22 research outputs found

    Linear relaxation to planar Travelling Waves in Inertial Confinement Fusion

    Full text link
    We study linear stability of planar travelling waves for a scalar reaction-diffusion equation with non-linear anisotropic diffusion. The mathematical model is derived from the full thermo-hydrodynamical model describing the process of Inertial Confinement Fusion. We show that solutions of the Cauchy problem with physically relevant initial data become planar exponentially fast with rate s(\eps',k)>0, where \eps'=\frac{T_{min}}{T_{max}}\ll 1 is a small temperature ratio and k≫1k\gg 1 the transversal wrinkling wavenumber of perturbations. We rigorously recover in some particular limit (\eps',k)\rightarrow (0,+\infty) a dispersion relation s(\eps',k)\sim \gamma_0 k^{\alpha} previously computed heuristically and numerically in some physical models of Inertial Confinement Fusion

    High Resolution KFVS Methods for Multi-Fluid Dynamics

    No full text

    Nonlinear corrector for Reynolds‐averaged Navier‐Stokes equations

    No full text
    International audienceThe scope of this paper is to present a nonlinear error estimation and correction for Navier-Stokes and Reynolds-averaged Navier-Stokes equations. This nonlinear corrector enables better solution or functional output predictions at fixed mesh complexity and can be considered in a mesh adaptation process. After solving the problem at hand, a corrected solution is obtained by solving again the problem with an added source term. This source term is deduced from the evaluation of the residual of the numerical solution interpolated on the h/2 mesh. To avoid the generation of the h/2 mesh (which is prohibitive for realistic applications), the residual at each vertex is computed by local refinement only in the neighborhood of the considered vertex. One of the main feature of this approach is that it automatically takes into account all the properties of the considered numerical method. The numerical examples point out that it successfully improves solution predictions and yields a sharp estimate of the numerical error. Moreover, we demonstrate the superiority of the nonlinear corrector with respect to linear corrector that can be found in the literature

    Detonation Structure Simulation with AMROC

    No full text
    Numerical simulations can be the key to the thorough understanding of the multi-dimensional nature of transient detonation waves. But th
    corecore