380 research outputs found

    Transient epileptic amnesia: an emerging late-onset epileptic syndrome.

    Get PDF
    Transient epileptic amnesia (TEA) is a distinct neurologic condition occurring in late-middle/old age and presenting with amnesic attacks of epileptic nature and interictal memory disturbances. For many years this condition has been associated with the nonepileptic condition of transient global amnesia (TGA) and still today is poorly recognized by clinicians. Despite the clinical and laboratory findings that distinguish TEA from TGA, differential diagnosis may be difficult in the individual patient. Every effort must be employed for an early diagnosis, since antiepileptic treatment may readily control both ictal episodes and memory disturbances

    Optimizing Wearable Assistive Devices with Neuromuscular Models and Optimal Control

    Get PDF
    The coupling of human movement dynamics with the function and design of wearable assistive devices is vital to better understand the interaction between the two. Advanced neuromuscular models and optimal control formulations provide the possibility to study and improve this interaction. In addition, optimal control can also be used to generate predictive simulations that generate novel movements for the human model under varying optimization criterion

    Levetiracetam in patients with epilepsy and chronic liver disease: observations in a case series.

    Get PDF
    OBJECTIVES: To evaluate levetiracetam (LEV) tolerability in patients with epilepsy and liver disease. METHODS: Fourteen patients with epilepsy and concomitant liver disease were treated with LEV in an open prospective investigation mimicking the daily clinical practice. All patients were stabilized (ie, for at least 1 year) on traditional antiepileptic drugs with complete or partial control of seizures. In the 6-month pre-LEV baseline period, seizure frequency ranged from 3 to 300. Levetiracetam was added on to the basal treatment at a starting daily dose of 250 mg, and the dose was adjusted according to the tolerability and the therapeutic response. Four patients discontinued the drug within the first 3 months because of intolerable side effects. The remaining 10 continued LEV treatment, and the present follow-up is 12 to 38 months. RESULTS: In the last 6 months of observation, none of the patients showed worsening of liver function on the basis of blood chemistry, and in 4 patients, a complete normalization or a trend toward physiological values of transaminase and/or gamma-glutamyltransferase activity was observed. A greater than 50% reduction in seizure frequency occurred in all uncontrolled patients, 2 of whom achieved seizure freedom during LEV treatment. CONCLUSIONS: Based on these observations, LEV seems to be an attractive therapeutic option in epileptic patients with chronic liver diseases

    Analysis of lower limb internal kinetics and electromyography in elite race walking.

    Get PDF
    The aim of this study was to analyse lower limb joint moments, powers and electromyography patterns in elite race walking. Twenty international male and female race walkers performed at their competitive pace in a laboratory setting. The collection of ground reaction forces (1000 Hz) was synchronised with two-dimensional high-speed videography (100 Hz) and electromyography of seven lower limb muscles (1000 Hz). As well as measuring key performance variables such as speed and stride length, normalised joint moments and powers were calculated. The rule in race walking which requires the knee to be extended from initial contact to midstance effectively made the knee redundant during stance with regard to energy generation. Instead, the leg functioned as a rigid lever which affected the role of the hip and ankle joints. The main contributors to energy generation were the hip extensors during late swing and early stance, and the ankle plantarflexors during late stance. The restricted functioning of the knee during stance meant that the importance of the swing leg in contributing to forward momentum was increased. The knee flexors underwent a phase of great energy absorption during the swing phase and this could increase the risk of injury to the hamstring muscles

    First direct measurement of the total cross section of 12C(alpha,gamma)16O

    Full text link
    The total cross section of 12C(alpha,gamma)16O was measured for the first time by a direct and ungated detection of the 16O recoils. This measurement in inverse kinematics using the recoil mass separator ERNA in combination with a windowless He gas target allowed to collect data with high precision in the energy range E=1.9 to 4.9 MeV. The data represent new information for the determination of the astrophysical S(E) factor.Comment: 5 pages, 3 figures, 1 table, accepted for publication Eur.Phys.J. A (Online first available

    Tibio-femoral joint constraints for bone pose estimation during movement using multi-body optimization

    Get PDF
    The financial support of the Universita'Italo-Francese (Call Vinci) and of the Department of Human Movement and Sport Sciences of the University of Rome ''Foro Italico'' is gratefully acknowledged. The authors wish to acknowledge Dr. Sophie Lacoste for her technical support and John McCamley for his contribution to the refinement of the manuscriptWhen using skin markers and stereophotogrammetry for movement analysis, bone pose estimation may be performed using multi-body optimization with the intent of reducing the effect of soft tissue artefacts. When the joint of interest is the knee, improvement of this approach requires defining subject-specific relevant kinematic constraints. The aim of this work was to provide these constraints in the form of plausible values for the distances between origin and insertion of the main ligaments (ligament lengths), during loaded healthy knee flexion, taking into account the indeterminacies associated with landmark identification during anatomical calibration. Ligament attachment sites were identified through virtual palpation on digital bone templates. Attachments sites were estimated for six knee specimens by matching the femur and tibia templates to low-dose stereoradiography images. Movement data were obtained using stereophotogrammetry and pin markers. Relevant ligament lengths for the anterior and posterior cruciate, lateral collateral, and deep and superficial bundles of the medial collateral ligaments (ACL, PCL, LCL, MCLdeep, MCLsup) were calculated. The effect of landmark identification variability was evaluated performing a Monte Carlo simulation on the coordinates of the origin-insertion centroids. The ACL and LCL lengths were found to decrease, and the MCLdeep length to increase significantly during flexion, while variations in PCL and MCLsup length was concealed by the experimental indeterminacy. An analytical model is given that provides subject-specific plausible ligament length variations as functions of the knee flexion angle and that can be incorporated in a multi-body optimization procedure

    European consensus meeting of ARM-Net members concerning diagnosis and early management of newborns with anorectal malformations.

    Get PDF
    The ARM-Net (anorectal malformation network) consortium held a consensus meeting in which the classification of ARM and preoperative workup were evaluated with the aim of improving monitoring of treatment and outcome. The Krickenbeck classification of ARM and preoperative workup suggested by Levitt and Peña, used as a template, were discussed, and a collaborative consensus was achieved. The Krickenbeck classification is appropriate in describing ARM for clinical use. The preoperative workup was slightly modified. In males with a visible fistula, no cross-table lateral X-ray is needed and an anoplasty or (mini-) posterior sagittal anorectoplasty can directly be performed. In females with a small vestibular fistula (Hegar size 5 mm, and in the meantime, gentle painless dilatations can be performed. In both male and female perineal fistula and either a low birth weight (<2,000 g) or severe associated congenital anomalies, prolonged preoperative painless dilatations might be indicated to decrease perioperative morbidity caused by general anesthesia. The Krickenbeck classification is appropriate in describing ARM for clinical use. Some minor modifications to the preoperative workup by Levitt and Peña have been introduced in order to refine terminology and establish a comprehensive preoperative workup

    Contribution of non-extensor muscles of the leg to maximal-effort countermovement jumping

    Get PDF
    BACKGROUND: The purpose of this study was to determine the effects of non-extensor muscles of the leg (i.e., muscles whose primary function is not leg extension) on the kinematics and kinetics of human maximal-effort countermovement jumping. Although it is difficult to address this type of question through experimental procedures, the methodology of computer simulation can be a powerful tool. METHODS: A skeletal model that has nine rigid body segments and twenty degrees of freedom was developed. Two sets of muscle models were attached to this skeletal model: all (most of) major muscles in the leg ("All Muscles" model) and major extensor muscles in the leg (i.e., muscles whose primary function is leg extension; "Extensors Only" model). Neural activation input signal was represented by a series of step functions with a step duration of 0.05 s. Simulations were started from an identical upright standing posture. The optimal pattern of the activation input signal was searched through extensive random-search numerical optimization with a goal of maximizing the height reached by the mass centre of the body after jumping up. RESULTS: The simulated kinematics was almost two-dimensional, suggesting the validity of two-dimensional analyses when evaluating net mechanical outputs around the joints using inverse dynamics. A greater jumping height was obtained for the "All Muscles" model (0.386 m) than for the "Extensors Only" model (0.301 m). For the "All Muscles" model, flexor muscles developed force in the beginning of the countermovement. For the "All Muscles" model, the sum of the work outputs from non-extensor muscles was 47.0 J, which was 13% of the total amount (359.9 J). The quantitative distribution of the work outputs from individual muscles was markedly different between these two models. CONCLUSION: It was suggested that the contribution of non-extensor muscles in maximal-effort countermovement jumping is substantial. The use of a computer simulation model that includes non-extensor muscles seems to be more desirable for the assessment of muscular outputs during jumping

    Human sit-to-stand transfer modeling towards intuitive and biologically-inspired robot assistance

    Get PDF
    © 2016, Springer Science+Business Media New York. Sit-to-stand (STS) transfers are a common human task which involves complex sensorimotor processes to control the highly nonlinear musculoskeletal system. In this paper, typical unassisted and assisted human STS transfers are formulated as optimal feedback control problem that finds a compromise between task end-point accuracy, human balance, energy consumption, smoothness of motion and control and takes further human biomechanical control constraints into account. Differential dynamic programming is employed, which allows taking the full, nonlinear human dynamics into consideration. The biomechanical dynamics of the human is modeled by a six link rigid body including leg, trunk and arm segments. Accuracy of the proposed modelling approach is evaluated for different human healthy and patient/elderly subjects by comparing simulations and experimentally collected data. Acceptable model accuracy is achieved with a generic set of constant weights that prioritize the different criteria. Finally, the proposed STS model is used to determine optimal assistive strategies suitable for either a person with specific body segment weakness or a more general weakness. These strategies are implemented on a robotic mobility assistant and are intensively evaluated by 33 elderlies, mostly not able to perform unassisted STS transfers. The validation results show a promising STS transfer success rate and overall user satisfaction
    corecore