424 research outputs found

    NELIOTA: The wide-field, high-cadence lunar monitoring system at the prime focus of the Kryoneri telescope

    Full text link
    We present the technical specifications and first results of the ESA-funded, lunar monitoring project "NELIOTA" (NEO Lunar Impacts and Optical TrAnsients) at the National Observatory of Athens, which aims to determine the size-frequency distribution of small Near-Earth Objects (NEOs) via detection of impact flashes on the surface of the Moon. For the purposes of this project a twin camera instrument was specially designed and installed at the 1.2 m Kryoneri telescope utilizing the fast-frame capabilities of scientific Complementary Metal-Oxide Semiconductor detectors (sCMOS). The system provides a wide field-of-view (17.0' ×\times 14.4') and simultaneous observations in two photometric bands (R and I), reaching limiting magnitudes of 18.7 mag in 10 sec in both bands at a 2.5 signal-to-noise level. This makes it a unique instrument that can be used for the detection of NEO impacts on the Moon, as well as for any astronomy projects that demand high-cadence multicolor observations. The wide field-of-view ensures that a large portion of the Moon is observed, while the simultaneous, high-cadence, monitoring in two photometric bands makes possible, for the first time, the determination of the temperatures of the impacts on the Moon's surface and the validation of the impact flashes from a single site. Considering the varying background level on the Moon's surface we demonstrate that the NELIOTA system can detect NEO impact flashes at a 2.5 signal-to-noise level of ~12.4 mag in the I-band and R-band for observations made at low lunar phases ~0.1. We report 31 NEO impact flashes detected during the first year of the NELIOTA campaign. The faintest flash was at 11.24 mag in the R-band (about two magnitudes fainter than ever observed before) at lunar phase 0.32. Our observations suggest a detection rate of 1.96×1071.96 \times 10^{-7} events km2h1km^{-2} h^{-1}.Comment: Accepted for publication in A&

    Brief communication: A first hydrological investigation of extreme August 2023 floods in Slovenia, Europe

    Get PDF
    Extreme floods occurred from 4 to 6 August 2023 in Slovenia causing three casualties and causing total direct and indirect damage, including post-disaster needs according to the Post-Disaster Needs Assessment (PDNA), close to EUR 10 billion. The atypical summer weather conditions combined with the high air and sea temperatures in the Mediterranean and the high soil moisture led to the most extreme flood event in Slovenia in recent decades. The return periods of both daily and sub-daily precipitation extremes and peak discharges reached 250–500 years, and the runoff coefficient of a typical torrential and mostly forested mesoscale catchment was around 0.5. In addition, flooding, soil erosion, mass movements and river sediment transport processes caused major damage to buildings (more than 12 000 houses) and diverse infrastructure.</p

    CoBiToM Project -- II: Evolution of contact binary systems close to the orbital period cut-off

    Full text link
    Ultra-short orbital period contact binaries (Porb < 0.26 d) host some of the smallest and least massive stars. These systems are faint and rare, and it is believed that they have reached a contact configuration after several Gyrs of evolution via angular momentum loss, mass transfer and mass loss through stellar wind processes. This study is conducted in the frame of Contact Binaries Towards Merging (CoBiToM) Project and presents the results from light curve and orbital analysis of 30 ultra-short orbital period contact binaries, with the aim to investigate the possibility of them being red nova progenitors, eventually producing merger events. Approximately half of the systems exhibit orbital period modulations, as a result of mass transfer or mass loss processes. Although they are in contact, their fill-out factor is low (less than 30 per cent), while their mass ratio is larger than the one in longer period contact binaries. The present study investigates the orbital stability of these systems and examines their physical and orbital parameters in comparison to those of the entire sample of known and well-studied contact binaries, based on combined spectroscopic and photometric analysis. It is found that ultra-short orbital period contact binaries have very stable orbits, while very often additional components are gravitationally bound in wide orbits around the central binary system. We confirmed that the evolution of such systems is very slow, which explains why the components of ultra-short orbital period systems are still Main Sequence stars after several Gyrs of evolution

    Period changes in six semi-detached Algol-type binaries

    Full text link
    Six semi-detached Algol-type binaries lacking a period analysis were chosen to test for a presence of a third body. The O-C diagrams of these binaries were analyzed with the least-squares method by using all available times of minima. Also fourteen new minima, obtained from our observations, were included in the present research. The light-time effect was adopted as a main factor for the detailed description of the long-term period changes. Third bodies were found with orbital periods from 46 up to 84 years, and eccentricities from 0.0 to 0.78 for the selected binaries. The mass functions and the minimal masses of such bodies were also calculated.Comment: 14 pages, 8 figure

    Precursor flares in OJ 287

    Full text link
    We have studied three most recent precursor flares in the light curve of the blazar OJ 287 while invoking the presence of a precessing binary black hole in the system to explain the nature of these flares. Precursor flare timings from the historical light curves are compared with theoretical predictions from our model that incorporate effects of an accretion disk and post-Newtonian description for the binary black hole orbit. We find that the precursor flares coincide with the secondary black hole descending towards the accretion disk of the primary black hole from the observed side, with a mean z-component of approximately z_c = 4000 AU. We use this model of precursor flares to predict that precursor flare of similar nature should happen around 2020.96 before the next major outburst in 2022.Comment: to appear in the Astrophysical Journa
    corecore