135 research outputs found

    Remote sensed and in situ constraints on processes affecting tropical tropospheric ozone

    Get PDF
    We use a global chemical transport model (GEOS-Chem) to evaluate the consistency of satellite measurements of lightning flashes and ozone precursors with in situ measurements of tropical tropospheric ozone. The measurements are tropospheric O<sub>3</sub>, NO<sub>2</sub>, and HCHO columns from the GOME satellite instrument, lightning flashes from the OTD and LIS satellite instruments, profiles of O<sub>3</sub>, CO, and relative humidity from the MOZAIC aircraft program, and profiles of O<sub>3</sub> from the SHADOZ ozonesonde network. We interpret these multiple data sources with our model to better understand what controls tropical tropospheric ozone. Tropical tropospheric ozone is mainly affected by lightning NO<sub>x</sub> and convection in the upper troposphere and by surface emissions in the lower troposphere. Scaling the spatial distribution of lightning in the model to the observed flashes improves the simulation of O<sub>3</sub> in the upper troposphere by 5&ndash;20 ppbv versus in situ observations and by 1&ndash;4 Dobson Units versus GOME retrievals of tropospheric O<sub>3</sub> columns. A lightning source strength of 6&plusmn;2 Tg N/yr best represents in situ observations from aircraft and ozonesonde. Tropospheric NO<sub>2</sub> and HCHO columns from GOME are applied to provide top-down constraints on emission inventories of NO<sub>x</sub> (biomass burning and soils) and VOCs (biomass burning). The top-down biomass burning inventory is larger than the bottom-up inventory by a factor of 2 for HCHO and alkenes, and by a factor of 2.6 for NO<sub>x</sub> over northern equatorial Africa. These emissions increase lower tropospheric O<sub>3</sub> by 5&ndash;20 ppbv, improving the simulation versus aircraft observations, and by 4 Dobson Units versus GOME observations of tropospheric O<sub>3</sub> columns. Emission factors in the a posteriori inventory are more consistent with a recent compilation from in situ measurements. The ozone simulation using two different dynamical schemes (GEOS-3 and GEOS-4) is evaluated versus observations; GEOS-4 better represents O<sub>3</sub> observations by 5&ndash;15 ppbv, reflecting enhanced convective detrainment in the upper troposphere. Heterogeneous uptake of HNO<sub>3</sub> on aerosols reduces simulated O<sub>3</sub> by 5&ndash;7 ppbv, reducing a model bias versus in situ observations over and downwind of deserts. Exclusion of HO<sub>2</sub> uptake on aerosols increases O<sub>3</sub> by 5 ppbv in biomass burning regions, reducing a model bias versus MOZAIC aircraft measurements

    Nested-grid simulation of mercury over North America

    Get PDF
    We have developed a new nested-grid mercury (Hg) simulation over North America with a 1/2° latitude by 2/3° longitude horizontal resolution employing the GEOS-Chem global chemical transport model. Emissions, chemistry, deposition, and meteorology are self-consistent between the global and nested domains. Compared to the global model (4° latitude by 5° longitude), the nested model shows improved skill at capturing the high spatial and temporal variability of Hg wet deposition over North America observed by the Mercury Deposition Network (MDN) in 2008–2009. The nested simulation resolves features such as higher deposition due to orographic precipitation, land/ocean contrast and and predicts more efficient convective rain scavenging of Hg over the southeast United States. However, the nested model overestimates Hg wet deposition over the Ohio River Valley region (ORV) by 27%. We modify anthropogenic emission speciation profiles in the US EPA National Emission Inventory (NEI) to account for the rapid in-plume reduction of reactive to elemental Hg (IPR simulation). This leads to a decrease in the model bias to −2.3% over the ORV region. Over the contiguous US, the correlation coefficient (<i>r</i>) between MDN observations and our IPR simulation increases from 0.60 to 0.78. The IPR nested simulation generally reproduces the seasonal cycle in surface concentrations of speciated Hg from the Atmospheric Mercury Network (AMNet) and Canadian Atmospheric Mercury Network (CAMNet). In the IPR simulation, annual mean gaseous and particulate-bound Hg(II) are within 140% and 11% of observations, respectively. In contrast, the simulation with unmodified anthropogenic Hg speciation profiles overestimates these observations by factors of 4 and 2 for gaseous and particulate-bound Hg(II), respectively. The nested model shows improved skill at capturing the horizontal variability of Hg observed over California during the ARCTAS aircraft campaign. The nested model suggests that North American anthropogenic emissions account for 10–22% of Hg wet deposition flux over the US, depending on the anthropogenic emissions speciation profile assumed. The modeled percent contribution can be as high as 60% near large point sources in ORV. Our results indicate that the North American anthropogenic contribution to dry deposition is 13–20%

    Evolution and stoichiometry of heterogeneous processing in the Antarctic stratosphere

    Get PDF
    Simultaneous in situ measurements of HCl and ClO have been made for the first time in the southern hemisphere, allowing a systematic study of the processes governing chlorine activation between 15 and 20 km in the 1994 Antarctic winter. Data for several other gases (O_3, NO, NO_y, OH, HO_2, N_(2)O, CH_4, CO, H_(2)O, CFCs), particulates, and meteorological parameters were collected from the ER-2 aircraft out of New Zealand as part of the 1994 Airborne Southern Hemisphere Ozone Experiment/Measurements of Atmospheric Effects of Stratospheric Aircraft (ASHOE/MAESA) campaign. Observations from the ER-2 in the fall (April–May), prior to polar night, show that chlorine activation begins with 60–75% of inorganic chlorine as HCl. By midwinter (July–August), near-total removal of HCl is observed. The wintertime loss of HCl in air recently exposed to extreme temperatures is found to be correlated with high levels of reactive chlorine (ClO and its dimer, Cl_(2)O_2) in the linear fashion expected from the stoichiometry of the heterogeneous reaction of hydrochloric acid with chlorine nitrate on polar stratospheric clouds (PSCs): HCl + ClONO_2 → Cl_2 + HNO_3. To constrain the role of different heterogeneous reactions and PSC types, we have used a photochemical trajectory model which includes heterogeneous sulfate and PSC chemistry. Model calculations of the evolution of reactive gases are compared with the in situ observations. In addition, simultaneous measurements of OH and HO_2 are used as a diagnostic for the occurrence of the heterogeneous reaction HOCl + HCl → Cl_2 + H_(2)O, which contributes to suppressed levels of HO_x inside the vortex. It is shown that the amount of chlorine activation is not strongly dependent on the composition of PSCs. However, HO_x levels exhibit different signatures depending on the type of heterogeneous surfaces that affected chlorine activation. Furthermore, this analysis implies that in the edge region of the Antarctic vortex, the observed near-total removal of HCl can result from latitudinal excursions of air parcels in and out of sunlight during the winter, which photochemically resupply HOCl and ClONO_2 as oxidation partners for HCl

    Ozone-CO Correlations Determined by the TES Satellite Instrument in Continental Outflow Regions

    Get PDF
    Collocated measurements of tropospheric ozone (O3) and carbon monoxide (CO) from the Tropospheric Emission Spectrometer (TES) aboard the EOS Aura satellite provide information on O3-CO correlations to test our understanding of global anthropogenic influence on O3. We examine the global distribution of TES O3-CO correlations in the middle troposphere (618 hPa) for July 2005 and compare to correlations generated with the GEOS-Chem chemical transport model and with ICARTT aircraft observations over the eastern United States (July 2004). The TES data show significant O3-CO correlations downwind of polluted continents, with dO3/dCO enhancement ratios in the range 0.4–1.0 mol mol−1 and consistent with ICARTT data. The GEOS-Chem model reproduces the O3-CO enhancement ratios observed in continental outflow, but model correlations are stronger and more extensive. We show that the discrepancy can be explained by spectral measurement errors in the TES data. These errors will decrease in future data releases, which should enable TES to provide better information on O3-CO correlations.Earth and Planetary SciencesEngineering and Applied Science
    corecore