187 research outputs found

    MicroRNAs That Contribute to Coordinating the Immune Response in Drosophila melanogaster

    Get PDF
    Small noncoding RNAs called microRNAs (miRNAs) have emerged as post-transcriptional regulators of gene expression related to host defenses. Here, we have used Drosophila melanogaster to explore the contribution of individual or clusters of miRNAs in countering systemic Candida albicans infection. From a total of 72 tested, we identify 6 miRNA allelic mutant backgrounds that modulate the survival response to infection and the ability to control pathogen number. These mutants also exhibit dysregulation of the Toll pathway target transcripts Drosomycin (Drs) and Immune-Induced Molecule 1 (IM1). These are characteristics of defects in Toll signaling, and consistent with this, we demonstrate dependency for one of the miRNA mutants on the NF-κΒ homolog Dif. We also quantify changes in the miRNA expression profile over time in response to three pathogen types, and identify 13 mature miRNA forms affected by pathogens that stimulate Toll signaling. To complement this, we provide a genome-wide map of potential NF-κB sites in proximity to miRNA genes. Finally, we demonstrate that systemic C. albicans infection contributes to a reduction in the total amount of branch-chained amino acids, which is miRNA-regulated. Overall, our data reveal a new layer of miRNA complexity regulating the fly response to systemic fungal infection

    Effective but Costly, Evolved Mechanisms of Defense against a Virulent Opportunistic Pathogen in Drosophila melanogaster

    Get PDF
    Drosophila harbor substantial genetic variation for antibacterial defense, and investment in immunity is thought to involve a costly trade-off with life history traits, including development, life span, and reproduction. To understand the way in which insects invest in fighting bacterial infection, we selected for survival following systemic infection with the opportunistic pathogen Pseudomonas aeruginosa in wild-caught Drosophila melanogaster over 10 generations. We then examined genome-wide changes in expression in the selected flies relative to unselected controls, both of which had been infected with the pathogen. This powerful combination of techniques allowed us to specifically identify the genetic basis of the evolved immune response. In response to selection, population-level survivorship to infection increased from 15% to 70%. The evolved capacity for defense was costly, however, as evidenced by reduced longevity and larval viability and a rapid loss of the trait once selection pressure was removed. Counter to expectation, we observed more rapid developmental rates in the selected flies. Selection-associated changes in expression of genes with dual involvement in developmental and immune pathways suggest pleiotropy as a possible mechanism for the positive correlation. We also found that both the Toll and the Imd pathways work synergistically to limit infectivity and that cellular immunity plays a more critical role in overcoming P. aeruginosa infection than previously reported. This work reveals novel pathways by which Drosophila can survive infection with a virulent pathogen that may be rare in wild populations, however, due to their cost

    A Spaetzle-like role for Nerve Growth Factor β in vertebrate immunity to Staphylococcus aureus

    Get PDF
    Many key components of innate immunity to infection are shared between Drosophila and humans. However, the fly Toll ligand Spaetzle is not thought to have a vertebrate equivalent. We have found that the structurally related cystine-knot protein, nerve growth factor β (NGFβ), plays an unexpected Spaetzle-like role in immunity to Staphylococcus aureus infection in chordates. Deleterious mutations of either human NGFβ or its high-affinity receptor tropomyosin-related kinase receptor A (TRKA) were associated with severe S. aureus infections. NGFβ was released by macrophages in response to S. aureus exoproteins through activation of the NOD-like receptors NLRP3 and NLRC4 and enhanced phagocytosis and superoxide-dependent killing, stimulated proinflammatory cytokine production, and promoted calcium-dependent neutrophil recruitment. TrkA knockdown in zebrafish increased susceptibility to S. aureus infection, confirming an evolutionarily conserved role for NGFβ-TRKA signaling in pathogen-specific host immunity

    Uptake of the Necrotic Serpin in Drosophila melanogaster via the Lipophorin Receptor-1

    Get PDF
    The humoral response to fungal and Gram-positive infections is regulated by the serpin-family inhibitor, Necrotic. Following immune-challenge, a proteolytic cascade is activated which signals through the Toll receptor. Toll activation results in a range of antibiotic peptides being synthesised in the fat-body and exported to the haemolymph. As with mammalian serpins, Necrotic turnover in Drosophila is rapid. This serpin is synthesised in the fat-body, but its site of degradation has been unclear. By “freezing” endocytosis with a temperature sensitive Dynamin mutation, we demonstrate that Necrotic is removed from the haemolymph in two groups of giant cells: the garland and pericardial athrocytes. Necrotic uptake responds rapidly to infection, being visibly increased after 30 mins and peaking at 6–8 hours. Co-localisation of anti-Nec with anti-AP50, Rab5, and Rab7 antibodies establishes that the serpin is processed through multi-vesicular bodies and delivered to the lysosome, where it co-localises with the ubiquitin-binding protein, HRS. Nec does not co-localise with Rab11, indicating that the serpin is not re-exported from athrocytes. Instead, mutations which block late endosome/lysosome fusion (dor, hk, and car) cause accumulation of Necrotic-positive endosomes, even in the absence of infection. Knockdown of the 6 Drosophila orthologues of the mammalian LDL receptor family with dsRNA identifies LpR1 as an enhancer of the immune response. Uptake of Necrotic from the haemolymph is blocked by a chromosomal deletion of LpR1. In conclusion, we identify the cells and the receptor molecule responsible for the uptake and degradation of the Necrotic serpin in Drosophila melanogaster. The scavenging of serpin/proteinase complexes may be a critical step in the regulation of proteolytic cascades

    Inferring selection in the Anopheles gambiae species complex: an example from immune-related serine protease inhibitors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mosquitoes of the <it>Anopheles gambiae </it>species complex are the primary vectors of human malaria in sub-Saharan Africa. Many host genes have been shown to affect <it>Plasmodium </it>development in the mosquito, and so are expected to engage in an evolutionary arms race with the pathogen. However, there is little conclusive evidence that any of these mosquito genes evolve rapidly, or show other signatures of adaptive evolution.</p> <p>Methods</p> <p>Three serine protease inhibitors have previously been identified as candidate immune system genes mediating mosquito-Plasmodium interaction, and serine protease inhibitors have been identified as hot-spots of adaptive evolution in other taxa. Population-genetic tests for selection, including a recent multi-gene extension of the McDonald-Kreitman test, were applied to 16 serine protease inhibitors and 16 other genes sampled from the <it>An. gambiae </it>species complex in both East and West Africa.</p> <p>Results</p> <p>Serine protease inhibitors were found to show a marginally significant trend towards higher levels of amino acid diversity than other genes, and display extensive genetic structuring associated with the 2La chromosomal inversion. However, although serpins are candidate targets for strong parasite-mediated selection, no evidence was found for rapid adaptive evolution in these genes.</p> <p>Conclusion</p> <p>It is well known that phylogenetic and population history in the <it>An. gambiae </it>complex can present special problems for the application of standard population-genetic tests for selection, and this may explain the failure of this study to detect selection acting on serine protease inhibitors. The pitfalls of uncritically applying these tests in this species complex are highlighted, and the future prospects for detecting selection acting on the <it>An. gambiae </it>genome are discussed.</p

    Uif, a Large Transmembrane Protein with EGF-Like Repeats, Can Antagonize Notch Signaling in Drosophila

    Get PDF
    <div><h3>Background</h3><p>Notch signaling is a highly conserved pathway in multi-cellular organisms ranging from flies to humans. It controls a variety of developmental processes by stimulating the expression of its target genes in a highly specific manner both spatially and temporally. The diversity, specificity and sensitivity of the Notch signaling output are regulated at distinct levels, particularly at the level of ligand-receptor interactions.</p> <h3>Methodology/Principal Findings</h3><p>Here, we report that the <em>Drosophila</em> gene <em>uninflatable</em> (<em>uif</em>), which encodes a large transmembrane protein with eighteen EGF-like repeats in its extracellular domain, can antagonize the canonical Notch signaling pathway. Overexpression of Uif or ectopic expression of a neomorphic form of Uif, Uif*, causes Notch signaling defects in both the wing and the sensory organ precursors. Further experiments suggest that ectopic expression of Uif* inhibits Notch signaling <em>in cis</em> and acts at a step that is dependent on the extracellular domain of Notch. Our results suggest that Uif can alter the accessibility of the Notch extracellular domain to its ligands during Notch activation.</p> <h3>Conclusions/Significance</h3><p>Our study shows that Uif can modulate Notch activity, illustrating the importance of a delicate regulation of this signaling pathway for normal patterning.</p> </div

    Genome-Wide Identification and Immune Response Analysis of Serine Protease Inhibitor Genes in the Silkworm, Bombyx mori

    Get PDF
    In most insect species, a variety of serine protease inhibitors (SPIs) have been found in multiple tissues, including integument, gonad, salivary gland, and hemolymph, and are required for preventing unwanted proteolysis. These SPIs belong to different families and have distinct inhibitory mechanisms. Herein, we predicted and characterized potential SPI genes based on the genome sequences of silkworm, Bombyx mori. As a result, a total of eighty SPI genes were identified in B. mori. These SPI genes contain 10 kinds of SPI domains, including serpin, Kunitz_BPTI, Kazal, TIL, amfpi, Bowman-Birk, Antistasin, WAP, Pacifastin, and alpha-macroglobulin. Sixty-three SPIs contain single SPI domain while the others have at least two inhibitor units. Some SPIs also contain non-inhibitor domains for protein-protein interactions, including EGF, ADAM_spacer, spondin_N, reeler, TSP_1 and other modules. Microarray analysis showed that fourteen SPI genes from lineage-specific TIL family and Group F of serpin family had enriched expression in the silk gland. The roles of SPIs in resisting pathogens were investigated in silkworms when they were infected by four pathogens. Microarray and qRT-PCR experiments revealed obvious up-regulation of 8, 4, 3 and 3 SPI genes after infection with Escherichia coli, Bacillus bombysepticus, Beauveria bassiana or B. mori nuclear polyhedrosis virus (BmNPV), respectively. On the contrary, 4, 11, 7 and 9 SPI genes were down-regulated after infection with E. coli, B. bombysepticus, B. bassiana or BmNPV, respectively. These results suggested that these SPI genes may be involved in resistance to pathogenic microorganisms. These findings may provide valuable information for further clarifying the roles of SPIs in the development, immune defence, and efficient synthesis of silk gland protein

    Relative Roles of the Cellular and Humoral Responses in the Drosophila Host Defense against Three Gram-Positive Bacterial Infections

    Get PDF
    BACKGROUND: Two NF-kappaB signaling pathways, Toll and immune deficiency (imd), are required for survival to bacterial infections in Drosophila. In response to septic injury, these pathways mediate rapid transcriptional activation of distinct sets of effector molecules, including antimicrobial peptides, which are important components of a humoral defense response. However, it is less clear to what extent macrophage-like hemocytes contribute to host defense. METHODOLOGY/PRINCIPAL FINDINGS: In order to dissect the relative importance of humoral and cellular defenses after septic injury with three different gram-positive bacteria (Micrococcus luteus, Enterococcus faecalis, Staphylococcus aureus), we used latex bead pre-injection to ablate macrophage function in flies wildtype or mutant for various Toll and imd pathway components. We found that in all three infection models a compromised phagocytic system impaired fly survival--independently of concomitant Toll or imd pathway activation. Our data failed to confirm a role of the PGRP-SA and GNBP1 Pattern Recognition Receptors for phagocytosis of S. aureus. The Drosophila scavenger receptor Eater mediates the phagocytosis by hemocytes or S2 cells of E. faecalis and S. aureus, but not of M. luteus. In the case of M. luteus and E. faecalis, but not S. aureus, decreased survival due to defective phagocytosis could be compensated for by genetically enhancing the humoral immune response. CONCLUSIONS/SIGNIFICANCE: Our results underscore the fundamental importance of both cellular and humoral mechanisms in Drosophila immunity and shed light on the balance between these two arms of host defense depending on the invading pathogen

    Atonal homolog 1 Is a Tumor Suppressor Gene

    Get PDF
    Colon cancer accounts for more than 10% of all cancer deaths annually. Our genetic evidence from Drosophila and previous in vitro studies of mammalian Atonal homolog 1 (Atoh1, also called Math1 or Hath1) suggest an anti-oncogenic function for the Atonal group of proneural basic helix-loop-helix transcription factors. We asked whether mouse Atoh1 and human ATOH1 act as tumor suppressor genes in vivo. Genetic knockouts in mouse and molecular analyses in the mouse and in human cancer cell lines support a tumor suppressor function for ATOH1. ATOH1 antagonizes tumor formation and growth by regulating proliferation and apoptosis, likely via activation of the Jun N-terminal kinase signaling pathway. Furthermore, colorectal cancer and Merkel cell carcinoma patients show genetic and epigenetic ATOH1 loss-of-function mutations. Our data indicate that ATOH1 may be an early target for oncogenic mutations in tissues where it instructs cellular differentiation

    A Spaetzle-like role for nerve growth factor beta in vertebrate immunity to Staphylococcus aureus

    Get PDF
    Many key components of innate immunity to infection are shared between Drosophila and humans. However, the fly Toll ligand Spaetzle is not thought to have a vertebrate equivalent. We have found that the structurally related cystine-knot protein, nerve growth factor β (NGFβ), plays an unexpected Spaetzle-like role in immunity to Staphylococcus aureus infection in chordates. Deleterious mutations of either human NGFβ or its high-affinity receptor tropomyosin-related kinase receptor A (TRKA) were associated with severe S. aureus infections. NGFβ was released by macrophages in response to S. aureus exoproteins through activation of the NOD-like receptors NLRP3 and NLRC4 and enhanced phagocytosis and superoxide-dependent killing, stimulated proinflammatory cytokine production, and promoted calcium-dependent neutrophil recruitment. TrkA knockdown in zebrafish increased susceptibility to S. aureus infection, confirming an evolutionarily conserved role for NGFβ-TRKA signaling in pathogen-specific host immunity
    corecore