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OPERATIONAL TIME AND IN-SAMPLE DENSITY

FORECASTING

By Young K. Lee∗,¶, Enno Mammen†,‖, Jens P.

Nielsen‡,∗∗ and Byeong U. Park§,††

Kangwon National University¶, Universität Heidelberg and Higher School
of Economics, Moscow‖, Cass Business School, City University London∗∗

and Seoul National University††

In this paper we consider a new structural model for in-sample
density forecasting. In-sample density forecasting is to estimate a
structured density on a region where data are observed and then
re-use the estimated structured density on some region where data
are not observed. Our structural assumption is that the density is a
product of one-dimensional functions with one function sitting on the
scale of a transformed space of observations. The transformation in-
volves another unknown one-dimensional function, so that our model
is formulated via a known smooth function of three underlying un-
known one-dimensional functions. We present an innovative way of
estimating the one-dimensional functions and show that all the esti-
mators of the three components achieve the optimal one-dimensional
rate of convergence. We illustrate how one can use our approach by
analyzing a real dataset, and also verify the tractable finite sample
performance of the method via a simulation study.

1. Introduction. In-sample forecasting is a recently introduced class
of forecasting methods based on structured nonparametric models. The idea
is that observations might fall in some set, say S, in R

2 and that S can be
written as the union of two subsets S1 and S2, where S1 is the set of observed
observations and S2 is the set of future observations whose distribution is the
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target for forecasting. In-Sample Density Forecasting assumes that the den-
sity restricted to S1 or to S2 can be described by the same one-dimensional
nonparametric functions. This assumptions leads to the convenient forecast-
ing strategy of estimating the structured density on the observed data in S1

and then simply re-using the nonparametrically estimated one-dimensional
components while estimating the density on S2. The strategy may be put
into practice by structuring the density in such a way that all components
of the structured density are estimable with the observations in S1. With
this strategy forecasting can be performed without extrapolation of param-
eters. This is likely to lead to more robust forecasting, because extrapolated
parameters are often volatile. For time series extrapolation inparticular, see
Lee and Carter (1992) for example.

Lee, Mammen, Nielsen and Park (2015) and Mammen, Mart́ınez-Miranda
and Nielsen (2015) considered the perhaps simplest possible in-sample fore-
caster, where the joint density p has a multiplicative structure p(x, y) =
f1(x)f2(y) for some unknown univariate functions fj with S1 = {(x, y) : x ≥
0, y ≥ 0, x + y ≤ t0}. In this setting, p is the joint density of two random
variables X and Y , where X represents the start of something and Y is
the development to some event from this starting point. These variables are
observed only if the event occurs by a fixed calendar time t0. Thus, f1(x)
measures how many individuals are exposed or under risk and f2(y) repre-
sents duration or survival. The multiplicative form means that survival or
duration has the same distribution independent of X. As was pointed out in
Lee, Mammen, Nielsen and Park (2015) and Mammen, Mart́ınez-Miranda
and Nielsen (2015), this is a continuous type in-sample forecaster that ex-
tends classical actuarial and mortality forecasting methodologies based on
multiplicative Poisson models being used every day in virtually all non-life
insurance companies around the world. In a nonparametric universe the
estimators resulting from the multiplicative Poisson models are structured
histograms. Mart́ınez-Miranda, Nielsen, Sperlich and Verrall (2013) showed
the link between actuarial parametric chain ladder type models (Kuang,
Nielsen and Nielsen, 2009) and structured smoothing as considered in this
paper.

The multiplicative structure f1(x)f2(y) may be too simple for many set-
tings. Nevertheless, the multiplicative model can be used as a baseline for
more sophisticated models that deviate from this simple structure. This
paper illustrates how powerful in-sample forecasting is when formulating,
interpreting and analysing extensions of the simple multiplicative model.
Actuaries have long tried to introduce the concept of operational time in
the claims reserving modelling. The phrase ‘operational time’ is taken from
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the literature of Poisson processes. When transforming the time axis with
its operational time, an inhomogeneous Poisson process is transformed to
a homogenous one, see Mikosch (2009) among many others. In the claims
modelling framework, actuaries have been concerned about adjusting for
changes in the speed of claims finalization over time. Many actuarial confer-
ence proceeding papers have been devoted to this topic and still are to this
day. However, operational time or speed of claims finalization only had a
short blossoming in the more formal academic actuarial literature, see Reid
(1978), Taylor (1981, 1982) and Zehnwirth (1982). We believe that the topic
of operational time died out in the actuarial literature, not because of lack
of relevance, but because the mathematical challenges of formulating and
analysing it became too overwhelming.

This paper introduces operational time to a general class of multiplica-
tive models including actuarial, demographic and labour market applications
taking advantage of the general in-sample forecasting formulation. We refer
to Lee, Mammen, Nielsen and Park (2015), Mammen, Mart́ınez-Miranda
and Nielsen (2015) and Wilke (2016) for practical illustrations of multi-
plicative In-Sample Forecasting in actuarial science, demographics and the
labour market. An alternative to operational time could be to add a cal-
endar effect to the multiplicative model. While calendar effects are popular
to talk about in actuarial science, they cause a number of difficulties, the
most serious being the identifiability issue that some arbitrary linear trends
can be added to or subtracted from the underlying model without changing
the underlying model, see Kuang, Nielsen and Nielsen (2008a, 2008b, 2011).
While the latter of these three papers does suggest practical implementation
of identified forecasting procedures using calendar effects, there is still con-
siderable uncertainty on how to forecast calendar effects in practice in the
simple multiplicative forecasting model. Our Operational Time In-Sample
Forecaster does not have any of these practical problems. It is immediate to
construct a practical forecaster based on the operational time extension of
the simple multiplicative In-Sample Forecaster.

In this paper, we consider a transformation, say φ, and a density model
given by p(x, y) = f1(x)f2(yφ(x)) on S1. Our method and theory apply to a
general type of support set S1. The Operational Time In-Sample Forecaster
can be understood as a structured model formulated in a density frame-
work rather than in the regression framework considered in Mammen and
Nielsen (2003). The model is formulated via a known smooth function of
three one-dimensional unknown functions φ, f1 and f2. The estimation of φ,
as discussed in Section 3, involves the estimation of the partial derivatives of
the two-dimensional joint density function p by kernel smoothing. A naive
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application of the standard theory of kernel smoothing to the problem ren-
ders only a sub-optimal rate of convergence for the estimator of φ. Based on
an innovative asymptotic analysis, we show that our estimator of φ achieves
the optimal one-dimensional rate. Using this result we also establish that
the component functions fj can be estimated with the optimal univariate
rate.

There is a close relation between the multiplicative density model and the
additive regression model. Thus, our approach may be extended to funda-
mental structured regression models studied in Jiang, Fan and Fan (2010),
Yu, Mammen and Park (2008), Lee, Mammen and Park (2010, 2012), Zhang,
Park and Wang (2013) among others. The multiplicative model with oper-
ational time corresponds to nonparametric regression models of the form
Z = m1(X) + m2(Y φ(X)) + ε or Z = m1(X) + m2(Y + φ(X)) + ε. The
latter model is related to the nonparametric neural network models studied
in Horowitz and Mammen (2007), see also recent work on composite func-
tion models by Juditsky, Lepski and Tsybakov (2009) and Baraud and Birgé
(2014).

In-sample forecasting may be considered to be related to problems in
survival analysis. In contrast with survival analysis, in-sample forecasting
does not require full follow up of exposure and events, but is based only
on the events that actually happened and on a retrospective observation
of the onset of these events. Therefore, there needs to be a lot less data
to keep track of. For example, in-sample forecasting requires only keeping
track of actual deaths of AIDS and retrospectively observed onset of AIDS,
while most of survival analysis techniques need full follow up of how many
individuals are under risk at any time (exposure), in addition to actual
deaths of AIDS. The reason that in-sample forecasting needs fewer data
requirements is that it estimates from data the equivalent of exposure in
survival analysis. Our model is in some way related to accelerated failure
time models. If one assumes that exposure is fully known and that one has
only the components f2 and φ in the model, then our model compares to
an accelerated failure time model with X being a covariate, see Example
VII 6.3 in Andersen, Borgan, Gill and Keiding (1992). However, there are
some differences. First of all, our approach is fully nonparametric. Secondly,
our data are right truncated. Thus, exposure is not observed and it is only
indirectly represented in our model via the component f1 and estimated
from the data. We therefore note that survival analysis techniques are not
directly applicable in our model or in the application discussed in Section 7
in particular.
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2. The Model. We observe a random sample {(Xi, Yi) : 1 ≤ i ≤ n}
from a density p supported on a subset I of the unit rectangle [0, 1]2. The
density p(x, y) of (Xi, Yi) is a multiplicative function

(2.1) p(x, y) = f1(x)f2(yφ(x)), (x, y) ∈ I,
where f1, f2 and φ are unknown nonnegative functions bounded away from
zero on their supports. We assume that f1 and φ are supported on [0, 1].
We begin by considering the triangular support set I = {(x, y) : 0 ≤ x, y ≤
1, x+y ≤ 1} of a rectangle [0, 1]2 since the main idea of our approach can be
best conveyed through the simple case. We discuss the method and theory
for a general type of support set in Section 5.

In the model (2.1), if x indicates the beginning of some development and y
is the time this development takes, then φ(x) indicates a time transformation
depending on the beginning of the development. When φ(x) gets bigger
(smaller), time runs faster (slower) for the development beginning at x.
From ad hoc analyses of practical applications of the In-sample Forecaster
“Double Chain Ladder” (Martinez-Miranda, Nielsen and Verrall, 2012) to
one of UK’s largest global non-life insurers, it has become clear that speed
of time was increasing for almost every single dataset considered. This was
the case for both the frequencies (number of claims) and the severities (size
of claims). In the practical application of our model presented in Section 7
where frequencies from another non-life insurer are considered, it can be
concluded from our new operational time model, that speed of time also
here is increasing. One likely explanation is of course that administration
time, communication and reporting go faster as technology develops.

We start with the identification of the function φ in the model (2.1). The
idea is also used for nonparametric estimation of the function, which we
detail in the next section. Note that

∂

∂x
log p(x, y) =

f ′
1(x)

f1(x)
+

f ′
2(yφ(x))

f2(yφ(x))
yφ′(x),

∂

∂y
log p(x, y) =

f ′
2(yφ(x))

f2(yφ(x))
φ(x).

To represent φ in terms of the two partial derivatives, we think of a suitable
contrast function w(·;x) : R → R for each x ∈ [0, 1), having the property
that

∫ 1−x
0 w(y;x) dy = 0. Then, we have

∫ 1−x

0

(

∂

∂x
log p(x, y)

)

w(y;x) dy = A(x)φ′(x),

∫ 1−x

0

(

∂

∂y
log p(x, y)

)

yw(y;x) dy = A(x)φ(x),
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where

A(x) =

∫ 1−x

0

f ′
2(yφ(x))

f2(yφ(x))
yw(y;x) dy.

If A(x) 6= 0 for all x ∈ [0, 1), then we get

φ′(x)

φ(x)
=

∫ 1−x
0

(

∂
∂x log p(x, y)

)

w(y;x) dy
∫ 1−x
0

(

∂
∂y log p(x, y)

)

yw(y;x) dy
.

For the contrast function w, we take

w(y;x) = y
∂

∂y
log p(x, y)− 1

1− x

∫ 1−x

0
y

∂

∂y
log p(x, y) dy.

Note that y∂ log p(x, y)/∂y = yφ(x)f ′
2(yφ(x))/f2(yφ(x)) is actually a func-

tion of yφ(x), and that with the choice of w we get

1

1− x

∫ 1−x

0

(

∂

∂y
log p(x, y)

)

y w(y;x) dy

=
1

τ(x)

∫ τ(x)

0

(

z · f
′
2(z)

f2(z)

)2

dz −
(

1

τ(x)

∫ τ(x)

0
z · f

′
2(z)

f2(z)
dz

)2

,

where τ(x) = (1− x)φ(x). Thus, A(x) > 0 if zf ′
2(z)/f2(z) is not a function

that is constant a.e. on (0, τ(x)). Now, for x0 fixed,

ln(φ(x)/φ(x0)) =

∫ x

x0

φ′(u)

φ(u)
du =

∫ x

x0





∫ 1−u
0

(

∂
∂u log p(u, y)

)

w(y;u) dy
∫ 1−u
0

(

∂
∂y log p(u, y)

)

y w(y;u) dy



 du.

We choose x0 = 0 and take the normalization φ(0) = 1. For j, k = 0, 1, 2,
define

(2.2) Gjk(x) =
1

1− x

∫ 1−x

0

(

∂

∂x
log p(x, y)

)j (

y
∂

∂y
log p(x, y)

)k

dy.

Then, we get

(2.3) φ(x) = exp

[∫ x

0

G11(u)−G10(u)G01(u)

G02(u)−G01(u)2
du

]

.

To assure that A(x) > 0 for any x ∈ [0, 1), we make the following assump-
tion.
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(A1) For any small c > 0, zf ′
2(z)/f2(z) is not a function that is constant

a.e. on (0, c).

Note that the assumption (A1) concerns the behavior of the function zf ′
2(z)/f(z)

near z = 0 only, since a function is not constant on (0, c1) if the function
is not on (0, c2) for c2 < c1. The assumption is implied by the simpler one
that there exists a small c0 > 0 such that zf ′

2(z)/f(z) is strictly monotone
on (0, c0), or that its derivative is not zero at z = 0 in case it is continuously
differentiable.

Next, we discuss the identifiability of the component functions f1 and f2.
The following arguments are based on the identifiability of φ, which we have
just proved. The two component functions f1 and f2 are identifiable only
up to a multiplicative constant. Hence we put the constraint on the first
component that

(2.4)

∫ 1

0
f1(x) dx = 1.

Let µ1(x) = log f1(x) and µ2(z) = log f2(z). Suppose that µ1(x)+µ2(yφ(x)) =
0 for all (x, y) ∈ I. By differentiating both sides with respect to y, we get

φ(x)µ′
2(yφ(x)) = 0.

Since we assume that φ(x) > 0 for all x ∈ [0, 1], this implies µ′
2(yφ(x)) = 0

for all (x, y) ∈ I. Thus, µ2 is constant on its domain, so is µ1. Due to the
constraint (2.4), we have µ1 ≡ 0 on [0, 1] so that µ2 ≡ 0 on its domain, as
well.

Theorem 1. Assume that the two component functions fj and the time
transformation φ in the model (2.1) are differentiable, nonnegative and bounded
away from zero on their supports. Assume also that (A1) holds. Then, the
three functions φ, f1 and f2 are identifiable under the constraint (2.4).

3. Estimation of Time Transformation. Here we describe the esti-
mation of the time transformation φ based on the local quadratic smoothing
technique. Note that Lee, Mammen, Nielsen and Park (2015) suggested to
use the local linear smoothing method since their model involves only the es-
timation of the joint density function. Here φ is identified through the partial
derivatives of the joint density p, as is seen from (2.2) and (2.3). Therefore
one may want to use local quadratic smoothing to ensure stable performance
at the boundary area of I in the estimation of the partial derivatives. Indeed,
in our preliminary simulation study we found that local linear smoothing
produced quite bad estimates of the first partial derivatives.
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To define the estimator of φ based on local quadratic smoothing, let

a(u, v;x, y) = (1, (u− x)/h1, (v − y)/h2, (u− x)2/h21, (u− x)(v − y)/h1h2, (v − y)2/h22)
⊤,

A(x, y) =

∫

I
a(u, v;x, y)a(u, v;x, y)⊤h−1

1 h−1
2 K

(

u− x

h1

)

K

(

v − y

h2

)

du dv,

where (h1, h2) is the bandwidth vector and K is a symmetric univariate
probability density function. Also, define

b̂(x, y) = n−1
n
∑

i=1

a(Xi, Yi;x, y)h
−1
1 h−1

2 K

(

Xi − x

h1

)

K

(

Yi − y

h2

)

.

The local quadratic density estimators of p(x, y), ∂
∂xp(x, y) and ∂

∂yp(x, y),
respectively, are then defined by η̂00(x, y), η̂10(x, y)/h1 and η̂01(x, y)/h2, re-
spectively, where

(3.1) (η̂00, η̂10, η̂01, η̂20, η̂11, η̂02)
⊤ = A−1b̂.

The above estimators of the joint density p and its partial derivatives are sim-
ilar in spirit to the local linear density estimators studied in Cheng (1997).
Putting these into the formula (2.2) we get the estimators Ĝjk(x) of Gjk(x),
and thus the estimator of φ defined by

(3.2) φ̂(x) = exp

[

∫ x

0

Ĝ11(u)− Ĝ10(u)Ĝ01(u)

Ĝ02(u)− Ĝ01(u)2
du

]

.

The convergence rate of the estimator φ̂ depends on those of the estima-
tors η̂jk of the joint density and its partial derivatives. For the simplicity of
presentation, we write

pjk(x, y) =
∂j+k

∂xj∂yk
p(x, y).

If p is twice partially continuously differentiable, then from an expansion of
p(u, v) for (u, v) around (x, y) one gets that Eη̂jk(x, y) − hj1h

k
2 pjk(x, y) =

o(h21 + h22) for (j, k) with 0 ≤ j, k ≤ 1 and j + k ≤ 1. Furthermore, one

has η̂jk(x, y) − Eη̂jk(x, y) = Op(n
−1/2h

−1/2
1 h

−1/2
2 ), see Ruppert and Wand

(1994) or Fan, Heckman and Wand (1995) among others. These imply that
the estimators of the first-order partial derivatives have the convergence rate

Op(n
−1/2h

−3/2
1 h

−1/2
2 )+op(h1+h−1

1 h22) or Op(n
−1/2h

−1/2
1 h

−3/2
2 )+op(h

2
1h

−1
2 +

h2). Note that the estimator φ̂(x) involves two integrations of the estimators
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of the first-order partial derivatives, one for each coordinate, see the defi-
nitions (2.2) and (3.2). In the standard kernel smoothing theory it is well
known that a nontrivial integration of a kernel estimator makes the stochas-
tic part get smaller by an order of h1/2, where h is the size of the bandwidth
that is used for local smoothing along the line of the integration. This is
mainly because the ‘local average’ turns into a ‘global average’ along the
lines of the integration, see Mammen, Park and Shienle (2014), for example.
For the bias term, an integration does not reduce the order of magnitude in
general, however. A direct application of this standard theory to φ̂(x) would
give the rate Op(n

−1/2min{h1, h2}−1) + op(max{h1, h2}). One may improve
the rate for the bias part to Op(max{h1, h2}2) if one assumes three times
partial differentiability, which would lead to the two-dimensional rate n−1/3

at best by chossing h1 ∼ h2 ∼ n−1/6.
In the theorem below, however, we show that our estimator φ̂ achieves

the univariate rate of convergence n−2/5 under the condition that p is twice
partially continuously differentiable. Before we state the theorem, here we
give an intuition behind and heuristic argument for the surprising results.
Let m2(u) = log f2(e

u) and m3(u) = log φ(u), where f2 is the second com-
ponent function in our model (2.1). For an arbitrarily small constant ǫ > 0,
define a bivariate function Fǫ by

(3.3) Fǫ(x, t) =

∫ t+ǫ

t
log p(x, ez) dz −

∫ t

t−ǫ
log p(x, ez) dz

on {(x, t) : 0 ≤ x < 1, t ≤ log(1 − x) − ǫ}. Then, Fǫ may be expressed in
terms of a univariate function and φ. Indeed, letting Hǫ(t) =

∫ ǫ
0 [m2(z+ t)−

m2(z − ǫ+ t)] dz, we get

Fǫ(x, t) =

∫ ǫ

0

[

m2(z+t+m3(x))−m2(z−ǫ+t+m3(x))
]

dz = Hǫ(t+m3(x)).

Recall our normalization φ(0) = 1 for φ, so that m3(0) = 0. Thus, for
t ≤ log τ(x)− ǫ we get

(3.4) Fǫ(x,−m3(x) + t) = Hǫ(t) = Fǫ(0, t).

From the definition of Fǫ at (3.3) we note that Fǫ may be estimated with
the univariate rate, because of the integration. Now, due to (3.4) one may
identify m3, thus φ, by identifying Fǫ, provided that, for any x ∈ [0, 1), one
finds t0 < log τ(x)− ǫ such that ∂Fǫ(x, t)/∂t is not zero at t = −m3(x)+ t0.
The latter also means that m3 can be estimated with the same accuracy as
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Fǫ. The condition on ∂Fǫ(x, t)/∂t is implied by the assumption (A1). To see
this, we note that

∂

∂t
Fǫ(x, t)

∣

∣

∣

t=−m3(x)+t0
= H ′

ǫ(t0) = m2(t0 + ǫ)− 2m2(t0) +m2(t0 − ǫ).

Observing that m′
2(t) = etf ′

2(e
t)/f2(e

t), the assumption (A1) is equivalent
to the condition that, for any C > 0, m′

2 is not a function that is constant
a.e. on (−∞,−C). Thus, (A1) implies that, for any C > 0, there exists
t0 < −C − ǫ such that H ′

ǫ(t0) 6= 0.
We now state our theorem for the rate of φ̂(x). Below, we give a pointwise

convergence rate for x ∈ [0, 1), excluding the point x = 1. Also, we present
the rates for the integrated squared and the uniform errors on an interval
[0, 1 − ǫ] for an arbitrarily small ǫ > 0. The reason we exclude the point
x = 1 is that the marginal density of X vanishes at x = 1 even though the
joint density f is bounded away from zero on its support. This is due to
the triangular shape of the support set I. Thus, the consistent estimation
of φ(x) as x approaches to the end point 1 is not possible. We make the
following additional assumptions.

(A2) The joint density function p is twice partially continuously differen-
tiable and bounded away from zero;

(A3) The kernel K is supported on [−1, 1], symmetric and Lipschitz contin-
uous;

(A4) The bandwidths h1 and h2 are of order n−1/5;

Theorem 2. Assume that the conditions of Theorem 1 and the condi-
tions (A2)–(A4) are satisfied. Then, we get for x ∈ [0, 1) that

(3.5) φ̂(x)− φ(x) = Op(n
−2/5).

Furthermore, for an arbitrarily small ǫ > 0, it holds that

∫ 1−ǫ

0
(φ̂(x)− φ(x))2 dx = Op(n

−4/5),(3.6)

sup
x∈[0,1−ǫ]

|φ̂(x)− φ(x)| = Op(n
−2/5

√

log n).(3.7)

In the proof of Theorem 2 given in the Appendix, one sees that φ̂(x) is
not a local smoother. If one looks at the term J1(x) that is discussed at the
end of the proof, one finds that this quadratic form is of order Op(n

−2/5) and
not negligible in the first order. By definition all observations (Xi, Yi) enter
J1(x) with weights of the same magnitude. Thus, this term does not rely
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only on local information. The same holds for φ̂(x). It is calculated using all
observations, not only those (Xi, Yi) with Xi in a shrinking neighborhood of
x. This makes φ̂ quite different from a kernel smoother.

4. Estimation of Component Functions. Suppose we know the true
time transformation φ. Then, we would convert the dataset (Xi, Yi) to
(Xi, Zi) with Zi = Yiφ(Xi), and estimate the component functions f1 and f2
from the converted dataset. The density function of (Xi, Zi) equals p(x, z/φ(x))/φ(x),
and the model (2.1) reduces to

(4.1) p

(

x,
z

φ(x)

)

= f1(x)f2(z).

Recall that we take the normalization φ(0) = 1. This means that time runs
as real time at the starting point, and that the set {(u, vφ(u)) : (u, v) ∈ I}
includes the two edge points (0, 1) and (1, 0) of the triangle I.

For the estimation of the component functions f1 and f2 at points x
and z, respectively, we need sufficient data Xi and Zi around x and z. We
estimate f1 and f2 on intervals where the marginal densities of Xi and Zi,
respectively, are bounded away from zero. Note that the marginal density

of Xi at x and that of Zi at z are given by
∫ (1−x)φ(x)
0 p(x, z/φ(x))/φ(x) dz

and
∫

x:τ(x)≥z p(x, z/φ(x))/φ(x)dx, respectively, where τ defined by τ(x) =

(1− x)φ(x). We assume

(A5) τ is strictly decreasing.

The condition (A5) simplifies the description of the method and the pre-
sentation of its theory. In this case {x ∈ [0, 1] : τ(x) ≥ z} = [0, τ−1(z)], and
τ−1(z) = 0 holds only for z = 1. The method we describe below and its
theory are based on this condition on τ . We discuss a general case at the
end of this section.

The marginal density function of Xi equals zero at x = 1 and that of Zi

is zero at z = 1, even if the joint density p is bounded away from zero on its
support. For a set of (x, z) where we estimate the component functions f1
and f2, we take

I ≡ {(u, vφ(u)) : u ≤ 1− ǫ, vφ(u) ≤ 1− ǫ, (u, v) ∈ I}
= {(u,w) : 0 ≤ u ≤ 1− ǫ, 0 ≤ w ≤ (1− ǫ) ∧ τ(u)}

(4.2)

for an arbitrarily small ǫ > 0. The projections of the set I onto x- and z-axis
equal [0, 1 − ǫ]. Thus, we estimate both f1 and f2 on an interval [0, 1 − ǫ].
Define I1(z) = {x : (x, z) ∈ I} and I2(x) = {z : (x, z) ∈ I}. Note that

I1(z) = [0, (1− ǫ) ∧ τ−1(z)], I2(x) = [0, (1− ǫ) ∧ (1− x)φ(x)].
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Furthermore,

inf
z∈[0,1−ǫ]

mes(I1(z)) > 0, inf
x∈[0,1−ǫ]

mes(I2(x)) > 0,

where mes(A) denotes the Lebesgue measure of a set A. It follows that
the marginalization of p(x, z/φ(x)) along I1(z) and the one along I2(x) are
bounded away from zero for z ∈ [0, 1 − ǫ] and x ∈ [0, 1 − ǫ], respectively,
that is,

inf
z∈[0,1−ǫ]

∫

I1(z)
p(x, z/φ(x)) dx > 0,

inf
x∈[0,1−ǫ]

∫

I2(x)
p(x, z/φ(x))dz > 0,

(4.3)

provided that p is bounded away from zero on I.
We take the marginalization technique of Lee, Mammen, Nielsen and Park

(2015) to estimate the component functions. For now, we assume the true
φ is known. Integrating both sides of (4.1) along the lines I1(z) and I2(x)
gives

f1(x) =

(

∫

I2(x)
f2(z) dz

)−1
∫

I2(x)
p(x, z/φ(x)) dz,

f2(z) =

(

∫

I1(z)
f1(x) dx

)−1
∫

I1(z)
p(x, z/φ(x)) dx.

(4.4)

The inverses in (4.4) are well-defined for all x, z ∈ [1 − ǫ] due to (4.3).
Set ϑ =

∫

I p(x, z/φ(x))/φ(x) dx dz. Then, ϑ
−1f1(x)f2(z)φ(x)

−1 is a density
on I. Let p̂ be an estimator of the joint density p. Putting the constraint
∫ 1−ǫ
0 f1(x) dx = 1 on the estimator of the first component f1, our estimator

of (f1, f2) is defined to be the solution (f̃1, f̃2) of the system of equations

f̃1(x) = θ̃1

(

∫

I2(x)
f̃2(z) dz

)−1
∫

I2(x)
p̂(x, z/φ(x)) dz,

f̃2(z) = θ̃2

(

∫

I1(z)
f̃1(x) dx

)−1
∫

I1(z)
p̂(x, z/φ(x)) dx,

(4.5)

where θ̃1 and θ̃2 are chosen so that

(4.6)

∫ 1−ǫ

0
f̃1(x) dx = 1,

∫

I
f̃1(x)f̃2(z)/φ(x) dx dz = ϑ̃,
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and ϑ̃ = n−1
∑n

i=1 I[Xi ≤ 1− ǫ, Yiφ(Xi) ≤ 1− ǫ].
Since φ, in the above construction of f̃1 and f̃2, is unknown, we replace

it by the estimator φ̂ studied in Section 3. For this, we define a version of I
for a general time transformation function ϕ by

I(ϕ) = {(x, z) : 0 ≤ x ≤ 1− ǫ, 0 ≤ z ≤ (1− ǫ) ∧ τ(x;ϕ)}

with τ(x;ϕ) = (1 − x)ϕ(x), and those versions of I1(z) and I2(x), respec-
tively, by

I1(z, ϕ) = {x ∈ [0, 1− ǫ] : τ(x;ϕ) ≥ z}, I2(x, ϕ) = [0, (1− ǫ) ∧ τ(x;ϕ)].

Then, the estimators f̂1 and f̂2 of the components f1 and f2, respectively,
solve the system of equations (4.5) subject to the constraints (4.6) with
φ, I, I1(z), I2(x) and ϑ̃ being replaced by φ̂, I(φ̂), I1(z, φ̂), I2(x, φ̂) and ϑ̂ =
n−1

∑n
i=1 I[Xi ≤ 1 − ǫ, Yiφ̂(Xi) ≤ 1 − ǫ], respectively. We denote the con-

straining constants θ̃j in (4.5) by θ̂j in this case.
For the estimator p̂ of the joint density p in (4.5), we suggest to use the

local linear estimator at this stage. This is because at this time we only need
an estimator of the joint density itself, not its derivatives. Specifically, we
estimate p by ξ̂00, where (ξ̂00, ξ̂10, ξ̂01)

⊤ = C−1d̂ with

C(x, y) =

∫

I
c(u, v;x, y)c(u, v;x, y)⊤g−1

1 g−1
2 K

(

u− x

g1

)

K

(

v − y

g2

)

du dv,

d̂(x, y) = n−1
n
∑

i=1

c(Xi, Yi;x, y)g
−1
1 g−1

2 K

(

Xi − x

g1

)

K

(

Yi − y

g2

)

,

and c(u, v;x, y) = (1, (u − x)/g1, (v − y)/g2)
⊤. Here, the bandwidth pair

(g1, g2) may be different from (h1, h2) in the estimation of φ.
According to Lee, Mammen, Nielsen and Park (2015), the estimators f̃j

that are based on the true time transformation φ have the following uniform
convergence rate

sup
u∈[0,1−ǫ]

|f̃j(u)− fj(u)| = Op(n
−1/2min{g1, g2}−1/2

√

log n+ g21 + g22).

Thus, if one takes g1 ∼ g2 ∼ n−1/5, then one gets the univariate rate
Op(n

−2/5
√
log n). Our primary interest is to assess the effect of estimat-

ing φ in the estimation of f1 and f2. The following theorem demonstrates
that the estimation of φ contributes to f̂j − fj an additional term that

is of the same order as the estimation error φ̂ − φ. To state the theo-
rem, we think of a space of quadruples where a quadruple in the space
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have two constants and two univariate functions. Define a nonlinear op-
erator G(η,g, φ), which maps the space of quadruples (η,g) to itself, by
G(η,g, φ)1 = 1−

∫ 1−ǫ
0 f1(x)(1 + g1(x)) dx and

G(η,g, φ)2 = ϑ−
∫

I
f1(x)f2(z)(1 + g1(x))(1 + g2(z))

1

φ(x)
dz dx,

G(η,g, φ)3(u) =
∫

I2(u)
[(1 + η1)p(u, z/φ(u))− f1(u)f2(z)(1 + g1(u))(1 + g2(z))] dz,

G(η,g, φ)4(u) =
∫

I1(u)
[(1 + η2)p̂(x, u/φ(x))− f1(x)f2(u)(1 + g1(x))(1 + g2(u))] dx.

Let G′(0,0, φ) denote the Fréchet derivative of G(·, ·, φ) at (0,0). It is an in-
vertible linear operator. Let ∆̃1 and ∆̃2 be the last two entries of G′(0,0, φ)−1δ̃,
where δ̃ = (0, δ̃2, δ̃3, δ̃4)

⊤ and

δ̃2 = −
∫

I
f1(x)

(

f2(zφ(x)/φ̂(x))− f2(z)
)

/φ(x) dz dx,

δ̃3(x) = −
∫

I2(x)
f1(x)

(

f2(zφ(x)/φ̂(x))− f2(z)
)

dz,

δ̃4(z) = −
∫

I1(z)
f1(x)

(

f2(zφ(x)/φ̂(x))− f2(z)
)

dx.

(4.7)

Theorem 3. Assume that the conditions of Theorem 1 hold and that the
conditions (A2), (A3) and (A5) are satisfied. Assume also that the band-
widths gj satisfy gj → 0 and ng1g2/ log n → ∞. If supx∈[0,1−ǫ] |φ̂(x) −
φ(x)| = Op(εn) and sup(x,y)∈I |p̂(x, y) − p(x, y)| = Op(ε

′
n), then f̂j(u) −

fj(u) = f̃j(u)− fj(u)+ fj(u)∆̃j(u)+Op(n
−1/2+ ε2n+ ε′2n + εng

2
1g

−1
2 + εng2+

εnn
−1/2g

−3/2
2

√
log n) + op(g

2
1 + g22), for each fixed u ∈ [0, 1), and also uni-

formly for u ∈ [0, 1− ǫ] for an arbitrarily small ǫ > 0.

According to Theorem 2, εn = n−2/5
√
log n. Also, one has ∆̃j(u) =

Op(n
−2/5) for each fixed u ∈ [0, 1), and ∆̃j(u) = Op(n

−2/5
√
log n) uniformly

for u ∈ [0, 1 − ǫ]. According to Theorem 4 of Lee, Mammen, Nielsen and
Park (2015), one has f̃j(u)−fj(u) = Op(n

−2/5) for each fixed u ∈ [0, 1), and
f̃j(u)− fj(u) = Op(n

−2/5
√
log n) uniformly for u ∈ [0, 1− ǫ]. If we take the

bandwidths g1 ∼ g2 ∼ n−1/5, then ε′n = n−3/10
√
log n. From Theorem 3, we

obtain the following corollary.

Corollary 1. Assume the conditions of Theorems 2 and 3 hold. If
g1 ∼ g2 ∼ n−1/5, then f̂j(u)−fj(u) = f̃j(u)−fj(u)+fj(u)∆̃j(u)+op(n

−2/5)
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for each fixed u ∈ [0, 1), and also uniformly for u ∈ [0, 1−ǫ] for an arbitrarily
small ǫ > 0.

The above corollary demonstrates that our estimators of the component
functions fj achieve the optimal uniform rate Op(n

−2/5
√
log n) as well as the

optimal pointwise rate Op(n
−2/5) in one-dimensional smoothing, under the

condition that the joint density is twice partially continuously differentiable.
As we mentioned earlier in this section, we describe our method of es-

timating fj and prove Theorem 3 under the assumption that τ is strictly
decreasing. In the general case without this assumption, the component func-
tion f2 sits on the interval [0,maxx∈[0,1−ǫ] τ(x)], so that one may estimate
f2 in an interval [0,maxx∈[0,1−ǫ] τ(x) − ǫ] for an arbitrarily small ǫ > 0. In
this case, the set that corresponds to I1(u) will be a union of several in-
tervals for some points u, and the procedure may be described along the
lines of our presentation, but with more involved notation. The conclusion
of Theorem 3 is also valid for f̂1 in the general case. For f̂2, it remains to
hold uniformly for u in the interval [0,maxx∈[0,1−ǫ] τ(x)− ǫ] with arbitrarily
small neighborhoods of those points u = τ(x) for x with τ ′(x) = 0, being
excluded. This can be seen from the fact that, in our proof of the theorem
given in the Supplement, we use the condition τ ′ 6= 0 only for

mes(I1(z, φ̂)△ I1(z, φ)) = Op(εn).

To give more insight into how the theory depends on the shape of the
function τ , we note that the second component function f2 is identified by
the marginalization over the set I1(u) ≡ I1(u;φ), see the second equation
at (4.4). This means that the accuracy of estimating f2 depends on that of
estimating φ through the difference between the lengths of the sets I1(u)
and I1(u; φ̂). If u is a point such that u = τ(x0) for some x0 with τ ′(x0) = 0,
then the estimation error of φ̂ is magnified in the difference between the
two lengths. To see this, suppose that τ ′′(x) < 0 and φ̂(x) > φ(x) for x in a
neighborhood of x0. Then, for a small constant c > 0, I1(u)∩[x0−c, x0+c] =
{x ∈ [x0 − c, x0 + c] : τ(x) ≥ u} = {x0} since

τ(x) ≃ u+
1

2
τ ′′(x0)(x− x0)

2.

On the other hand, I1(u; φ̂) ∩ [x0 − c, x0 + c] ⊃ [x0 − dn, x0 + dn], where
dn = (constant)× (infx∈[x0−c,x0+c] |φ̂(x)− φ(x)|)1/2 since

τ(x, φ̂) ≃ τ(x, φ̂)− τ(x, φ) + u+
1

2
τ ′′(x0)(x− x0)

2.
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From the above discussion we see that the remainder term in the uniform
expansion of f̂2−f2 over the whole interval [0, 1−ε] in Theorem 3 has Op(εn)
instead of Op(ε

2
n), provided that τ ′′(x) 6= 0 for all x in (0, 1).

5. Extension To General Support Set. In this section we extend the
method and theory to a general type of support set I where the data (Xi, Yi)
are observed. Without of loss of generality we assume that the projections
of the support set I onto the x- and y-axis equal [0, 1]. For each x ∈ [0, 1],
define I2(x) = {y ∈ [0, 1] : (x, y) ∈ I}. In the case of the triangular support
that we considered in Sections 2, 3 and 4, I2(x) = [0, 1− x]. Define

I1 = {x ∈ [0, 1] : mes(I2(x)) 6= 0}.

Then, we get (2.3) for x ∈ I1 with Gjk(x) now being defined by

Gjk(x) =
1

mes(I2(x))

∫

I2(x)

(

∂

∂x
log p(x, y)

)j (

y
∂

∂y
log p(x, y)

)k

dy.

The condition (A1), for the identifiability of φ, f1 and f2, is now generalized
to

(A1′) For all x ∈ I1, zf ′
2(z)/f2(z) is not a function that is constant a.e. on

{yφ(x) : y ∈ I2(x)}.
We obtain the following analogue of Theorem 1 for the general support set
I.

Theorem 4. Assume that the two component functions fj and the time
transformation φ in the model (2.1) are differentiable, nonnegative and bounded
away from zero on their supports. Assume also that (A1′) holds and that the
set I1 is dense on [0, 1]. Then, the three functions φ, f1 and f2 are identifi-
able under the constraint (2.4).

The estimation of φ is defined as (3.2) with Ĝjk now being re-defined by

Ĝjk(x) =
1

mes(I2(x))

∫

I2(x)

(

η̂10(x, y)/h1
η̂00(x, y)

)j (

y
η̂01(x, y)/h2
η̂00(x, y)

)k

dy.

Note that one can estimate φ(x) only for x with mes(I2(x)) > 0. This was
the reason we exclude the point x = 1 for the estimation of φ in the case
of the triangular support. In the general case we consider here, we exclude
the point x /∈ I1. Also, to get the L2 and the uniform convergence results
as in Theorem 2, we consider the set I1,ǫ = {x : mes(I2(x)) ≥ ǫ} for an
arbitrarily small ǫ > 0.
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Theorem 5. Assume that the conditions of Theorem 4 and the condi-
tions (A2)–(A4) are satisfied. Then, we get for x ∈ I1 that φ̂(x) − φ(x) =
Op(n

−2/5). Furthermore, for an arbitrarily small ǫ > 0, it holds that

∫

I1,ǫ

(φ̂(x)−φ(x))2 dx = Op(n
−4/5), sup

x∈I1,ǫ

|φ̂(x)−φ(x)| = Op(n
−2/5

√

log n).

Now we extend the method of estimating the component functions fj
to the general support set. As in the case of the triangular support, one
may estimate f1 and f2, respectively, only on the sets where the marginal
densities of X and Z are strictly positive. We find a version of the set I
defined at (4.2). For a subset S of the support {(x, yφ(x)) : (x, y) ∈ I} of
the joint density of (X,Z), let

I1(z;S) = {x : (x, z) ∈ S}, I2(x;S) = {z : (x, z) ∈ S}.

Taking a small δ > 0 we choose I, the set where we estimate fj , to be the
largest subset S such that

mes(I1(z, S)) ≥ δ, mes(I2(x, S)) ≥ δ

for all x and z in the projections of S onto the x- and z-axis, respectively.
We write I1(z) = I1(z, I) and I2(x) = I2(x, I) for simplicity. We estimate fj
on the set Ij , where

I1 = {x : (x, yφ(x)) ∈ I for some y ∈ [0, 1]}, I2 = {z : (x, z) ∈ I for some x ∈ [0, 1]}.

With these modified definitions of the sets I1(z) and I2(x), the estimators
of fj based on the true φ may be defined as at (4.4) and (4.5), now with the
constraints

∫

I1

f̃1(x) dx = 1,

∫

I
f̃1(x)f̃2(z)/φ(x) dx dz = ϑ̃,

where ϑ̃ is re-defined as ϑ̃ = n−1
∑n

i=1 I[(Xi, Yiφ(Xi)) ∈ I]. The estimators

f̂j based on φ̂ is then obtained by simply replacing I, I1(z), I2(x) and ϑ̃

in the definition of f̃j by I(φ̂), I1(z, φ̂), I2(z, φ̂) and ϑ̂, respectively, where
I(ϕ), I1(z, ϕ) and I2(x, ϕ) for a general time transformation ϕ are defined as
I, I1(z) and I2(x) with φ being replaced by ϕ, and ϑ̂ = n−1

∑n
i=1 I[(Xi, Yiφ̂(Xi)) ∈

I(φ̂)].
To state a version of Theorem 3, we re-define ∆̃j as at (4.7) with the new

definitions of I, I1(z) and I2(x). We replace (A5) by the following assump-
tion on the support set I and the true time transformation φ.



18 LEE, MAMMEN, NIELSEN AND PARK

(A5′) supu∈Ij mes[Ij(u, ϕ)△Ij(u, φ)] ≤ C supx∈I1 |ϕ(x)−φ(x)| for some con-
stant C > 0, where A△B denotes the symmetric difference of two sets
A and B.

Theorem 6. Assume that the conditions of Theorem 4 hold and that
the conditions (A2), (A3) and (A5′) are satisfied. Assume also that the
bandwidths gj satisfy gj → 0 and ng1g2/ log n → ∞. If supx∈I1 |φ̂(x) −
φ(x)| = Op(εn) and sup(x,y)∈I |p̂(x, y) − p(x, y)| = Op(ε

′
n), then f̂j(u) −

fj(u) = f̃j(u)− fj(u)+ fj(u)∆̃j(u)+Op(n
−1/2+ ε2n+ ε′2n + εng

2
1g

−1
2 + εng2+

εnn
−1/2g

−3/2
2

√
log n) + op(g

2
1 + g22) uniformly for u ∈ Ij.

6. Simulation Study. For the component functions fj in the model
(2.1) we considered f1(u) = 3/2−u, f2(u) = c (5/4−3u2/4). For the function
φ we made two choices:

Model 1 φ(u) =

{

(u− 1/4)2 + 15/16 if 0 ≤ u ≤ 1/2;

−(u− 3/4)2 + 17/16 if 1/2 ≤ u ≤ 1,

Model 2 φ(u) = 1− u2/2.

The constant c was chosen so that
∫

I f1(x)f2(yφ(x)) dx dy = 1, where I =
{(x, y) : 0 ≤ x, y ≤ 1, x + y ≤ 1}. We generated 500 pseudo sample of sizes
n = 400 and 1, 000, from the two models.

For the estimation of φ, we computed our estimator on a grid of bandwidth
choice h1 = h2. For each grid point in the bandwidth range, we computed
the Monte Carlo estimates of MISE = E

∫ 1
0 (φ̂(u) − φ(u))2 du based on the

500 pseudo samples. We found that, in the first setting, the minimal value of
MISE was achieved by the bandwidth choice h1 = h2 = 2.40 for the sample
size n = 400, and h1 = h2 = 2.30 for the sample size n = 1, 000. In the second
setting the bandwidth that gave the minimal MISE was h1 = h2 = 0.90 for
n = 400 and h1 = h2 = 0.76 for n = 1, 000. The panels in Figure 1 depict the
boxplots of the values of MISE, ISB and IV computed using the bandwidths
on the grids. Here, ISB =

∫ 1
1 (Eφ̂(u) − φ(u))2 du and IV =

∫ 1
0 var(φ̂(u)) du,

so that MISE = ISB+IV. We report only the results for n = 400 in Figure 1.
Those cases with outlying large values of MISE for the first model correspond
to small bandwidths that produced large values of IV. The results suggest
that the variance of the estimator is more influenced by the bandwidth choice
than the bias part.

Using the estimates φ̂ based on the bandwidth choices h1 = h2 that
gave the best performance, we computed our estimates of the component
functions f̂1 and f̂2. For this estimation, we also took a grid of bandwidth
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Fig 1. Boxplots for the values of MISE, ISB and IV of the estimator φ̂ computed using
various bandwidth choices, based on 500 pseudo samples of size n = 400.

choice g1 = g2. We computed the mean integrated squared errors

MISEj = E

∫ 1

0
(f̂j(u)− fj(u))

2 du, j = 1, 2

with the corresponding values of ISBj and IVj . Figure 2 shows the boxplots
of the values of MISEj computed using the bandwidths g1 = g2 on the
grid. Here, we also report the results for n = 400 only since the lessons are
essentially the same. Comparing the two settings in terms of the accuracy
of estimating the component functions fj , we find that they are not much
different. This is because both settings have the same component functions
and are differ only in the specification of the time transformation φ. The
results in Figures 1 and 2 suggest that the level of difficulty in the estimation
of φ does not affect much the accuracy of the estimation of the component
functions fj .

The bandwidth that gave the minimal value of MISE1 + MISE2 in the
first setting was g1 = g2 = 0.52 for n = 400 and g1 = g2 = 0.44 for
n = 1, 000. In the case of the second setting, the best performance in terms
of MISE1+MISE2 was achieved by g1 = g2 = 0.50 for n = 400 and g1 = g2 =
0.44 for n = 1, 000. The values of MISEj , ISBj and IVj for these optimal
bandwidths when n = 400 are reported in Table 1. Also included in the table
are the values of MISE, ISB and IV of φ̂. Although our primary concern
is the estimation of the component functions, it is also of interest to see
how good the produced two-dimensional density estimator f̂1(x)f̂2(yφ̂(x))
behaves. For this we include in the table the values of MISE, ISB and IV
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Fig 2. Boxplots for the values of MISEj of the estimators f̂j computed using various
bandwidth choices of g for the two models, based on 500 pseudo samples of size n = 400.

of the two-dimensional estimates computed using the optimal bandwidths.
For comparison, we also report the results for the two-dimensional local
quadratic estimate defined at (3.1) that does not use the structure of the
density. For this local quadratic estimator we used its optimal bandwidth
choice. The results confirm that our two-dimensional density estimator has
much better performance than the local quadratic estimator, in both models.

Table 1

Mean integrated squared errors (MISE), integrated squared biases (ISB) and integrated
variance (IV) of the estimators, based on 500 pseudo samples of size n = 400.

Component functions Joint density p

f1 f2 φ proposed local quad.

Model 1 MISE 0.0080 0.0269 0.0018 0.0137 0.0250
ISB 0.0025 0.0112 0.0017 0.0037 0.0216
IV 0.0055 0.0158 0.0001 0.0100 0.0034

Model 2 MISE 0.0085 0.0268 0.0799 0.0144 0.0180
ISB 0.0027 0.0078 0.0489 0.0039 0.0123
IV 0.0058 0.0190 0.0310 0.0105 0.0057

One may be also interested in what happens if one ignores the presence
of the nonconstant φ and estimates fj with φ̂ ≡ 1, i.e., estimates the sim-
ple product model p(x, y) = f1(x)f2(y), (x, y) ∈ I. With the correspond-
ing optimal bandwidths the latter method produced (MISE, ISB, IV) =
(0.0088, 0.0026, 0.0062) for f1 and (0.0356, 0.0168, 0.0188) for f2 in the case
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Table 2

Mean integrated squared errors (MISE), integrated squared biases (ISB) and integrated
variance (IV) of the estimators for Model 3 (φ ≡ 1), based on 500 pseudo samples of size

n = 400.

Our approach Oracle
f1 f2 p f1 f2 p

MISE 0.0081 0.0269 0.0136 0.0076 0.0210 0.0136
ISB 0.0025 0.0109 0.0033 0.0022 0.0065 0.0039
IV 0.0056 0.0160 0.0103 0.0054 0.0145 0.0097

of Model 1, and (0.0093, 0.0031, 0.0062) for f1 and (0.0320, 0.0136, 0.0184)
for f2 in the case of Model 2. Comparing these with the results in Table 1
we see that estimating φ reduced significantly the values of MISE for the
second component f2, which appears to owe to the great reduction in ISB.
Note that the accuracy of the estimation of the second component f2 re-
lies on that of φ, and that the method with φ̂ ≡ 1 would produce a biased
estimator of f2.

Another thing that is of interest is that how our approach performs when
there is no operational time, i.e., the true φ ≡ 1. For this we compared our
approach that involves estimating φ with the oracle estimators that make
use of the knowledge that φ ≡ 1. The results are contained in Table 2. In
comparison with the oracle estimators, our approach produced slightly less
accurate estimators of the component functions, but gave nearly the same
MISE value for the estimator of the joint density function.

We also undertook a sensitivity analysis to check what happens if the
structural assumptions of the model are violated, i.e., the density of (X,Y )
does not consist of three one-dimensional components but is simply a two-
dimensional smooth density. For this we generated 500 samples of size n =
400 from a bivariate normal distribution with mean (1/2, 1/2) and vari-
ance (1/3, 1/3) with correlation 1/2, but truncated outside the parallelo-
gram {(x, y) : −(y/2) + (1/2) ≤ x ≤ −(y/2) + 1, 0 ≤ y ≤ 1}. We compared
the local linear and quadratic density estimators of the truncated normal
density with the structured estimator that is based on the model (2.1). We
found that, with the corresponding optimal bandwidths, the local linear es-
timator was slightly better than the local quadratic estimator, and it gave
(MISE, ISB, IV) = (0.1015, 0.0861, 0.0154), while our structured estimation
produced a better result, (MISE, ISB, IV) = (0.0729, 0.0570, 0.0159). This
result suggests that the operational time φ introduced into the multiplicative
density adds a great deal of flexibility to the model so that it approximates
quite well densities violating the independence assumption.

In practical implementation of our method one may employ a K-fold
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Table 3

Mean integrated squared errors (MISE), integrated squared biases (ISB) and integrated
variance (IV) of the estimators with 10-fold cross-validated bandwidths, based on 500

pseudo samples of size n = 400.

Model 1 Model 2 Model 3
f1 f2 f1 f2 f1 f2

MISE 0.0074 0.0262 0.0078 0.0257 0.0075 0.0269
ISB 0.0028 0.0126 0.0033 0.0101 0.0030 0.0133
IV 0.0046 0.0136 0.0045 0.0156 0.0045 0.0136

cross-validation criterion to choose the bandwidths h and g. To be specific,
one splits the whole dataset into K (nearly) equal parts, {(Xi, Yi) : i ∈
Jk}, 1 ≤ k ≤ K. For each partition Jk, one computes

CVk(h, g) =

∫

I
p̂h,g,−k(x, y)

2 dx dy − 2

|Jk|
∑

i∈Jk

p̂h,g,−k(Xi, Yi),

where |Jk| is the size of the index set Jk and p̂h,g,−k denotes our structured
density estimate computed from the dataset with the kth partition being
deleted, i.e., from {(Xi, Yi) : i /∈ Jk}, based on the bandwidth choice (h, g).
The above CV criterion is common in density estimation, see Park and Mar-
ron (1990) for example. It is an estimate of

∫

I(p̂h,g,−k(x, y)−p(x, y))2 dx dy+
(irrelevant term). The K-fold cross-validated choice is then defined by

(hcv, gcv) = (ĥ, ĝ)× (1− 1/K)1/5,

where (ĥ, ĝ) is the minimizer of CV(h, g) =
∑K

k=1CVk(h, g)/K. Note that

the correction factor (1 − 1/K)1/5 is needed since (ĥ, ĝ) is suitable for the
sample size n(1− 1/K) rather than n.

To see how K-fold cross-validated bandwidths perform in this particular
problem, we chose K = 10 and applied the method to the three models. The
results are summarized in Table 3. Comparing the results with those in Ta-
bles 1 and 2, we find that the cross-validated bandwidth selector works fairly
well, giving comparable performance with the MISE-optimal bandwidth.
Motivated by this good performance we used the 10-fold cross-validated
bandwidth in our data example in Section 7.

7. Motor Insurance Data. As an example of implementing our method,
we considered reported and outstanding claims from a motor insurance
business line in Cyprus. For each claim the dataset includes (EntryDate),
(ClaimStatus) and (StatusDate). (EntryDate) is the date the claim was re-
ported and entered the system, (StatusDate) is the date of the last update
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of (ClaimStatus) that has three categories: P for paid and settled; W for
not paid but settled; O for open and not settled. Among 58,453 claims re-
ported during the period January 12, 2004 to July 31, 2014, those claims
with status O were deleted since for these claims the date of settlement was
not observed. The number of deleted claims was 1,865, and thus the number
of the claims that we used to fit our model was 56,588.

In this example, (EntryDate) corresponds to the variable X, and the
delay time until settlement, (StatusDate)−(EntryDate), to the variable Y .
To apply our model (2.1) with I = {(x, y) : x ≥ 0, y ≥ 0, x + y ≤ 1}, we
transformed the daily claim data in the following way. We first enumerated
the calendar dates from 1 to 3854, with 1 corresponding to January 12, 2004
and 3854 to July 31, 2014, and then changed (EntryDate) and (StatusDate)
to the respective integers on the new discrete scale. This would result in
a dataset for the variables ((EntryDate), (StatusDate) − (EntryDate)) on
the discrete triangular {(j, k) : 1 ≤ j ≤ 3854, 0 ≤ k ≤ 3853}. We then
transformed them to (X,Y ) by

X =
(EntryDate)− 1 + U1

3854
, Y =

(StatusDate)− (EntryDate) + U2

3854
,

where (U1, U2) is a two-dimensional uniform random variate on the unit
square [0, 1]2. Here, the perturbation by uniform random variates is done to
make the converted data (X,Y ) take values on the two-dimensional contin-
uous time scale. This gives a converted dataset {(Xi, Yi) : 1 ≤ i ≤ 56, 588}.
We applied to this dataset our method of estimating the structured density
p of (X,Y ).

We took a common bandwidth h = h1 = h2 for the estimation of the time
transformation φ, and a common bandwidth g = g1 = g2 for the estimation
of the component functions. We selected (h, g) by the ten-fold cross-validated
criterion described in Section 6 (K = 10).

The results of the application of our method to the insurance claim data
are shown in Figure 3. In the left panel, the solid curve depicts the esti-
mate of the time transformation φ and the dashed (dotted) is a 90% (95%)
pointwise bootstrap confidence band for φ. The 100(1−α) confidence bands
[2φ̂(x)−Uα(x), 2φ̂(x)−Lα(x)] were based on 1,000 bootstrap samples, where
Lα(x) and Uα(x) are the bootstrap estimates of the α/2 and (1−α/2) quan-
tiles, respectively, of the distribution of φ̂(x). We note that the confidence
bands are narrowed down to the point φ̂(x) = 1 at x = 0 because of our nor-
malization φ̂(0) = 1 = φ(0), see (3.2). The bootstrap confidence bands indi-
cate that the underlying transformation φ is not constant, so that the model
(2.1) does not degenerate to the simple product model p(x, y) = f1(x)f2(y)
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Fig 3. The estimate of the time transformation φ with 90% (dashed) and 95% (dotted)
pointwise confidence bands (left), the estimates of the first component function f1 (middle)
and the second component function f2 (right), obtained by applying the model (2.1) to
the insurance claim data.

considered by Mammen, Mart́ınez-Miranda and Nielsen (2015). The esti-
mated φ suggests that the speed of time has an increasing tendency and
that speed of time has increased by around 10% over the 10 years period
considered. This is more or less in line with intuitive expectations to the
model on how much improved technology has speeded up the process of
getting incidents of claims settled. The decline of φ̂ after its peak might be
because the company overall has decreased the number of employees when it
saw the benefits of the advanced technology. The estimate of the first compo-
nent measures business exposure, thus the middle panel of Figure 3 indicates
that the business line had increasing exposure in the first half of the period,
but ran out later and perhaps was replaced by new products recorded in a
separate dataset. The second component that measures time to settlement
follows more or less the usual pattern known from motor insurance business
lines that the claims development is quite fast.

One may use our estimated model to forecast the density on an unobserved
area. In general, let S be a subset of [0, 1]2, outside of the observed area I,
where one wants to forecast the density. With the estimated density model
p̂(x, y) = f1(x)f̂2(yφ̂(x)), the relative mass of the probability on S with
respect to that on I is estimated by

(7.1) A(S) =

∫

S
f̂1(x)f̂2(yφ̂(x)) dx dy.
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The number of future observations that fall in the area S is then forecasted
by N(S) = n · A(S), where n is the sample size, i.e., the total number of
observations in I. To apply the forecasting method to the motor insurance
dataset and evaluate its accuracy, we re-estimated the model (2.1) now using
the data observed until the year 2012. We forecasted the number of claims
settled in the year 2013 according to the formula at (7.1). The actual number
was 4,547. Our approach produced 4,487, while the forecasting based on the
simple product model p(x, y) = f1(x)f2(y) gave 4,226.

APPENDIX

A.1. Proof of Theorem 2. In the following proof we will use the
symbol W to denote functions that have bounded continuous partial deriva-
tives, and W ∗ for continuous bounded functions. The symbols will be used
for different functions, even in the same formula. They will denote univari-
ate functions and bivariate functions as well. Furthermore, for simplicity of
notation, we assume that h1 = h2 = h.

Put ∆(x) = log φ̂(x)− log φ̂(h)− [log φ(x)− log φ(h)]. We will show that

(A.1) ∆(x) = Op(n
−2/5), 0 ≤ x < 1.

It can be shown by slightly modified and simpler arguments that

(A.2) log φ̂(h)− log φ(h) = Op(n
−2/5).

The bounds (A.1) and (A.2) imply (3.5). For a proof of (3.6) one may show,
instead of (A.1) and (A.2), the slightly stronger claim

(A.3) sup
x∈[0,1−ǫ]

E∆2(x) = O(n−4/5).

This can be done by a slightly more careful use of the arguments in the proof
of (A.1). For a proof of (3.7), one makes use of exponential inequalities for
the terms of the stochastic expansion that we will consider below in the
proof of (A.1).

We now come to the proof of (A.1). By Taylor expansion, one gets that

∆(x) =

∫ x

h

[

Ĝ11(u)− Ĝ10(u)Ĝ01(u)

Ĝ02(u)− Ĝ01(u)2

−G11(u)−G10(u)G01(u)

G02(u)−G01(u)2

]

du

= ∆1(x) + ∆2(x) + ∆3(x) +R(x),

(A.4)
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where ∆1 comprises all linear terms of the form
∫ x
h W (u)(Ĝjk(u)−Gjk(u)) du

of a Taylor expansion of the integrand of the integral in (A.4). The sec-
ond term ∆2 collects those terms of quadratic order,

∫ x
h W (u)(Ĝjk(u) −

Gjk(u))(Ĝj′k′(u) − Gj′k′(u)) du, and ∆3 contains all cubic terms. Among
these linear, quadratic and cubic terms, the most complex terms are those
that involve Ĝ11. Note that Ĝ11 contains a product of two partial derivatives,
whereas Ĝjk for (j, k) 6= (1, 1) includes at most one partial derivative. For
the remainder term R, it holds that R(x) = Op(n

−2/5). This bound follows
from

E(Ĝjk(u)−Gjk(u))
4 = O(n−2/5)

and a bound on the variance of
∫ x
h (Ĝjk(u)−Gjk(u))

4 du. One can show that
the bound on R holds uniformly for 0 ≤ x ≤ 1− ǫ.

We now prove

(A.5)

∫ x

h
W (u)(Ĝ11(u)−G11(u)) du = Op(n

−2/5).

Using the same arguments as for the proof of (A.5), one can show that the
other terms of ∆1 are of order Op(n

−2/5). This impies that

(A.6) ∆1(x) = Op(n
−2/5).

For the proof of (A.5) we redefine the vector a(u, v;x, y) in Section 3 as

a(u′, v′;u, v) = (1, (u′−u)2/h2, (v′−v)2/h2, (u′−u)/h, (v′−v)/h, (u′−u)(v′−v)/h2)⊤

and also redefine b̂(u, v) and A(u, v) in accordance with this change. In this
way it is easier to see how the inverse matrix A−1(u, v) looks like. Indeed,
for (u, v) in the interior region I0,

A(u, v) =

















1 ν2 ν2 0 0 0
ν2 ν4 ν22 0 0 0
ν2 ν22 ν4 0 0 0
0 0 0 ν2 0 0
0 0 0 0 ν2 0
0 0 0 0 0 ν22

















,

where νj =
∫ 1
−1 z

jK(z) dz are the complete moments of K. Note that the
interior of I in our problem is given by

I0 = {(x, y) : x ≥ h1, y ≥ h2, x+ y ≤ 1− h1 − h2}.
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From the structure of A(u, v) for (u, v) ∈ I0 we get, for example,

η̂10(u, v) = (the fourth entry of A−1(u, v)b̂(u, v))

= ν−1
2 n−1h−2

n
∑

i=1

(

Xi − u

h

)

K

(

Xi − u

h

)

K

(

Yi − v

h

)

.
(A.7)

Also, from the standard kernel smoothing theory we obtain that, now uni-
formly for (x, y) ∈ I,

(A.8) E(A−1(x, y)b̂(x, y))− η(x, y) = o(h2),

where η = (p, h2p20, h
2p02, hp10, hp01, h

2p11)
⊤ and pjk(x, y) = ∂j+kp(x, y)/∂xj∂yk.

The bound (A.8) follows directly from

∫

I
a(u, v;x, y)h−2K

(

u− x

h

)

K

(

v − y

h

)

(

p(u, v)− a(u, v;x, y)⊤η(x, y)
)

du dv = o(h2).

Now, for the proof of (A.5) note that

∫ x

h
W (u)

(

Ĝ11(u)−G11(u)
)

du

=

∫ x

h

∫ 1−u

0
W (u, v)

(

h−1η̂10(u, v)− p10(u, v)
)

dv du

+

∫ x

h

∫ 1−u

0
W (u, v)

(

h−1η̂01(u, v)− p01(u, v)
)

dv du

+

∫ x

h

∫ 1−u

0
W (u, v)

(

h−1η̂10(u, v)− p10(u, v)
)

×
(

h−1η̂01(u, v)− p01(u, v)
)

dv du

+R∗(x) +Op(n
−2/5),

(A.9)

where R∗ comprises integrals of products containing the factor (η̂00(u, v)−
p(u, v)). These terms can be analysed by standard kernel smoothing tech-
niques and they are all of order Op(n

−2/5).
We prove that the first three terms on the right hand side of (A.9) are of

order Op(n
−2/5). For the study of the first term, we claim that

∫ x

h

∫ h

0
W (u, v)

(

h−1η̂10(u, v)− p10(u, v)
)

dv du = Op(n
−2/5),(A.10)

∫ x

h

∫ 1−u

1−u−2h
W (u, v)

(

h−1η̂10(u, v)− p10(u, v)
)

dv du = Op(n
−2/5).(A.11)
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For the proof of the claim (A.10), note that
∫ x
h W (u, v)

(

h−1η̂10(u, v)− p10(u, v)
)

du
behaves like the error of a one-dimensional kernel derivative estimator and
it is thus of order Op(n

−1/2h−3/2 + h). Integration of the latter over the
interval [0, h] gives (A.10). The claim (A.11) can be verified similarly. Thus,
for getting that the first term at (A.9) is of order Op(n

−2/5) it remains to
show that

∫ x

h

∫ 1−u−2h

h
W (u, v)

(

h−1η̂10(u, v)− p10(u, v)
)

dv du

= Op(n
−2/5).

(A.12)

For the proof of the claim (A.12), we make use of the expression (A.7) for
the estimator of hp01(u, v). We observe h−1η̂10(u, v) = ∂p̃(u, v)/∂u with

p̃(u, v) = n−1
n
∑

i=1

h−2L

(

Xi − u

h

)

K

(

Yi − v

h

)

,

L(v) = −ν−1
2

∫ v

−1
zK(z) dz.

(A.13)

Using that W has bounded continuous partial derivatives, we get by chang-
ing the order of integration and by integration-by-part that

∫ x

h

∫ 1−u−2h

h
W (u, v)

(

h−1η̂10(u, v)− p10(u, v)
)

dv du

=

∫ 1−3h

h

∫ x∧(1−v−2h)

h
W (u, v) (∂p̃(u, v)/∂u− p10(u, v)) du dv

=

∫ 1−3h

h
W (u, v) (p̃(u, v)− p(u, v))

∣

∣

∣

u=x∧(1−v−2h)

u=h
dv

−
∫ 1−3h

h

∫ x∧(1−v−2h)

h
W ∗(u, v) (p̃(u, v)− p(u, v)) du dv.

(A.14)

For the first term on the right hand side of the second equation of (A.14)
we get that it behaves like a one-dimensional kernel estimator because the
two-dimensional kernel estimator p̃(u, v), defined at (A.13), is integrated out
along a line. Thus, the first term is of order Op(n

−2/5). Because the second
term is also of order Op(n

−2/5), we establish (A.12).
From the arguments in the preceding two paragraphs, we conclude that

the first term on the right hand side of (A.9) is of order Op(n
−2/5). By similar

arguments one can show that the second term is also of order Op(n
−2/5).
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For the treatment of the third term, we will show that

∫ x

h

∫ 1−u−2h

h
W (u, v)

(

h−1η̂10(u, v)− p10(u, v)
)

×
(

h−1η̂01(u, v)− p01(u, v)
)

dv du = Op(n
−2/5).

(A.15)

By the consideration of additional boundary terms of the third terms we
conclude that the third term is also of order Op(n

−2/5). Thus, for (A.5) it
remains to prove (A.15). This also concludes the proof of (A.6).

For the proof of (A.15) we put

p̄(u, v) = n−1
n
∑

i=1

h−2K

(

Xi − u

h

)

L

(

Yi − v

h

)

.

Note that h−1η̂01(u, v) = ∂p̄(u, v)/∂v. Thus, the left hand side of (A.15)
equals

∑4
k=1 Jk(x), where

J1(x) =

∫ x

h

∫ 1−u−2h

h
W (u, v)

(

∂p̃(u, v)

∂u
− E

∂p̃(u, v)

∂u

)(

∂p̄(u, v)

∂v
− E

∂p̄(u, v)

∂v

)

dv du

J2(x) =

∫ x

h

∫ 1−u−2h

h
W (u, v)

(

∂p̃(u, v)

∂u
− E

∂p̃(u, v)

∂u

)(

E
∂p̄(u, v)

∂v
− p01(u, v)

)

dv du

J3(x) =

∫ x

h

∫ 1−u−2h

h
W (u, v)

(

E
∂p̃(u, v)

∂u
− p10(u, v)

)(

∂p̄(u, v)

∂v
− E

∂p̄(u, v)

∂v

)

dv du

J4(x) =

∫ x

h

∫ 1−u−2h

h
W (u, v)

(

E
∂p̃(u, v)

∂u
− p10(u, v)

)(

E
∂p̄(u, v)

∂v
− p01(u, v)

)

dv du.

It holds that J4(x) = O(n−2/5) because of the fact E∂p̃(u, v)/∂u−p10(u, v) =
O(n−1/5) and E∂p̄(u, v)/∂v−p01(u, v) = O(n−1/5), uniformly for (u, v) ∈ I.
For J2 we get that

J2(x) = −
∫ x

h

∫ 1−u−2h

h
W ∗(u, v)n−1h−2

n
∑

i=1

[

L′

(

Xi − u

h

)

K

(

Yi − v

h

)

−EL′

(

Xi − u

h

)

K

(

Yi − v

h

)]

dv du

= n−1
n
∑

i=1

(Wn(Xi, Yi;x)− EWn(Xi, Yi;x))

for some bounded function Wn. Thus, we have J2(x) = Op(n
−1/2). The same

holds for J3. Therefore, for (A.15) it remains to show J1(x) = Op(n
−2/5).
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For the proof of this claim, we let

Rn,ij(x) = h−2

∫ x

h

∫ 1−u−2h

h
W (u, v)

[

L′

(

Xi − u

h

)

K

(

Yi − v

h

)

−EL′

(

Xi − u

h

)

K

(

Yi − v

h

)]

·
[

K

(

Xj − u

h

)

L′

(

Yj − v

h

)

−EK

(

Xj − u

h

)

L′

(

Yj − v

h

)]

dv du.

Then, we can write

J1(x) = n−2h−4
∑

1≤i 6=j≤n

Rn,ij + n−2h−4
n
∑

i=1

Rn,ii = J1a + J1b.

Also, put

R∗
n,ij(x) = h−2

∫ x

h

∫ 1−u−2h

h
W (u, v)K

(

Xi − u

h

)

K

(

Yj − v

h

)

× L′

(

Xj − u

h

)

L′

(

Yi − v

h

)

dv du.

For i 6= j, the random variable R∗
n,ij is bounded and satisfies

R∗
n,ij(x) = 0 if |Xi −Xj | ≥ 2h or |Yi − Yj | ≥ 2h.

By the definition of J1a, we get by using a simple inequality for second
moments of U-statistics that

EJ2
1a ≤ n−4h−8 · 2 ·

∑

1≤i 6=j≤n

ER∗2
n,ij = O(n−2h−8h2) = O(n−4/5).

This gives J1a = Op(n
−2/5). It remains to check J1b = Op(n

−2/5). For check-
ing this claim we note that h−1Rn,ii(x)I((Xi, Yi) ∈ I∗(x)) is a bounded
random variable, where I∗(x) = {(u, v) ∈ I : 2h ≤ u ≤ x − h, 2h ≤
v, u + v ≤ 1 − 4h}. This follows from the fact

∫ 1
−1K(u)L′(u) du = 0 and

from an expansion of W (u, v) around u = Xi and v = Yi. Furthermore,
we have that Rn,ii is a bounded random variable and that P [(Xi, Yi) ∈
I∗∗(x) − I∗(x)] = O(h), where I∗∗(x) = {(u′, v′) ∈ I : (u′ − u, v′ − v) ∈
[−h, h]2 for some (u, v) with h ≤ u ≤ x, h ≤ v ≤ 1− u− 2h}. These prop-
erties of Rn,ii can be used to show J1b(x) = Op(n

−2/5). This concludes the
proof of (A.5).

For the statement of the theorem it remains to check that ∆2(x) =
Op(n

−2/5) and ∆3(x) = Op(n
−2/5). The study of ∆2 leads to quadratic
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terms that are similar to (A.15). All these terms can be treated as in the
study of ∆1. Additionally, we will have terms of the type

∫ x

h

∫ 1−u−2h

h

∫ 1−u−2h

h
W (u, v)(h−1η̂01(u, v)− p01(u, v))

×W (u, v′)(h−1η̂10(u, v
′)− p10(u, v

′)) dv dv′ du.

Because of the additional integration, the analysis of these terms is much
easier than the study of (A.15). The same argument applies to other terms
of ∆2 and ∆3. By lengthy but simple calculations one may get ∆2(x) =
Op(n

−2/5) and ∆3(x) = Op(n
−2/5).

A.2. Proof of Theorem 5. Theorem 5 may be proved along the lines
of the proof of Theorem 5. To list the essential changes, the interior I0 is
now given in a general form by

I0 =
{

(x, y) ∈ I :

{(

u− x

h1
,
v − y

h2

)

: (u, v) ∈ I
}

⊃ [−1, 1]2
}

and φ̂(h) and φ(h) in the definition of ∆(x) at (A.1) are replaced by φ̂(xmin,h)
and φ(xmin,h), respectively, where xmin,h = min{x : (x, y) ∈ I0 for some y}.
The integrals over the interval [h, x] at (A.4) and (A.5) are now over [xmin,h, x],
the integration at (A.9) needs to be over the set {(u, v) : xmin,h ≤ u ≤
x, v ∈ I2(u)}, the two integrals at (A.10) and (A.11) are put together to
be the integral over {(u, v) : xmin,h ≤ u ≤ x, (u, v) ∈ Ic

0}, and the inte-
grals at (A.12), (A.14) and (A.15) should be over I0(x) ≡ {(u, v) : xmin,h ≤
u ≤ x, (u, v) ∈ I0}. The sets I∗ and I∗∗ at the end of the proof are re-
defined as I∗(x) = {(u, v) ∈ I : [u− h, u+ h]× [v − h, v + h] ⊂ I0(x)} and
I∗∗(x) = {(u′, v′) ∈ I : (u′ − u, v′ − v) ∈ [−h, h]2 for some (u, v) ∈ I0(x)}.

Supplementary Material: We provide the proofs of Theorems 3 and 6 in
the supplement.
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