that have already occurred is115

known. The purpose of the forecasting exercise might be to forecast the number and timing of future deaths

in the considered cohort. In this scenario, we have truncated data represented by (Xi, Yi) where Xi is the

date an individual has entered the study and Yi is time until death. Truncation occurs because Xi+Yi must

be before the day of data collection. The region S2, where X+Y is after the day of data collection, contains

future events only. The typical in-sample forecasting assumes data to be structured in such a way that120

the distribution of interest depends on one-dimensional components only and that these one-dimensional

components can be estimated from the data in S1.

The aim of this paper is to summarize those methods that solve (3), extend them with multiplicative bias

corrected versions and compare them both theoretically and in a simulation study. This should give prac-

titioners and applied researchers guidance when estimation of a continuous age-cohort-model is considered.125

This study should also be seen as first cornerstone in the understanding of more complex models including

continuous analogues of (1) and extensions thereof. We chose to concentrate on the simple model (3) only

because optimality is not settled even in this simple continuous age-cohort model. That is the purpose of

this study. There are also other interesting generalizations of (3), which are not the continuous analogue to

(1). One example would be the model f(x, y) = f1(x)f2(ϕ(x)y), modeling an additional operational time130

term ϕ (Lee et al., 2017). Also such other generalizations need a good fundament of the understanding of

the simple age-period model before they can be fully developed.

This paper is organized as follows. We outline the underlying probability model in Section 2. In Sections

3–5 we introduce the different estimators and their multiplicative bias corrected versions are defined in

Section 6. Common features of point-wise asymptotic bias and variance are summarized in Section 7.135

Different problems in finite sample simulation studies and their results are described in Section 8, followed

by a conclusion. Asymptotic results for the sieves histogram estimator and their proofs are deferred to the

appendix.

2. Model

Let S denote the square [0, T ]× [0, T ] for some T > 0. We assume a probability space (S,B(S),P) with140

the Borel measure B(S) on S. Furthermore, let X and Y be two independent random variables with values

in [0, T ] each such that the distribution of the pair (X,Y ) is P. Let the marginal density functions of X and
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Y with respect to the Lebesque measure be given by f1 and f2, respectively. Denote the probability density

function of the two-dimensional random variable (X,Y ) by f , which satisfies model (3):

f(x, y) = f1(x)f2(y), x, y ∈ [0, T ].

In this particular model, the problem of two-dimensional in-sample density forecasting means that we want145

to estimate f given truncated observations (Xi, Yi), i = 1, . . . , n, i.e., observations are only available in the

subset S1 ⊂ S. Note that these observation have density function f̃(x, y) = P(S1)
−1
f(x, y) IS1(x, y). For

simplicity and because of the relevance in application, we set S1 = {(x, y) ∈ S;x+y ≤ T}, which is the lower

left diagonal triangle in S and which occurs in the examples in the introduction. Hence, it holds Xi+Yi ≤ T

for every observation i. In the next three sections, we consider three different nonparametric approaches for150

estimating the marginal densities of the stochastic variables that are truncated to a triangular subset of S.

Our estimate for the joint density f will then simply be the product of the estimated marginal densities.

The first approach involves survival analysis methods that make use of models specifically designed for

truncated and censored observations as described in Section 3. Two of our estimators arise from these

methods. The second approach described in Section 4 aims at estimating the filtered joint density f̃ on S1155

first and then projecting it onto a multiplicatively separable subspace of the space of probability density

functions on S. A naive re-scaled histogram approach is the basis for the third approach that is outlined

in Section 5. We follow a simple algorithm to get a re-scaled histogram despite the truncation on S1 and

smooth the estimator afterwards using a kernel function.

3. Survival analysis approach160

We first consider the survival analysis approach, where we consider a counting process model in back-

wards time. Reversing the time scale is a survival analysis trick to change complicated right-truncation to

straightforward left-truncation (Ware and DeMets, 1976). Left-truncation is immediately accommodated for

in standard counting process theory allowing for standard martingale inference and other standard stochastic

process tools to be immediately available.165

3.1. Survival analysis model

In this section, we embed the model of Section 2 into a survival analysis setting. We assume a counting

process {N(t) : t ∈ [0, T ]}, i.e., a piecewise constant, nondecreasing càdlàg process with values 0, 1, 2, . . . .

The intensity λ of N with respect to a suitable filtration F = {Ft : t ∈ [0, T ]} (Andersen et al., 1993, p.60),

is defined via170

λ(t) = lim
h↓0

h−1E[N((t+ h)−)−N(t−)| Ft−], t ∈ [0, T ],

where N(t−) = lims↑tN(s) and Ft− is the smallest σ-algebra containing all Fs such that s < t.
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In the sequel, for each observations (Xi, Yi) we are interested in counting processes N i
1 and N i

2 which are

defined as N i
1(t) = I(T −Xi ≤ t) and N i

2(t) = I(T − Yi ≤ t), t ∈ [0, T ]. Let their intensities be given as λil,

l = 1, 2, and we write Fl,t for their natural filtrations. Each set of counting process {N i
1(t) : t ∈ [0, T ], i =

1, . . . , n} and {N i
2(t) : t ∈ [0, T ], i = 1, . . . , n} will be used to estimate the marginal distribution of X and Y ,175

respectively.

We illustrate the setting for the variable X in the following. Since the problem is symmetric in its

covariates, we will obtain the analogous structure for Y . Explicitly, the intensity of N i
1 with respect to its

natural filtration is given by

λi1(t) = αR1 (t|Yi)I(Yi ≤ t ≤ T −Xi), t ∈ [0, T ], (4)

where αR1 (t|Yi) = limh↓0 h
−1P (T −Xi ∈ [t, t+ h)| T −Xi ≥ t, Yi(s), s ≤ t) is the conditional hazard of T −180

Xi given Yi at t ∈ [0, T ]. The structure in equation (4) fulfills Aalen’s multiplicative model (Andersen et al.,

1993, p. 128).

We refer to αR as the hazard in reversed time, indicated by the superscript R, since N i
1 is defined for

T − Xi instead of for Xi. The motivation was already mentioned above: Observations in the triangle S1

correspond to right-truncation, i.e., for every observation (Xi, Yi) it holds Xi ≤ T − Yi, for which we can’t185

derive an intensity as in equation (4). The process in backward time however is left-truncated and allows

this representation of the intensity and hence fits into the framework of Aalen’s multiplicative model. For

more details on this time-reversion see e.g. Hiabu et al. (2016).

In survival analysis, the number of individuals that are at risk is given by the exposure. The exposure

at time t ∈ [0, 1] is defined as Zl(t) =
∑n
i=1 Z

i
l (t), l = 1, 2, with Zi1(t) = I(Yi < t ≤ T − Xi) and190

Zi2(t) = I(Xi < t ≤ T − Yi).

3.2. Survival analysis estimators

The first two estimators we investigate are one-dimensional kernel estimators arising from the survival

analysis approach. Since the natural objects in survival analysis are hazard rates and not densities, we first

introduce an estimator of the marginal hazard functions and then transform it into a probability density195

functions. The second estimator is a straightforward one-dimensional density estimator that has a slightly

more advanced structure.

Again, since the counting process estimators are one-dimensional and because of the symmetry in the

estimation problem, we denote most of the following only for estimators f̂1 of the marginal density f1. When

there is no risk of confusion, we usually leave out the subscript l and just write f̂ or f , respectively. Clearly,200

all results also hold for f̂2 being defined analogously.

We focus on local linear estimators and ignore local constant kernels here since our problem is density

estimation on a bounded support. Local linear estimators usually perform much better than local constant
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kernel density estimators at boundaries (see Fan and Gijbels (1996) and Wand and Jones (1994)). For a

bandwidth h > 0 and s, t ∈ [0, T ], we define205

K̄t,h(t− s) =
a2(t)− a1(t)(t− s)
a0(t)a2(t)− (a1(t))2

Kh(t− s),

with

aj(t) = n−1

∫
Kh(t− s)(t− s)jZ(s)ds,

for j = 0, 1, 2, where K is a symmetric kernel function with bounded support and Kh(t) = h−1K(t/h) for

h > 0. Integration without boundaries denotes integration over the whole support [0, T ].

The function K̄ can be interpreted as a local linear kernel and will subsequently naturally arise as a

solution of a local linear least square criterion.210

3.2.1. One-dimensional hazard estimator

The first estimator is a transformation of the hazard estimator introduced in Nielsen and Tanggaard

(2001). In that setting there was no right-truncation and hence no time-reversion in the estimation process.

We first estimate the marginal hazard function of Y in reversed time by the local linear estimator

α̂Rh (t) = n−1
n∑
i=1

∫
K̄t,h(t− s)dN i(s).

For fixed t ∈ [0, T ], this estimator is motivated to be α̂Rh (t) = θ̂0(t), the first component of the minimizer215 θ̂0(t)

θ̂1(t)

 = arg min
θ0,θ1

lim
ε→0

n∑
i=1

∫ [{
1

ε

∫ s+ε

s

dN i(s)− (θ0 + θ1(t− s))
}2

− ξ1(ε)

]
Kh(t− s)Zi(s)ds,

with the term ξ1(ε) =
(
ε−1

∫ s+ε
s

dN i(u)
)2

making the expression well-defined.

The transformation of a marginal hazard function α into its corresponding marginal density f is given

by

f(t) = α(t) exp

(
−
∫ t

0

α(s)ds

)
, t ∈ [0, T ].

It reflects the equality α(t) = f(t)/S(t) for the survival function S(t) = 1 − F (t) and with F denoting the220

cumulative density function. For l = 1, 2, this motivates the reversed time estimator

f̂Rl,h,H(t) = α̂Rl,h(t) exp

(
−
∫ t

0

α̂Rl,h(s)ds

)
, t ∈ [0, T ],

and finally our density estimator is

f̂l,h,H(t) = f̂Rl,h,H(T − t).

We do not expect this estimator to perform well because the hazard-density transformation can amplify

errors in the estimator of hazard function. Nevertheless, we wanted to compare its performance because the

hazard estimator is computationally attractive due to its simple structure.225
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3.2.2. One-dimensional counting process estimator

The second estimator in our comparison is the local linear survival density estimator, see Hiabu et al.

(2016) and Nielsen et al. (2009). For every t ∈ [0, T ], it is defined as f̂Rl,h,C(t) = θ̂0(t) inθ̂0(t)

θ̂1(t)

 = arg min
θ0,θ1∈R

n∑
i=1

[∫
Kh(t− s){θ0 + θ1(t− s)}2Zi(s)ds

−2

∫
Kh(t− s){θ0 + θ1(t− s)}ŜR(s)Zi(s)dN i(s)

]
, (5)

for a bandwidth h > 0. For fixed t, θ̂0 estimates f1(T − t), i.e., f1 in reversed time. As a pilot estimator for

the reversed survival function SR(t) =
∏
s≤t{1−dAR(s)}, we take the Kaplan-Meier product-limit estimator

ŜR(t) =
∏
s≤t

(1−∆ÂR(s)) =
∏
s≤t

(
1− ∆N(s)

Z(s)

)
,

with the Aalen estimator

ÂR(t) =

n∑
i=1

∫ t

0

(Z(s))−1dN i(s)

of the integrated hazard function AR(t) =
∫ t

0
αR(s)ds. We use the common product-integral notation230

(Andersen et al., 1993, p.89) for the reversed survival function and in the Kaplan-Meier estimator ∆ÂR(s)

denotes AR(s) − limu↗sA
R(u), resulting in the product-integral being a product over the finite number of

jumps of ÂR or N , respectively.

The minimization criterion (5) can also be motivated as least squares principle via the representation

n∑
i=1

∫ [{
1

ε

∫ s+ε

s

ŜR(u)dN i(u)− (θ0 + θ1(t− s))
}2

− ξ2(ε)

]
Kh(t− s)Zi(s)ds,

in the limit for ε→ 0. The term ξ2(ε) =
(
ε−1

∫ s+ε
s

ŜR(u)dN i(u)
)2

does not depend on (θ0(t), θ1(t)) and it235

is needed to make the expression well-defined as in Section 3.2.1.

Solving the minimization (5), the reversed time estimator for f1 at t ∈ [0, T ] with bandwidth h > 0 from

Hiabu et al. (2016) is given as

f̂Rl,h,C(t) = n−1
n∑
i=1

∫
K̄t,h(t− s)ŜRl (s)dN i

l (s),

for l = 1, 2 and, finally, we set

f̂l,h,C(t) = f̂Rl,h,C(T − t).

4. Projection approach240

The next method we include in this study is a two-dimensional projection approach introduced in

Mart́ınez-Miranda et al. (2013) and Mammen et al. (2015). One first estimates the two-dimensional density
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on the subspace S1. This unstructured pilot estimator is then projected onto the space of multiplicatively

separable probability density functions on S. Here, as in the survival analysis approach, we propose the local

linear estimator.245

First, we estimate the joint density on S1 for every points z0 = (x0, y0) ∈ S1 with the estimator f̃h(z0) =

Θ̂0(z0) that arises from the local linear minimization:

(Θ̂0(z0), Θ̂1(z0))′ = arg min
(Θ0,Θ1)

{
lim
b→0

∫
S1

[f̃
(0)
b (z)−Θ0 −Θt

1(z0 − z)]2Kh(z − z0)dz

}
,

where f̃
(0)
b (z) = (nb1b2)−1

∑n
i=1Kb(z − (Xi, Yi)) is a pilot estimator for the two-dimensional density on

S1. Here the bandwidth b = (b1, b2) and the kernel Kb are two-dimensional and we write z = (x, y). For

simplicity we take a multiplicative kernel Kb(z) = Kb1(x)Kb2(y).250

Afterwards, we define the projection estimators f̂1,h1,P , f̂2,h2,P as the functions minimizing the estimated

weighted integrated squared error

(f̂1,h1,P , f̂2,h2,P ) = arg min
(ϕ1,ϕ2)

{∫
S1

[f̃h(x, y)− ϕ1(x)ϕ2(y)]2w(x, y)d(x, y)

}
,

to get estimates for the marginal densities.

We choose the weighting w(x, y) = f̃
(0)
h (x, y)−1 and we calculate the solution of the second minimization

problem via the following iterative algorithm (see also Mart́ınez-Miranda et al. (2013)):255

1. Start with an initial estimator of f1 denoted by f̂
(0)
1 and let f̂ (0) be the unstructured minimizer of the

first step.

2. Estimate f2 at y by

f̂
(1)
2 (y) =

∫
S1y

f̂ (0)(x, y)dx

/∫
S1y

f̂
(0)
1 (x)dx,

for S1y = {x|(x, y) ∈ S1}.

3. Update the estimator for f1 by260

f̂
(1)
1 (x) =

∫
S1x

f̂ (0)(x, y)dy

/∫
S1x

f̂
(1)
2 (y)dy,

where S1x = {y|(x, y) ∈ S1}, using f̂
(1)
2 .

4. Repeat steps 2 and 3 until a certain convergence criterion is achieved.

Under more sophisticated definitions, see Mammen et al. (2001), the estimators f̂
(1)
1 , f̂

(1)
2 can also be

motivated as direct projection of the Dirac delta estimators into the set of multiplicatively separable func-

tions.265
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5. Smoothed structured histogram approach (sieves estimator)

Mart́ınez-Miranda et al. (2013) also proposed smoothing a structured histogram with a kernel function as

another approach. The discrete histogram estimator is constructed from column-wise proportions in a table

of aggregated data. The histogram estimators are known to actuaries as forward factors or development fac-

tors and are calculated in every non-life insurance company as part of the omnipresent chain ladder method.270

The chain ladder method is a simple algorithm that is widely used to solve the reserving problem mentioned

in Section 1 and can be used in our model from Section 2 with aggregated data. Hence, our motivation for

the fourth estimator is to enhance a method that is well-known to practitioners in the insurance industry by

kernel smoothing. The estimator can certainly be applied to every problem satisfying the model in Section

2 as e.g. in the medical study example from the introduction.275

Before specifying how our estimator is defined, we provide a few words about the way data is aggregated in

the setting where the chain ladder method is usually applied. Instead of observing and aggregating (Xi, Yi),

i = 1, . . . , n, we only observe (Xi, Xi + Yi) after aggregation. Naive aggregation of the observations (Xi, Yi)

would result in the square S being split into equidistant rectangular bins. The entries in the diagonal which280

includes the date where data collection ended would then overlap with the unobserved area (the future)

making forecasting more tricky. Hence, as is done in practice and outlined in Appendix A.1, we divide S

into parallelograms (and triangles for the first age column).

For a definition of forward factors and a concrete algorithm on how to get the histogram, we follow

England and Verrall (2002). Let δ > 0 be a bin width such that mδ = Tδ−1 is an integer. We assume our285

parallelogram grid consists of mδ bins with edge length δ and we count the numbers of observations in this

grid in an (m×m)-matrix C. Let Cij denote the number of events for which Y is in bin i and X is in bin j.

Then the cumulative numbers of events with respect to X are given by Dij =
∑j
k=1 Cik. Now the forward

factors {λj : j = 1, . . . ,m− 1} are defined as

λ̂j =

∑m−j+1
i=1 Dij∑m−j+1

i=1 Di,j−1

=

∑m−j+1
i=1

∑j
k=1 Cik∑m−j+1

i=1

∑j−1
k=1 Cik

,

and they give an averaged proportion by how much the number of observations increased from one bin to290

the next. We can use the forward factors to construct a histogram {p̂δ1(j) : j = 1, . . . ,m} with bin width δ

for the distribution of X via

p̂δ1(1) =
1∏m−1

k=1 λ̂k
, p̂δ1(j) =

λ̂j−1 − 1∏m−1
k=j−1 λ̂k

, j = 2, . . . ,m.

Hence, p̂δ1(j) is an estimator for the probability of an event being in bin j (with respect to X) giving

the proportion of observations in the jth parallelogram column, with a naively estimated correction for

truncation. See Appendix A.1 for a more technical description of λ̂k and a more detailed derivation of p̂δ1.295
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The first formal model definition of forward factors is given in Kuang et al. (2009). The histogram estimator

p̂δ2 for Y is obtained analogously. Now, on the same discrete grid, the one-dimensional sieves estimator for

fl at t ∈ [0, T ] is defined as

f̂δl,h,S(t) =

mδ∑
s=1

Kh(t− sδ)p̂δl (sδ),

Thus, p̂δl (s) is a normalized histogram and we “smooth over it”.

Note that we use the kernel K to get a local constant estimator and not the linear kernel K̄t,h as in the300

cases before to maintain the histogram nature of this estimator. Moreover, this facilitates the notation in

the proof of the asymptotic that is given in Proposition 1 in Appendix A.

This approach describes a sieves estimator since we get less aggregated histograms as pre-estimators with

decreasing bandwidth δ but the choice δ = 0 is not possible. See Mart́ınez-Miranda et al. (2013) for a review305

of other sieves methods for two-dimensional multiplicative in-sample forecasting and Gámiz et al. (2016) for

a pre-binned local linear hazard estimator.

5.1. Smoothed histogram as counting process estimator

At the grid points t ∈ {kb : k = 1, . . . ,mb}, the sieves estimator f̂δl,h,S(t) equals the continuous one-

dimensional survival analysis estimator defined via310

f̂l,h,S∗(T − t) =

n∑
i=1

∫
Kh(t− s) (Zl(s))

−1
ŜRl (s)dN i

l (s).

Hence, f̂l,h,S∗ can be interpreted as a continuous generalization of f̂δl,h,S . In the simulation study in Section 8,

we use the same bandwidth δ for the histogram p̂δl and the discretized grid on which we evaluate continuous

functions. Therefore, f̂δl,h,S(t) and f̂l,h,S∗(T − t) coincide in the results at every evaluated point t.

The motivation for this identification is the connection with the forward factor-based histogram and the

Kaplan-Meier estimator. As shown in Appendix B.1, f̂δl,h,S can be identified with the reversed time counting315

process estimator

f̂δ,Rl,h,S(T − t) =

n∑
i=1

∫
Kh(t− s)

(
Zδl (s)

)−1
Ŝδl (s)dN i,δ

l (s),

for the pre-binned counting processes N i,δ, the corresponding exposure Zδ and survival estimator Ŝδ that

are defined in Appendix A.1. The counting process estimator f̂l,h,S∗ has the same asymptotic behavior as

f̂l,h,S for δ → 0 fast enough. For completeness it is given in Proposition 3 in the appendix.

See also Hiabu (2017) for a detailed clarification of the relationship between the backward time survival320

analysis in Section 3 and actuarial forward factors.
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6. Multiplicatively bias corrected estimators

The bias correction we are using was introduced for nonparametric regression in Linton and Nielsen

(1994) and it was applied to density estimation in Jones et al. (1995). The aim is to increase the asymptotic

order of the bias term by “dividing the bias out”. One advantage of this particular bias correction is the325

simple implementation. As expected, the bias corrected estimators only perform better for large sample sizes

and in practice their bias is often worse than that of the unmodified estimator for very small finite sample

sizes because of constants in the asymptotic bias being larger.

Multiplicative bias correction is motivated by the identity f(t) = f̂(t)g(t) for g(t) = f(t)/f̂(t), i.e., the330

inverse of the multiplicative bias of f̂(t). Thus, by multiplying f̂ by an estimator ĝ of g, we end up with an

estimator f̂BC(t) = f̂(t)ĝ(t) of f(t) for each t ∈ [0, T ].

Note that all estimators f̂ and ĝ are kernel estimators with bandwidth hf and hg, respectively, and we

take the same bandwidths hf = hg for both of them. As explained in Jones et al. (1995), the bandwidths

have to be of the same asymptotic order for the bias cancellation to work and thus hf = chg, c > 0. Hence,335

the choice of just one bandwidth throughout, i.e., c = 1, is the obvious one.

The bias corrected estimators have the following representations. We also give minimization criteria that

motivate some of them. Again, we illustrate the estimators for g just for the covariate X and suppress the

indices l.340

6.1. One-dimensional hazard estimator

The multiplicative bias corrected hazard estimator was presented in Nielsen and Tanggaard (2001).

Analogously to the density case, we motivate the corrected estimator via α(t) = α̂(t)gH(t) and, for a

bandwidth h > 0, we estimate gH(t) = α(t)/α̂(t) in reversed time via

ĝRh,H(t) = n−1
n∑
i=1

∫
K̄t,h(t− s){α̂Rh (s)}−1dN i(s),

which minimizes345

θ̂0(t)

θ̂1(t)

 = arg min
θ0,θ1∈R

n∑
i=1

∫ [{
1

ε

∫ s+ε

s

dN i(u)− (θ0 + θ1(t− s))αRh (s)

}2

− ξBC1 (ε)

]
Kh(t− s)Zi(s)ds,

in the first component ĝRh,H(t) = θ̂0(t) for fixed t. The term ξBC1 (ε) = (αRh (s))2ξ1(ε), where ξ1(ε) was defined

in Section 3.2.1, makes the expression well-defined. The hazard in backward time is then estimated via

α̂R,BCh (t) = α̂Rh (t)ĝRh,H(t),
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and afterwards transformed into a density in forward time,

f̂BCh,H(t) = α̂R,BCh (T − t) exp

(
−
∫ t

0

α̂R,BCh (T − s)ds
)
, t ∈ [0, T ].

6.2. One-dimensional counting process estimator350

The multiplicative bias corrected version of the counting process estimator was first introduced in Nielsen

et al. (2009). Here ĝh is defined as the first component ĝh(t) = θ̂0(t) of the minimizerθ̂0(t)

θ̂1(t)

 = arg min
θ0,θ1∈R

n∑
i=1

[∫
Kh(t− s){(θ0 + θ1(t− s))f̂Rh,C(s)}2Zi(s)ds

−2

∫
Kh(t− s){(θ0 + θ1(t− s))f̂Rh,C(s)}ŜR(s)Zi(s)dN i(s)

]
,

or equivalently the first component of the minimizer of

n∑
i=1

∫ [{
1

ε

∫ s+ε

s

ŜR(u)dN i(u)− (θ0 + θ1(t− s))f̂Rh,C(s)

}2

− ξBC2 (ε)

]
Kh(t− s)Zi(s)ds,

with respect to (θ0, θ1) in the limit for ε→ 0, respectively, which results in

ĝRh,C(t) = n−1
n∑
i=1

∫
K̄t,h(t− s)ŜR(s){f̂Rh,C(s)}−1dN i(s), t ∈ [0, T ].

The term ξBC2 (ε) = (f̂Rh,C(s))2ξ2(ε), with ξ2(ε) from Section 3.2.2, is independent of θ0, θ1 and we need it to

make the integral well-defined. The Kaplan-Meier estimator ŜR was also introduced in Section 3.2.2. For

the bias corrected estimator we then set355

f̂BCh,C (t) = f̂Rh,C(T − t)ĝRh,C(T − t).

6.3. Projection estimator

The bias correction of the projection estimators f̂l,h,P , l = 1, 2, is also described in Mart́ınez-Miranda

et al. (2013). For a bandwidth h > 0, we get a projection estimator ĝh,P of g from the first component

Θ̂0(z0) of the minimizer

(Θ̂0(z0), Θ̂1(z0)) = arg min
(Θ0,Θ1)

{
lim
b→0

∫
S1

[f̃b(z)− (Θ0 −Θt
1(z0 − z))f̂h,P (z)]2Kh(z − z0)dz

}
,

and we set360

f̂BCh,P (t) = f̂BCh,P (t)ĝh,P (t), t ∈ [0, T ]. (6)

The multiplicatively bias corrected estimators can be obtained from (6) using a similar approach as in Section

4, see Mart́ınez-Miranda et al. (2013).
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6.4. Sieves estimator

The adaption for the smoothed histogram estimator is done analogously to the other one-dimensional

approaches. We estimate g by365

ĝδh,S(t) = n−1
mb∑
s=1

Kh(t− sb)p̂(s){f̂δh,S(s)}−1,

for bandwidth h > 0 and bin size δ, and then set

f̂δ,BCh,S (t) = f̂h,S(t)ĝδh,S(t).

The point-wise asymptotic behavior of f̂δ,BCh,S (t) is given in Proposition 2 in Appendix A. The analogous

counting process adaption of ĝδh,S in backward time would now be

ĝRh,S∗(t) = n−1
n∑
i=1

∫
Kh(t− s)ŜR(s)(Z(s))−1{f̂Rl,h,S∗(s)}−1dN i(s),

and again the resulting estimator f̂BCh,S∗(t) = f̂Rl,h,S∗(T − t)ĝRh,S∗(T − t) coincides with f̂δ,BCh,S on the grid we

have used for our computations.370

7. Theoretical comparison

Point-wise asymptotic normality with a bias term of order O(h2) is known for all non-bias corrected

estimators. The multiplicative bias corrected versions of all estimators have a bias of order O(h4) in their

point-wise asymptotics. The asymptotic orders and the main terms of the point-wise asymptotic bias and

variance of every estimator in this paper are given in Table 1 for T = 1. The results hold under usual375

regularity conditions (see references).

We use the following notations in Table 1: κ2 =
∫ 1

−1
s2K(s)ds; κδ2 =

∫ 1

−1
s2K(s)dµδ(s); U(t) =

{nhγ(t)}−1f(t)F (t); Uδ(t) = {nhγδ(t)}−1fδ(t)F δ(t) = U(t)+o(1); Uα(t) = {nhγ(t)}−1α(t); v1 =
∫
K2(s)ds;

vδ1 =
∫
K2(s)dµδ(s) = v1 + o(1); v2 =

∫
Γ2
K(s)ds, with ΓK(s) = 2K − (K ∗ K)(s); vδ2 =

∫
Γ2
K(s)dµ(s) =

v2 + o(1); v3(t) = (
∫ 1−t

0
w(t, s)f(t, s)ds)−2

∫ 1−t
0

w2(t, s)f(t, s)ds for the weighting w = (nh2)−1
∑n
i=1Kb(z −380

(Xi, Yi)), b = (h, h). The operator ∗ denotes convolution.

8. Simulation study

The focus of this paper is on the finite sample performance of the estimators we introduced in the pre-

vious sections to show how useful they are in practice, especially to weed out unstable methods that are at

risk of breaking down completely in challenging problems. The idea is to discover the best estimator among385

our selection of density estimators whose bias terms are of the same asymptotic order and to find a rule of

thumb for the number of observations that are necessary for the multiplicative bias correction to improve
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Estimator Bias Variance Annotations

order leading terms order asympt. value

f̂h,C h2 (1/2)h2κ2f
′′(t) (nh)−1 v1U(t) 1

f̂h,P h2 – (nh)−1 v3(t) 2

f̂h,H h2 (1/2)h2κ2α
′′(t) (nh)−1 v1Uα(t) 3

f̂δh,S h2 (1/2)h2κδ2f
′′
l (t) + o(δ2) (nh)−1 vδ1U

δ(t) 4

f̂BCh,C h4 (1/4)h4κ2
2f(t)(f ′′/f)′′(t) (nh)−1 v2U(t) 1

f̂BCh,P h4 – (nh)−1 – 5

f̂BCh,H h4 (1/4)h4κ2
2α(t)(α′′/α)′′(t) (nh)−1 v2Uα(t) 3

f̂δ,BCh,S h4 (1/4)h4(κδ2)2fδ(t)((fδ)′′/fδ)′′(t) + o(δ2) (nh)−1 vδ2U
δ(t) 6

Table 1: Main terms of point-wise asymptotic bias and variance terms under regularity assumptions. All bias and variance

terms contain an additional error of lower order o(h2) or o(h4), respectively. The symbol “–” denotes that there is no closed

form solution.

Annotations: 1see Nielsen et al. (2009); 2no closed form solution for bias, see Mammen et al. (2015); 3asymptotic theory for

the hazard estimator α̂ and not for the resulting f̂h,H , see Nielsen and Tanggaard (2001); 4Proposition 1, see notation in

Appendix A.1 , δ is width of histogram bins; 5no closed form solution, see Mammen et al. (2015); 6Proposition 2, see notation

in Appendix A.1 , δ is width of histogram bins.

bias. As pointed out in Section 7, the bias corrected estimators have a leading asymptotic bias term of order

O(h4) instead of O(h2), however, a higher order of convergence usually leads to larger bias for small finite

samples and the estimators behave differently despite their common order of convergence because of different390

constants in the bias. Clearly, different performance can be due to pure noise as well and hence we run 1000

simulations for each estimation.

In four different settings on the unit square, i.e., for T = 1 we compare the best-case performance of all

eight density estimators with respect to the integrated squared error395

ISE(f̂l, fl) =

∫ 1

0

[f̂l(t)− fl(t)]2dt,

for l = 1, 2. “Best-case” means that we choose the best possible bandwidth with respect to the ISE which

can be calculated exactly since the true distribution is given. Hence, we avoid the problem of choosing a

bandwidth given data.

For some of the estimators bandwidth selection has already been investigated. Mart́ınez-Miranda et al.

(2013) apply the projection approach on real data and determine an optimal bandwidth for f̂h,P and f̂BCh,P by400

cross-validation. The asymptotic behavior of bandwidths from cross-validation (see Rudemo (1982), Bow-

man (1984) and Hall (1983)) and double one-sided cross-validation (DO-validation, see Hart and Yi (1998),

Mart́ınez-Miranda et al. (2009)) for the counting process estimator f̂h,C is given in Hiabu et al. (2016) where

the estimator is applied on data with a data-driven bandwidth. Cross-validation and DO-validation for

the hazard estimator α̂h,R that is used for the computation of f̂h,H and full asymptotics of the resulting405

bandwidths are given in Gámiz et al. (2016). However, data-driven bandwidth selection for the structured

histogram approach and for the bias corrected versions of the counting process density and hazard estimators
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are not covered yet in literature. In particular, a comparison of bandwidth selection results for the whole

range of estimators in this study has not been done yet. Being beyond the scope of this paper, it will be

part of future work.410

The settings we chose are motivated by practical relevance in the application of actuarial reserving and

by challenging distributions that point out weaknesses of the estimators.

For f1 we take mixtures of truncated normal distributions. A mixture of N (0.2, 0.1), N (0.5, 3) and

N (0.7, 0.2) with equal weights truncated to [0, 1] is motivated by the empirical distributions of real data415

sets and referred to as the “truncated mixed normal” distribution in the following. To make the estimation

at the boundary more challenging, we have chosen a mixture of N (0.2, 0.1), N (0.5, 3) and N (1, 0.05) with

equal weights truncated to [0, 1] as a variation and call it the “boundary challenge” distribution. Note that

we try distributions for X with mass at the boundaries to investigate weaknesses because some estimators

tend to values close to 0 at the edges. The issue of problems at the boundaries is well-known and local linear420

kernel density estimators are known to perform better than local constant estimators, see e.g. Jones (1993).

We investigate the following distributions for Y as f2. A beta distribution with parameters α = 1 and

β = 4 is taken as an empirically motivated “decreasing beta” distribution and we take a mixture of beta

distributions with parameters (2, 5), (3, 10) and (9, 4) and equal weights for a more complex example in which

there are less observations with values of Y close to 0 and 1, respectively which results in less observations425

in both corners of the triangle S1.

With f2 decreasing towards 0 at the boundaries of the interval [0, 1] in every investigated scenario, the

results in Table 3 reflect aforementioned problems of the estimation at boundaries: The ISE for f1 (which

always satisfies f1(0), f1(1) > 0) is much larger than that in f2 (with f2(0) = f2(1) = 0) in every single case.

The shapes of the probability density functions are given in Figure 1. We take all combinations of these430

distributions and label the four scenarios in Table 2. For each scenario 1000 random samples of sizes 100,

1000 and 10000 were generated.

All simulated observations (Xi, Yi) satisfy Xi + Yi ≤ 1. Recalling the model in Section 2, this right-

truncation defines our observed subset S1 = {(x, y) ∈ S;x+ y ≤ 1} of the full support S = [0, 1]2 of (X,Y ).

There are no observations in the complement S2 = [0, 1]2 \ S1.435

The interval [0, 1] is discretized as a grid with 100 points and we take the corresponding approximation

of the ISE. As mentioned in Section 5, we take the same bandwidth δ = 1/100 for the sieves estimators f̂δh,S

and f̂δ,BCh,S .

We analyze two problems: First, we want to estimate the distributions of X and Y and we measure the

results by the ISE in each component. The other problem is to estimate the mass r =
∫
S2 f(x, y)d(x, y) of the440

distribution of (X,Y ) in S2. We use the bandwidth minimizing the ISE for both problems since a bandwidth

minimizing r results in massively over-smoothed density estimators because it picks the best bandwidth for
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Scenario Variable Distribution

1 X truncated mixed normal

Y decreasing beta

2 X boundary challenge

Y decreasing beta

3 X truncated mixed normal

Y mixture of betas

4 X boundary challenge

Y mixture of betas

Table 2: Scenarios in the simulation study.
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(a) fX : Truncated mixed normal.
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(c) fY : Decreasing beta.
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(d) fY : Mixture of betas.

Figure 1: The probability distribution functions of the distributions used for the simulation study.
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the bottom left corner in the triangle S1 — the area with the biggest impact on the estimate of r. To find the

best bandwidth we compute the ISE for all bandwidths h ∈ {k/100 : k = 1, 2, . . . , 50} and take the minimizer.

Each kernel estimator is computed using the Epanechnikov kernel K(t) = 0.75(1−t2)I(−1 ≤ t ≤ 1), t ∈ [0, 1].445

For the projection estimators f1,h,P , f2,h,P , the algorithm stops after k iterations if the criterion

1

m

m∑
j=1

|f (k)
1 (sj)− f (k−1)

1 (sj)|
f

(k−1)
1 (sj)

< 0.001,

for the discretization s1, . . . , sm of [0, 1] is fulfilled or if we have reached the defined maximum number of

k = 20 iterations. This method needs up to five times as long to be computed per bandwidth compared

to the other estimators. The crucial part, however, is not the recursive algorithm, but the fact that being

two-dimensional, it uses two-dimensional bandwidths. For nh1
and nh2

being the number of bandwidths that450

are compared to estimate f1 and f2, respectively, the computation time of the two-dimensional estimator

is hence of computational order O(nh1
nh2

) whereas the one-dimensional estimators have computation times

of order O(nh1 + nh2). Thus, the total computation time over all bandwidths is of much higher order than

that of the one-dimensional estimators.

8.1. Density estimation455

The results of the comparison of the ISE are given in Table 3. In the sequel, the median and mean values

of the ISE are always taken over 1000 simulation runs.

Our first observation is that the multiplicative bias correction works in practice. As indicated by the

theoretical results, for a big enough number of observations the bias corrections result in a smaller bias than

that of non-bias corrected estimators. Considering the ISE of both f1 and f2, there are only 4 out of 32460

cases where the median bias of the non-corrected version of an estimator is better than its bias correction

for a sample size of 10000 and those cases only occur in the challenging Scenarios 3 and 4. Three out of

these four cases occur with the sieves estimator f̂δh,S (with the ISE increased by less than 14% if we use bias

correction) and one with the hazard estimator f̂h,H (where the bias correction is less than 5% worse with

respect to the ISE). Also measured by the empirical mean integrated squared error, there are only 4 out465

of 32 cases where the bias correction does not work for sample size 10000. Here the crucial methods are

the projection approach f̂h,P in Scenario 2 and the f̂δh,S in Scenarios 3 and 4. Besides, this indicates that

challenging estimation problems increase the number of observations that are needed for asymptotic bias

improvements to show. For 25 out of 32 cases the bias correction is already better for 1000 observations in

the median and in the empirical mean. Here, the observation can be made in all four approaches and in all470

settings except for Scenario 1.
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The second observation is that the two-dimensional estimators f̂h,P and f̂BCh,P globally perform best for

small samples sizes of not more than 10000. Especially for very small sample sizes (< 1000) it outperforms

the other estimators with and without bias correction. There is only one out of 32 cases where the best

estimator for 100 observations is neither f̂h,P nor f̂BCh,P measured by median and only two cases measured475

by the mean. Besides, it also competes well with the other three approaches for sample sizes of 1000 and

10000. However, with increasing sample sizes, the counting process estimator f̂h,C and especially its bias

corrected version f̂BCh,C leads to the best results with respect to the integrated squared error in one of the four

scenarios. For even larger samples sizes (n = 106, 107) which we investigated but which are not illustrated

here, the bias corrected one-dimensional counting process estimator performed best.480

The sieves estimators f̂δh,S , f̂δ,BCh,S perform surprisingly well and lead to satisfying results except for a

complete breakdown in the estimation of f1 with only 100 observations in Scenarios 2 and 4 which contain

the boundary challenge problem. However, in most cases, the counting process approach or the projection

approach leads to a smaller ISE than both sieves estimators.

As expected, globally the hazard estimators f̂h,H and f̂BCh,H can’t compete either with the two best485

approaches since the transformation from a hazard to a density function is not stable enough. Especially for

the decreasing beta distribution in Scenarios 1 and 2 the hazard estimators failed at estimating f2. However,

they perform well and they can compete with the other estimators in Scenarios 3 and 4 and especially in the

estimation of f1 for small sample sizes.

In contrast to the hazard estimators, all other estimators perform extraordinary in Scenarios 1 and 2490

with respect to the estimation of f2, the mixed beta distribution. For the non-hazard estimators, Scenario

4 with the combination of the boundary challenge distribution and the mixture of beta distributions the

estimation of f1 is the most challenging estimation problem with by far the biggest ISE throughout and

especially for n = 100 observations. The “boundary challenge” distribution also leads to slightly bigger ISE

in f1 in Scenario 2. In Scenario 1 we achieve the best results in the estimation of the distribution of X.495

8.2. Application: Aggregated forecast

The main application we compare here is based on the estimation of the probability mass of the distri-

bution of (X,Y ) in the unobserved region S2, i.e., we investigate an estimator

r̂(f̂1, f̂2) =

∫
S2
f̂1(x)f̂2(y)d(x, y).

of r =
∫
S2 f(x, y)d(x, y). Recall that we assume f(x, y) = f1(x)f2(y). Therefore, we estimate f(x, y) in r by

f̂1(x)f̂2(y). However, we are particularly interested in the estimation of the ratio between the probability500

mass in S2 and that in S1, weighted by the number of observations, i.e., in the object Rn = nr/(1− r). We

estimate Rn by

R̂n(f̂1, f̂2) =
nr̂(f̂1, f̂2)

1− r̂(f̂1, f̂2)
.
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Following the interpretation of the survival analysis approach, we want to know how many events will occur

in the future, given the number of events in the past. This is illustrated through our main application of

actuarial reserving mentioned in Section 1:505

Example 1 (Reserving in non-life insurance; IBNR numbers). One has observed n past claims (Xi, Yi),

i = 1, . . . , n, where Xi denotes the year the accident of claim i happened and Yi is the delay until it was

reported to the insurance company. We want to estimate the number of claims for accidents that have

already happened but will be reported in the future. The density of (X,Y ) is assumed to be f and X and Y

are independent.510

The data fits into the triangular form of Section 2, since by assumption all observations of X occurred less

than T years ago. The time of data collection is represented by the diagonal on the scaled square S = [0, T ]2

since only claims that have incurred and that also have been reported before that day are observed.

In our model, and in particular assuming a maximum delay of T years, there is an unknown total number

of claims but we know that all claims are contained in the squared support [0, T ]2. Hence, an estimate for515

the number of outstanding claims is Rn, the ratio of the probability of a claim to be in the future divided by

the probability of already being observed times the number of observations n that are already observed.

Another direct application would be the estimation of the RBNS claims, the claims that have been reported

but not yet settled, i.e., the final payments have not been made yet for these claims.

Another good illustration is given through aforementioned medical study.520

Example 2 (Medical study). Study about patients who go infected with a deadly disease during the last T

years. Assuming patients are only included into the data set after their deaths, one wants to forecast the

total number of deaths in the next years not knowing the number of infected people. We only assume the time

until death Y is at most T years and we have data about the time of death (Xi + Yi) and time of infection

(Xi) of n patients (i = 1, . . . , n) that have died during the last T years. The number of future deaths in this525

group of people is then given by Rn if time until death and time of infection are independent with densities

f1 and f2, respectively. 3

The estimated probability mass r̂(f̂1, f̂2) just depends on the marginal estimators f̂1, f̂2. However, in

many cases estimates of Rn are more accurate than density estimators since errors can “cancel each other

out”. In practice, over-smoothed density estimator often lead to a more stable estimation of this number.530

Because of the practical relevance of this estimation problem, we hence also use the fit of R̂n as a measure

of goodness for our estimators.

To compare the approaches, we use the relative error

err(f̂1, f̂2) =
R̂n(f̂1, f̂2)−Rn

Rn
,

as well as its squared value err2 as measures of goodness in our simulations.
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The results of the estimation of Rn are given in Table 4. We state the median, mean and standard535

deviation of err2 in the 1000 simulation runs.

Here, clearly the bias corrected version f̂BCh,P of the projection estimator can be recommended as an overall

winner. In ten of the twelve cases, it is the best estimator of Rn in the mean integrated squared error. The

regular projection estimator f̂h,P performed best in two cases (in one of which f̂h,P and f̂BCh,P have the same

error) and the bias corrected counting process estimator f̂BCh,C wins in one of the twelve cases. The results540

for the median are the same except for one case where f̂h,C slightly outperforms f̂BCh,C .

In two thirds of the scenarios the best three estimators for the reserve measured by the median arise from

the counting process and the projection approach. A sieves estimate only ranks second or twice in four cases

whereas the hazard estimators only rank third in two cases. Therefore, it seems clear that the method of

sieves is not smoothed enough, and that the hazard estimation approach is the wrong transformation of the545

unknown one-dimensional functions for in-sample forecasting. We are therefore left with the projected density

approach and the backward survival density approach as our two test winners for in-sample forecasting. In

the next section, we will further illustrate why the method of sieves might be too simple and why modern

smoothing approaches are indeed necessary when working with in-sample forecasting problems. This is not

an established fact or a well-known insight. For example, in the excellent book Martinussen and Scheike550

(2006) the point of view has been taken to concentrate estimation on integrated quantities that can be

estimated without smoothing at
√
n-rates of convergence. While this obviously simplifies a lot of things in

many important cases and without harming the applied statistician when interpreting results, this point of

view does not seem to work when considering in-sample forecasting. There is more information on this in

the next section.555

8.3. Necessity of smoothing in the aggregated forecast

To illustrate the importance of smoothing in the estimation problem in the last section, we compare the

results of f̂h,P and f̂BCh,P (which we have identified as the estimators from the most promising approach) with

the discrete non-smoothed histogram estimator p̂δ which is widely used in practice in the insurance industry,

the so-called chain ladder estimators for the actuarial reserve. It occurs in the application explained in the560

last section and it is derived from the forward factors mentioned in Section 5 as explained in e.g. England

and Verrall (2002).

The method only uses the accumulation in the direction of X as given by the formulas in Section 5. The

development factors λ̂j are used to extrapolate forecasts for the values of the cumulative matrix D in the

unobserved region via

D̂i,n−i+2 = Di,n−i+1λ̂n−i+2,

D̂i,k = D̂i,k−1λ̂k, k = n− i+ 3, n− i+ 4, . . . , n.
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Scenario Estimator n = 100 n = 1000 n = 10000

Median Mean Median Mean Median Mean

1 f̂h,C 0.0444 0.1004 (0.1558) 0.0071 0.0139 (0.0202) 0.0008 0.0020 (0.0030)

f̂BCh,C 0.0498 0.1113 (0.1740) 0.0054 0.0117 (0.0163) 0.0005 0.0013 (0.0019)

f̂h,P 0.0392 0.1004 (0.1711) 0.0062 0.0147 (0.0231) 0.0008 0.0020 (0.0030)

f̂BCh,P 0.0378 0.0921 (0.1494) 0.0051 0.0109 (0.0163) 0.0006 0.0014 (0.0023)

f̂h,H 0.0561 0.1522 (0.2652) 0.0128 0.0263 (0.0365) 0.0101 0.0125 (0.0097)

f̂BCh,H 0.0486 0.1380 (0.2538) 0.0104 0.0218 (0.0297) 0.0097 0.0117 (0.0087)

f̂δh,S 0.0422 0.1306 (0.2873) 0.0075 0.0169 (0.0274) 0.0008 0.0020 (0.0031)

f̂δ,BCh,S 0.0468 0.1399 (0.3316) 0.0072 0.0169 (0.0267) 0.0008 0.0020 (0.0030)

2 f̂h,C 0.0438 0.0792 (0.0984) 0.0072 0.0162 (0.0221) 0.0011 0.0027 (0.0044)

f̂BCh,C 0.0399 0.0851 (0.1181) 0.0058 0.0120 (0.0160) 0.0008 0.0018 (0.0026)

f̂h,P 0.0291 0.0592 (0.0829) 0.0047 0.0099 (0.0132) 0.0008 0.0020 (0.0031)

f̂BCh,P 0.0156 0.0496 (0.0843) 0.0023 0.0060 (0.0104) 0.0005 0.0010 (0.0013)

f̂h,H 0.0516 0.0998 (0.1400) 0.0118 0.0233 (0.0305) 0.0056 0.0075 (0.0075)

f̂BCh,H 0.0408 0.1047 (0.2160) 0.0072 0.0165 (0.0233) 0.0032 0.0052 (0.0059)

f̂δh,S 0.0708 0.1469 (0.2242) 0.0081 0.0170 (0.0246) 0.0008 0.0018 (0.0027)

f̂δ,BCh,S 0.0604 0.1183 (0.1670) 0.0061 0.0146 (0.0221) 0.0006 0.0016 (0.0026)

3 f̂h,C 0.0518 0.1086 (0.1826) 0.0085 0.0168 (0.0227) 0.0017 0.0037 (0.0052)

f̂BCh,C 0.0509 0.1430 (0.3777) 0.0072 0.0166 (0.0246) 0.0011 0.0025 (0.0037)

f̂h,P 0.0319 0.0965 (0.2160) 0.0041 0.0097 (0.0133) 0.0015 0.0030 (0.0038)

f̂BCh,P 0.0363 0.1081 (0.2558) 0.0044 0.0097 (0.0138) 0.0007 0.0017 (0.0024)

f̂h,H 0.0551 0.1861 (0.5970) 0.0126 0.0299 (0.0455) 0.0062 0.0098 (0.0107)

f̂BCh,H 0.0553 0.2310 (0.7446) 0.0097 0.0239 (0.0366) 0.0048 0.0068 (0.0070)

f̂δh,S 0.0430 0.1156 (0.2466) 0.0104 0.0342 (0.1006) 0.0016 0.0089 (0.0649)

f̂δ,BCh,S 0.0563 0.1441 (0.3040) 0.0123 0.0401 (0.1225) 0.0017 0.0100 (0.0772)

4 f̂h,C 0.1579 0.2325 (0.2242) 0.0174 0.0369 (0.0512) 0.0047 0.0083 (0.0097)

f̂BCh,C 0.1717 0.3348 (1.2380) 0.0145 0.0330 (0.0488) 0.0024 0.0050 (0.0068)

f̂h,P 0.0792 0.1693 (0.1910) 0.0095 0.0228 (0.0362) 0.0032 0.0061 (0.0075)

f̂BCh,P 0.0686 0.1525 (0.1811) 0.0080 0.0222 (0.0390) 0.0017 0.0044 (0.0070)

f̂h,H 0.1198 0.1915 (0.2052) 0.0159 0.0330 (0.0431) 0.0072 0.0112 (0.0125)

f̂BCh,H 0.1219 0.2303 (0.5166) 0.0108 0.0262 (0.0407) 0.0029 0.0058 (0.0078)

f̂δh,S 0.2955 0.3260 (0.3824) 0.0839 0.1493 (0.2394) 0.0197 0.0687 (0.1865)

f̂δ,BCh,S 0.3123 0.3423 (0.3641) 0.0776 0.1197 (0.1515) 0.0175 0.0453 (0.1056)

Table 4: Median, mean and standard deviation of the squared relative errors err2 for 100, 1000 and 10000 observations. The

statistics are taken over 1000 simulation runs for each setting.

The forecast for Rn, i.e., the so-called actuarial reserve in aforementioned application, is then given by

the aggregated estimated data:565

R̂CLMn =
∑
i+j>n

D̂i,j ,

where the summation is over all valid indices i, j = 1, . . . , n such that i+ j > n.

The relative errors err of the results are given in Table 5. In nine out of twelve cases, the bias corrected

projection estimators f̂BCh,P lead to the smallest absolute error in the estimation of Rn whereas the non bias

corrected f̂h,P scored best once. Although the discrete chain ladder method has the smallest absolute error570

in two cases, it is striking that the standard deviation in the estimation is more than twice as high as the
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standard deviation of the other methods in more than half of the cases. Hence, it turns out to be very

unstable and therefore more risky than smoothed methods in practice. This reflects the typical bias-variance

trade-off in nonparametric estimation. Without smoothing the discrete chain ladder method can result in

small bias, however not enough smoothing always leads to high variance.575

The sign of the bias is especially essential for the application in industry since it tells whether the costs

will be under- or overestimated. The discrete chain ladder method tends to over-estimate the cost more

often than the smoothed method. This behavior has already been described in Hiabu (2017).

In the results in Table 5, we omitted the cases in which the algorithm of the chain ladder method failed

due to not enough observations. For only 100 observations, in each scenario the chain ladder method failed580

in 2 out 1000 simulation runs. It gave an invalid output because of the algorithm of the chain ladder method

itself which is not stable if there are too many cells with value 0 in the occurring matrices C and D. This

issue also underlines the riskiness of the chain ladder method in extreme cases where one would need a very

stable estimator.

We admit that the comparison is a bit unfair because the chain ladder method was originally designed585

for aggregated data and we aggregate by the same steps as our grid points, i.e., the discrete estimators are

evaluated on as many grid points as the a smooth estimators in our simulation. Clearly, pre-aggregation

in broader bins prevents invalid outputs. However, it underlines that smoothing is necessary in certain

problems.

Table 6 shows that density estimation without smoothing (i.e. with the discrete chain ladder method)590

cannot compete with smoothed estimators — even though the aggregated forecast of the non-smoothed

estimator is often reasonable.

Scenario n Mean (s.d.) of err

f̂h,P f̂BCh,P p̂δ

1 100 0.091 (0.304) 0.016 (0.303) 0.078 (0.599)

1000 0.036 (0.116) 0.010 (0.104) 0.033 (0.154)

10000 0.017 (0.041) 0.008 (0.037) 0.031 (0.049)

2 100 -0.021 (0.242) -0.082 (0.207) 0.078 (0.759)

1000 0.031 (0.094) -0.011 (0.077) 0.037 (0.188)

10000 0.028 (0.035) 0.004 (0.031) 0.035 (0.056)

3 100 0.061 (0.305) 0.051 (0.325) 0.003 (0.512)

1000 0.029 (0.094) -0.004 (0.099) 0.025 (0.302)

10000 0.033 (0.043) -0.002 (0.042) 0.020 (0.156)

4 100 -0.212 (0.353) -0.202 (0.335) -0.272 (0.800)

1000 -0.071 (0.133) -0.069 (0.132) -0.019 (0.563)

10000 -0.039 (0.067) 0.000 (0.066) 0.057 (0.434)

Table 5: Mean and standard deviation of the relative error err of the projection estimators compared to the structured histogram

p̂δ with δ = 0.01.
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Scenario n Mean (s.d.) of ISE(·, f1)

f̂h,P f̂BCh,P p̂δ

1 100 5.47 (3.26) 5.47 (3.47) 133.39 (166.19)

1000 1.12 (0.71) 0.93 (0.62) 14.86 (6.61)

10000 0.20 (0.11) 0.15 (0.09) 1.48 (0.48)

2 100 15.96 (17.81) 12.20 (15.83) 337.42 (401.25)

1000 3.27 (3.01) 2.07 (1.96) 39.59 (29.78)

10000 0.68 (0.53) 0.45 (0.38) 3.78 (2.58)

3 100 6.91 (4.27) 7.42 (6.15) 4.52 (32.29)

1000 1.84 (0.92) 1.71 (0.98) 18.84 (137.46)

10000 0.59 (0.32) 0.56 (0.35) 14.58 (96.51)

4 100 53.54 (61.54) 42.52 (49.28) 19.37 (181.36)

1000 9.66 (10.95) 8.28 (10.87) 101.55 (331.53)

10000 3.81 (3.14) 2.36 (2.04) 179.29 (381.48)

Table 6: Mean and standard deviation of the integrated squared error in the estimation of f1 of the projection estimators

compared to the structured histogram p̂δ with δ = 0.01.

9. Conclusion

In this paper we have introduced multiplicative bias correction for all known nonparametric in-sample

forecasting estimators. Furthermore, for the first time asymptotic theory has been established for the kernel595

smoothed structured histogram which has been identified as a method of sieves. The first conclusion from

the finite sample simulation study presented in this paper is that multiplicative bias correction almost always

leads to superior performance. The two-dimensional density projection approach of Mammen et al. (2015)

and Lee et al. (2015) resulted in the best estimates with the reversed time survival density approach of

Hiabu et al. (2016) coming in as a competitive runner-up. The method of sieves does not seem to be600

competitive and the transformation of a hazard estimator into a density estimator performs badly in this

setting. We also establish that smoothing seems to be crucial for in-sample forecasting. This is thought

provoking in an academic and, in particular, in a practical environment where discrete histogram type

models with fixed sub-optimal bin choices are omnipresent. We conclude that the epidemiological, actuarial,

econometric, engineering, forecasting and other common approaches to discrete age-period or age-cohort605

type of forecasting could be significantly improved by introducing continuous models and smoothing. We

therefore believe continuous in-sample forecasting to have an increasing impact in the future.

Appendix A. Asymptotic results

To derive the asymptotic behavior of the smoothed histogram estimator we illustrate the assumptions

and proofs for the covariate X. For simplicity of illustration we leave out subscripts l and dependence on610

the bandwidth h where the interpretation is clear.

First we define aggregated observations Xδ
i that approximate the real but unknown continuous obser-

vations Xi and describe the assumptions we need. We identify a counting process through the aggregated
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observations and derive its intensity and hazard rate. With this new notation we can state the assumptions

for our results.615

Appendix A.1. Aggregated observations and corresponding counting processes

The aggregation is analogous to the one in Hiabu (2017) and we adapt the notation from there. For

simplicity of notation let δ > 0 be such that δ−1 is an integer. Observations (Xi, Yi) ∈ S1 = {(x, y) ∈

[0, T ]2 : x+ y ≤ T} are aggregated to (Xδ
i , Y

δ
i ) on

S1
δ = {(xj , yk) = ((j + 0.5)δ, (k + 0.5)δ) : j, k = 0, 1, . . . , T δ−1 − 1, j + k ≤ T},

via620

(Xδ
i , Y

δ
i ) = (xj , yk)⇔ Yi ∈ [kδ, (k + 1)δ) and Xi + Yi ∈ [(j + k)δ, (j + k + 1)δ).

We define the time reversed counting process Nδ
i (t) = I(T − Xδ

i ≤ t) with respect to the filtration

F i,δt = σ
({

(t−Xδ
i ) ≤ s : s ≤ t

}
∪N

)
for a null set N . Let µδ be the counting measure that is defined via

µδ(A) = δ#{j : (j + 0.5δ) ∈ A, j = −Tδ−1 + 1, . . . ,−1, 0, 1, . . . , T δ−1 − 1}, A ∈ B, instead of the Lebesgue

measure. Note that µδ needs to be defined for values below zero for technical reasons only. The density of

Xδ with respect to µδ is given via625

fδ(t) =

0 if t 6= (j + 0.5)δ

δ−1
∫ (j+1)δ

jδ
f(s)ds if t = (j + 0.5)δ,

with f being the Lebesgue density of X. The intensity of Nδ
i is given by λδi (t) = αδ(t)Z

δ
i (t) where

αδ(t) = fδ(T − t)/(1 − F δ(T − t)) is the hazard rate of Xδ in the reversed time scale counting mea-

sure. The exposure is given by Zδi (t) = I(Y δi ≤ t ≤ T − Xi). Furthermore let Nδ(t) =
∑n
i=1N

δ
i (t) and

Zδ(t) =
∑n
i=1 Z

δ
i (t) and we write Sδ(t) = 1− F δ(T − t) for the survival function in reversed time.

630

Appendix A.2. Asymptotic properties

To derive the asymptotic behavior of the sieves histogram estimator, we make the following assumptions.

A1 It holds f ∈ C2([0, T ]) and f(t) > 0 for all t ∈ [0, T ].

A2 The kernel K is symmetric, has bounded support [−1, 1], has bounded seconded moment and satisfies

K ∈ C2([−1, 1]).635

A3 The bandwidth h = h(n) satisfies h→ 0 and n1/4h→∞ as n→∞.

A4 There exists a continuous function γ such that sups∈[0,1]|Zδ(s)/n − γ(s)| = oP (1) and γ(t) > 0 for

every t.
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Furthermore, we introduce the notation κδ0 =
∫
K(s)dµδ(s). Through a Taylor expansion it can be easily

shown that Assumption A2 implies κδ0 = 1 + o(δ2). Moreover, it holds
∫
sK(s)dµδ(s) = 0 under A2. We640

also define κδ2(s) =
∫
Kh(s)s2dµδ(s) and ΘK = 1

2

∫ 1

−1
K(s)K ′(s)ds.

Proposition 1. Under Assumptions A1–A4, for t ∈ (0, T ), it holds for every δ > 0 that

(nh)1/2
{
f̂δl,h,S(t)− fl(t)−Bl(t)

}
→ N (0, σ2

l (t))

in distribution as n→∞, where Bl(t) = 0.5h2κδ2f
′′
l (t) + oP (h2) + o(δ2), σ2

l (t) = Rδ(K)fδl (t)F δl (t)(γδl (t))−1.

Moreover, it holds κδ2 →
∫
u2K(u)du, Rδ(K) =

∫
K(u)2du+ op(δ

2) for δ → 0.

To prove asymptotic normality for f̂δ,BCh,S we need a stronger assumption on the density.645

A1’ Let f ∈ C4([0, T ]) such that f(t), f ′′(t) > 0 for all t ∈ [0, T ].

Proposition 2. Under Assumptions A1’, A2–A4, for t ∈ (0, T ), it holds for every δ > 0 that

(nh)1/2
{
f̂δ,BCl,h,S (t)− fl(t)−BBCl (t)

}
→ N (0, σ2

l,BC(t))

in distribution as n → ∞, where BBCl (t) = (1/4)h4(κδ2)2fδl (t)((fδl )′′/fδl )′′(t) + oP (h2) + o(δ2), σ2
l,BC(t) =

fδl (t)F δl (t)(γδl (t))−1
∫

Γ2
K(u)dµδ(u) with ΓK(u) = 2K − (K ∗K)(u). Moreover, it holds κδ2 →

∫
u2K(u)du,∫

Γ2
K(u)dµδ(u)→

∫
Γ2
K(u)du for δ → 0.650

The asymptotic behavior of f̂S∗ and f̂BCS∗ was already described in Nielsen et al. (2009) for arbitrary

weightings W with asymptotic bias and variance independent of W . The estimators in said paper coincide

with ours for the choice W (s) = (Zl(s)/n)−1. We make the following additional assumptions for l = 1, 2:

B1 sups∈[0,1]|Zl(s)/n− γl(s)| = oP (1).

B2 sups∈[0,1]|ŜRl (s)− SRl (s)| = OP (n−1/2).655

Proposition 3. Under Assumptions A1–A3, B1–B2, for t ∈ (0, T ), it holds

(nh)1/2
{
f̂l,h,S∗(t)− f(t)−B(t)

}
→ N (0, σ2(t))

in distribution as n → ∞, where Bl(t) = κ2f
′′
l (t)h2/2 + o(h2), σ2(t) = R(K)fl(t)Fl(t)γl(t)

−1 and γl(t) =

P(Z1
l (t) = 1) with the notations κ2 =

∫
s2K(s)ds and R(K) =

∫
K2(s)ds.

Appendix B. Proofs

The proof of Proposition 3 is mainly based on the following central limit theorem for martingales which660

was proved in Ramlau-Hansen (1983).
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Theorem 1 (Ramlau-Hansen (1983)). Let Wn(t) be a predictable processes and let there be some σ2 ≥ 0

such that for every ε > 0∫ 1

0

W 2
n(s)Λn(s) = σ2 + op(1),

∫ 1

0

W 2
n(s)I

(
W 2
n(s) > ε

)
Λn(s) = op(1).

Let (Nn)n be a sequence of counting processes on [0, 1] with corresponding sequence of martingales given

by Mn(t) = Nn(t) −
∫ t

0
Λn(s)ds where (Λn(s))n is the sequence of intensity processes. Then it holds that665 ∫ 1

0
Wn(s)dMn(s)→ N (0, σ2) in distribution as n→∞.

Appendix B.1. Proof of Proposition 1

First we observe that our histogram estimator can be represented through a Kaplan-Meier type estimator

Ŝδ of the aggregated cumulative hazard function that is defined through a Nelson-Aalen type estimator —

just with respect to the counting measure µδ for aggregated observations instead of the Lebesgue measure.670

Then we derive the asymptotic theory for Ŝδ analogously to Andersen et al. (1993). Next we estimate the

error that arises through estimation of the aggregated density in grid points instead of the real Lebesgue

density in exact points. Finally, Proposition 1 is proved with a standard counting process martingale proof

involving Theorem 1.

Appendix B.1.1. Forward factors and structured histogram675

As outlined in Hiabu (2017), the forward factors from the chain ladder method can be represented through

estimators of exposure and occurrence and identified with transformed hazard estimators. Explicitly, we can

write the forward factors as

λ̂j =
1

1− δα̂H,δ(xj)
,

for

α̂H,δ(t) =

∫ xj
xj−1

dNδ(s)

δ
∫ xj
xj−1

Zδ(s)dµδ(s)
=
OH,δ(xk)

EH,δ(xk)
,

where j is such that t ∈ [xj−1, xj).680

We now motivate how to transform the forward factors into a histogram. Let n1 denote the number of

observations in the first bin. With the forward factors λ̂j being proportions of cumulative data, we get that

the cumulative number of observations in bin j is (λ̂j · · · λ̂1)n1 whereas the actual number of observations

in bin j is (λ̂j · · · λ̂1)n1 − (λ̂j−1 · · · λ̂1)n1 = (λ̂j − 1)(λ̂j−1 · · · λ̂1)n1. To get a histogram, i.e. proportions, we

divide the last equation by the number of total observations, i.e. the last bin for cumulative observations685

(λ̂m−1 · · · λ̂1)n1 to get

p̂(1) =
1∏m−1

k=1 λ̂k
, p̂(j) =

λ̂j−1 − 1∏m−1
k=j−1 λ̂k

, j = 2, . . . ,m.
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This leads to the representation of the structured histogram as

p̂(1) =
1∏m−1

k=1 λ̂k

=

m−1∏
k=1

(
1− δα̂H,δ(T − xk)

)
= δα̂H,δ(T − x1)Ŝδ(x1),

with α̂H,δ(T − x1) = δ−1, and

p̂(j) =
λ̂j−1 − 1∏m−1
k=j−1 λ̂k

=
δα̂H,δ(T − xj)

1− δα̂H,δ(T − xj)

m−1∏
k=j−1

(
1− δα̂H,δ(T − xk)

)
= δα̂H,δ(T − xj)Ŝδ(xj),

j = 1, . . . ,m, where we used the survival estimator Ŝδ(xj) =
∏m−1
k=j

(
1− δα̂H,δ(T − xk)

)
.

These expressions help us to represent the estimator as a counting process estimator. First note that

intervals [xj−1, xj) satisfy |xj − xj−1| < δ and hence µδ([xj−1, xj)) = δ. Moreover, the aggregated counting

process only jumps exactly once per bin (given there is at least one observation per bin). Hence, we get the690

identity

δα̂H,δ(t) =

Z
δ(t)−1 Nδ jumps at t

0 else.

(B.1)

This enables us to write

f̂δS(t) =

mb∑
s=1

Kh(t− sb)p̂(sb)

= n−1

∫
Kh(t− s)(Zδ(s)/n)−1Ŝδ(s)dNδ(s). (B.2)

Appendix B.1.2. Identification with Kaplan-Meier estimator and asymptotic behavior of Ŝδ

To show convergence of Ŝδ towards Sδ, we first illustrate that Ŝδ corresponds to the Kaplan-Meier

estimator in our setting. We introduce the notations

Âδ(t) =

∫ t

0

Zδ(s)−1dNδ(s),

Aδ(t) =

∫ t

0

αδ(s)dµ
δ(s),

A∗δ(t) =

∫ t

0

Jδ(s)αδ(s)dµ
δ(s),

Jδ(t) = I(Zδ(t) > 0),
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and we use the convention 0/0 = 0. The integrated hazard estimator Âδ(t) is the Nelson-Aalen estimator

for the aggregated counting process Nδ. Equation (B.1) implies furthermore ∆Âδ(t) = Zδ(t)
−1

= δα̂H,δ(t)

if Nδ jumps at t and ∆Âδ(t) = 0 = δα̂H,δ(t) otherwise.695

Thus, we can identify
∏m−1
k=j

(
1− δα̂H,δ(T − xk)

)
with the Kaplan-Meier estimator

∏
s≤t

(
1−∆Âδ(s)

)
.

The following proposition describes the convergence of the Kaplan-Meier estimator in the aggregated setting.

Proposition 4. Let t ∈ [0, T ] and assume that, for every ε > 0 and δ > 0 , it holds

n

∫ t

0

Jδ(s)

Zδ(s)
αδ(s)dµ

δ(s)
P−→ σ2(t), (B.3)

n

∫ t

0

Jδ(s)

Zδ(s)
I

(
Jδ(s)

Zδ(s)
> ε

)
αδ(s)dµ

δ(s)
P−→ 0, (B.4)

n1/2

∫ t

0

(1− Jδ(s))αδ(s)dµδ(s)
P−→ 0. (B.5)

as n→∞ and for a continuous function σ ≥ 0 with σ(0) = 0. Then, as n→∞, for δ > 0 fixed, it holds

sup
s∈[0,t]

|Ŝδ(s)− Sδ(s)| = OP (n−1/2).

Proof. The proposition follows with Lenglart’s inequality and the functional delta method (Andersen et al.,

1993, pp. 86, 111), since Ŝδ and Sδ are functionals of Âδ and Aδ, respectively. Indeed, it holds Sδ(t) =700 ∏
s≤t(1−∆Aδ(s)).

We first show the convergence of n1/2 sups∈[0,T ]|Âδ(s)−A∗δ(s)|. Lenglart’s inequality yields

P

(
n1/2 sup

s∈[0,T ]

|Âδ(s)−A∗δ(s)| > η

)
≤ δ

η
+ P

(
n1/2〈Âδ −A∗δ〉(T ) > δ

)
,

for every δ > 0 and every η > 0. Now we use a limit theorem to show n1/2〈Âδ − A∗δ〉(T ) = OP (1). Note

that we have n1/2
(
Âδ(t)−A∗δ

)
(t) = n1/2

∫ t
0
Jδ(s)
Zδ(s)

dMδ(s) with dMδ(s) = dNδ(s) − αδ(s)Zδ(s)dµδ(s) and

Mδ being a local square integrable martingale. Thus, Âδ(t)− A∗δ , is a local square integrable martingale as705

well. Hence, the convergence follows from the martingale central limit theorem in Rebolledo (1980) (see also

(Andersen et al., 1993, p. 83)), under the condition

n1/2〈Âδ −A∗δ〉(t)
P−→ σ2(t), (B.6)

for all t ∈ [0, T ] and a continuous function σ ≥ 0 with σ(0) = 0 and the Lindeberg condition we assume in

(B.5). Condition (B.6) follows from (B.3) since

n1/2〈Âδ −A∗δ〉(t) = n

∫ t

0

(
Jδ(s)

Zδ(s)

)2

Zδ(s)αδ(s)dµ
δ(s) = n

∫ t

0

Jδ(s)

Zδ(s)
αδ(s)dµ

δ(s).

The conclusion of the proposition then follows by n1/2 sups∈[0,T ]|A∗δ(s)−Aδ(s)|
P−→ 0 which is ensured through710

assumption (B.5).
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Appendix B.1.3. Estimation error through aggregation

We derive the error that occurs from estimating f at the grid points tj = (j+ 0.5)δ for jδ < t ≤ (j+ 1)δ.

Under Assumption A1, through a Taylor expansion, we get

f(tj)− f(t) = (tj − t)f ′(t) + o(δ2).

Moreover, the deviation between fδ and f in grid points can be bounded by

fδ(tj)− f(tj) = δ−1

∫ (j+1)δ

jδ

[f(u)− f(tj)] du = o(δ2)

through another Taylor expansion. Concluding, it holds715

fδ(tj)− f(t) = (tj − t)f ′(t) + o(δ2). (B.7)

Appendix B.1.4. Proof of Proposition 1

Proof of Proposition 1. With the representation of f̂δS in equation (B.2), we can prove Proposition 1 with a

standard procedure for counting process estimators. First we evaluate our estimator at the closest grid point

tj to t. Then we split f̂δS(tj)− f(t) = V (t) +B(t) into a deterministic bias part B(t) = f∗δ (tj)− f(t) and a

martingale part V (t) = f̂δS(tj)− f∗δ (tj) with the definition720

f∗δ (t) =

∫
K(t− s)Ŝδ(s)αδ(s)dµδ(s).

The conditions (B.3)–(B.5) of Proposition 4 are satisfied and hence we get that the bias term satisfies

B(t) =

∫
Kh(tj − s)

[
fδ(s)− f(t)

]
dµδ(s) +OP (n−1/2) + (1− κδ0)f(t)

=

∫
Kh(tj − s) [f(sk) + (sk − s)f ′(s)− f(t)] dµδ(s) + (1− κδ0)f(t) +OP (n−1/2) + o(δ2)

=
1

2
h2κδ2f

′′(t) + oP (h2) + o(δ2),

where we have used the approximation in equation (B.7) as well as a second order Taylor expansions of f

and Assumptions A2. Note that it furthermore holds OP (n−1/2) = oP (h2) under Assumption A3. We write

sk for the grid point closest to s.

Under Assumption A4 and with Proposition 4, it holds for the martingale term that

V (t) = f̂S(tj)− f∗(tj)

=
1

n

∫
Kh(t− s)(γδ(s))−1Sδ(s)dM δ(s) +OP (n−1/2),

where we have used that dMδ(s) = dNδ(s)−αδ(s)Zδ(s)dµδ(s) and Mδ is a local square integrable martingale

as in the proof of Proposition 4. With Theorem 1, we can conclude (nh)1/2V (t)→ N
(
0, σ2(t)

)
for σ2(t) =725

Rδ(K)fδ(t)F δ(t)(γδ(t))−1, where Rδ(K) =
∫
K(s)2dµδ(s).

Convergence of the factor Rδ(K) in the variance for δ → 0 can be shown with another Taylor expansion

of K.
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Appendix B.2. Proofs of Proposition 2 and 3

Proof of Proposition 2. Following the proofs in Linton and Nielsen (1994) and Nielsen and Tanggaard (2001)730

and using the representations from the proof of Proposition 1, we get the result.

Proof of Proposition 3. The proof is analogous to the last part of the proof of Proposition 1 with Nδ replaced

by the non-aggregated counting process N .

Acknowledgment

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) through the Research Training735

Group RTG 1953.

References

Andersen, P., Borgan, O., Gill, R., Keiding, N., 1993. Statistical Models Based on Counting Processes.

Springer, New York.

Bowman, A.W., 1984. An alternative method of cross-validation for the smoothing of density estimates.740

Biometrika 71, 353–360.

Duraisamy, P., 2002. Changes in returns to education in India, 1983–94: by gender, age-cohort and location.

Economics of Education Review 21, 609–622.

England, P.D., Verrall, R.J., 2002. Stochastic claims reserving in general insurance. British Actuarial Journal

8, 443–544.745

Fan, J., Gijbels, I., 1996. Local polynomial modelling and its applications. Chapman and Hall, London.

Fukuda, K., 2006. Age-period-cohort decomposition of aggregate data: an application to US and Japanese

household saving rates. Journal of Applied Econometrics 21, 981–998.

Gámiz, M.L., Mammen, E., Mart́ınez-Miranda, M.D., Nielsen, J.P., 2016. Double one-sided cross-validation

of local linear hazards. Journal of the Royal Statistical Society: Series B 78, 755–779.750

Hall, P., 1983. Large sample optimality of least squares cross-validation in density estimation. The Annals

of Statistics 11, 1156–1174.

Harnau, J., Nielsen, B., 2018. Over-dispersed age-period-cohort models. Journal of the American Statistical

Association 0, 1–11.

Hart, J.D., Yi, S., 1998. One-sided cross-validation. Journal of the American Statistical Association 93,755

620–631.

33



Hiabu, M., 2017. On the relationship between classical chain ladder and granular reserving. Scandinavian

Actuarial Journal 2017, 708–729.

Hiabu, M., Mammen, E., Mart́ınez-Miranda, M.D., Nielsen, J.P., 2016. In-sample forecasting with local

linear survival densities. Biometrika 103, 843–859.760

Jeon, Y.J., Kim, C.R., Park, J.S., Choi, K.H., Kang, M.J., Park, S.G., Park, Y.J., 2016. Health inequalities

in hypertension and diabetes management among the poor in urban areas: a population survey analysis

in South Korea. BMC public health 16, 492.

Jones, M.C., 1993. Simple boundary correction for kernel density estimation. Statistics and Computing 3,

135–146.765

Jones, M.C., Linton, O.B., Nielsen, J.P., 1995. A simple bias reduction method for density estimation.

Biometrika 82, 327–338.

Kuang, D., Nielsen, B., Nielsen, J.P., 2009. Chain-ladder as maximum likelihood revisited. Annals of

Actuarial Science 4, 105–121.

Lee, Y.K., Mammen, E., Nielsen, J.P., Park, B.U., 2015. Asymptotics for in-sample density forecasting. The770

Annals of Statistics 43, 620–651.

Lee, Y.K., Mammen, E., Nielsen, J.P., Park, B.U., 2017. Operational time and in-sample density forecasting.

The Annals of Statistics 45, 1312–1341.

Leung, G.M., Thach, T.Q., Lam, T.H., Hedley, A.J., Foo, W., Fielding, R., Yip, P.S.F., Lau, E.M.C., Wong,

C.M., 2002. Trends in breast cancer incidence in Hong Kong between 1973 and 1999: an age-period-cohort775

analysis. British Journal of Cancer 87, 982.

Linton, O.B., Nielsen, J.P., 1994. A multiplicative bias reduction method for nonparametric regression.

Statistics & Probability Letters 19, 181–187.

Mammen, E., Marron, J.S., Turlach, B.A., Wand, M.P., 2001. A general framework for constrained smooth-

ing. Statistical Science 16, 232–248.780

Mammen, E., Mart́ınez-Miranda, M.D., Nielsen, J.P., 2015. In-sample forecasting applied to reserving and

mesothelioma. Insurance: Mathematics and Economics 61, 76–86.

Mart́ınez-Miranda, M.D., Nielsen, B., Nielsen, J.P., 2014. Inference and forecasting in the age-period-cohort

model with unknown exposure with an application to mesothelioma mortality. Journal of the Royal

Statistical Society: Series A 178, 29–55.785

34



Mart́ınez-Miranda, M.D., Nielsen, B., Nielsen, J.P., 2016. Simple benchmark for mesothelioma projection

for Great Britain. Occupational and Environmental Medicine , 561–563.

Mart́ınez-Miranda, M.D., Nielsen, J.P., Sperlich, S., 2009. One sided cross-validation for density estimation

with an application to operational risk, in: von Gregoriou, G.N. (Ed.), Operational Risk Towards Basel

III: Best Practices and Issues in Modelling. Management and Regulation. John Wiley and Sons, New790

Jersey, pp. 177–195.

Mart́ınez-Miranda, M.D., Nielsen, J.P., Sperlich, S., Verrall, R.J., 2013. Continuous chain ladder: Reformu-

lating and generalising a classical insurance problem. Expert Systems with Applications 40, 5588–5603.

Martinussen, T., Scheike, T.H., 2006. Dynamic regression models for survival data. Springer, New York.

Nielsen, J.P., Tanggaard, C., 2001. Boundary and bias correction in kernel hazard estimation. Scandinavian795

Journal of Statistics 28, 675–698.

Nielsen, J.P., Tanggaard, C., Jones, M.C., 2009. Local linear density estimation for filtered survival data,

with bias correction. Statistics 43, 167–186.

Peto, J., Matthews, F.E., Hodgson, J.T., Jones, J.R., 1995. Continuing increase in mesothelioma mortality

in Britain. The Lancet 345, 535–539.800

Ramlau-Hansen, H., 1983. Smoothing counting process intensities by means of kernel functions. The Annals

of Statistics 11, 453–466.

Rebolledo, R., 1980. Central limit theorems for local martingales. Zeitschrift für Wahrscheinlichkeitstheorie

und verwandte Gebiete 51, 269–286.

Reither, E.N., Hauser, R.M., Yang, Y., 2009. Do birth cohorts matter? Age-period-cohort analyses of the805

obesity epidemic in the United States. Social science & medicine 69.
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