51 research outputs found

    Discussion of Recent Decisions

    Get PDF

    Interleukin-6 trans-signaling is a candidate mechanism to drive progression of human DCCs during clinical latency

    Get PDF
    Although thousands of breast cancer cells disseminate and home to bone marrow until primary surgery, usually less than a handful will succeed in establishing manifest metastases months to years later. To identify signals that support survival or outgrowth in patients, we profile rare bone marrow-derived disseminated cancer cells (DCCs) long before manifestation of metastasis and identify IL6/PI3K-signaling as candidate pathway for DCC activation. Surprisingly, and similar to mammary epithelial cells, DCCs lack membranous IL6 receptor expression and mechanistic dissection reveals IL6 trans-signaling to regulate a stem-like state of mammary epithelial cells via gp130. Responsiveness to IL6 trans-signals is found to be niche-dependent as bone marrow stromal and endosteal cells down-regulate gp130 in premalignant mammary epithelial cells as opposed to vascular niche cells. PIK3CA activation renders cells independent from IL6 trans-signaling. Consistent with a bottleneck function of microenvironmental DCC control, we find PIK3CA mutations highly associated with late-stage metastatic cells while being extremely rare in early DCCs. Our data suggest that the initial steps of metastasis formation are often not cancer cell-autonomous, but also depend on microenvironmental signals. Metastatic dissemination in breast cancer patients occurs early in malignant transformation, raising questions about how disseminated cancer cells (DCC) progress at distant sites. Here, the authors show that DCCs in bone marrow are activated via IL6-trans-signaling and thereby acquire stemness traits relevant for metastasis formation

    The electrical behaviour of GaAs MESFETs formed on high and low temperature GaAs buffer layers

    No full text
    Comparisons have been made between the channel currents in GaAs hESFETs prepared on GaAs buffer layers prepared at normal and low temperatures. All devices made on LT buffer layers had saturated channel currents which were about 20% of similar devices on a normal buffer. An attempt was made to remove Ga vacanciies from the LT buffer by a high temperature anneal step before the epitaxial layer was prepared. This had no effect in increasing the channel current. In all cases the pinchoiy voltage was unchanged indicating constancy of the channel thickness and donor concentration. It is concluded that the loss of current is due to a loss of mobile charge through trapping

    Epigallocatechin-3-gallate inhibits IL-6 synthesis and suppresses transsignaling by enhancing soluble gp130 production

    No full text
    Regulation of IL-6 transsignaling by the administration of soluble gp130 (sgp130) receptor to capture the IL-6/soluble IL-6R complex has shown promise for the treatment of rheumatoid arthritis (RA). However, enhancing endogenous sgp130 via alternative splicing of the gp130 gene has not yet been tested. We found that epigallocatechin-3-gallate (EGCG), an anti-inflammatory compound found in green tea, inhibits IL-1β–induced IL-6 production and transsignaling in RA synovial fibroblasts by inducing alternative splicing of gp130 mRNA, resulting in enhanced sgp130 production. Results from in vivo studies using a rat adjuvant-induced arthritis model showed specific inhibition of IL-6 levels in the serum and joints of EGCG-treated rats by 28% and 40%, respectively, with concomitant amelioration of rat adjuvant-induced arthritis. We also observed a marked decrease in membrane-bound gp130 protein expression in the joint homogenates of the EGCG-treated group. In contrast, quantitative RT-PCR showed that the gp130/IL-6Rα mRNA ratio increased by ∼2-fold, suggesting a possible mechanism of sgp130 activation by EGCG. Gelatin zymography results showed EGCG inhibits IL-6/soluble IL-6R–induced matrix metalloproteinase-2 activity in RA synovial fibroblasts and in joint homogenates, possibly via up-regulation of sgp130 synthesis. The results of these studies provide previously undescribed evidence of IL-6 synthesis and transsignaling inhibition by EGCG with a unique mechanism of sgp130 up-regulation, and thus hold promise as a potential therapeutic agent for RA
    corecore