211 research outputs found

    Stable periodic density waves in dipolar Bose-Einstein condensates trapped in optical lattices

    Full text link
    Density-wave patterns in (quasi-) discrete media with local interactions are known to be unstable. We demonstrate that \emph{stable} double- and triple- period patterns (DPPs and TPPs), with respect to the period of the underlying lattice, exist in media with nonlocal nonlinearity. This is shown in detail for dipolar Bose-Einstein condensates (BECs), loaded into a deep one-dimensional (1D) optical lattice (OL), by means of analytical and numerical methods in the tight-binding limit. The patterns featuring multiple periodicities are generated by the modulational instability of the continuous-wave (CW) state, whose period is identical to that of the OL. The DPP and TPP emerge via phase transitions of the second and first kind, respectively. The emerging patterns may be stable provided that the dipole-dipole (DD) interactions are repulsive and sufficiently strong, in comparison with the local repulsive nonlinearity. Within the set of the considered states, the TPPs realize a minimum of the free energy. Accordingly, a vast stability region for the TPPs is found in the parameter space, while the DPP\ stability region is relatively narrow. The same mechanism may create stable density-wave patterns in other physical media featuring nonlocal interactions, such as arrayed optical waveguides with thermal nonlinearity.Comment: 7 pages, 4 figures, Phys. Rev. Lett., in pres

    Thermodynamic Limit Of The Ginzburg-Landau Equations

    Full text link
    We investigate the existence of a global semiflow for the complex Ginzburg-Landau equation on the space of bounded functions in unbounded domain. This semiflow is proven to exist in dimension 1 and 2 for any parameter values of the standard cubic Ginzburg-Landau equation. In dimension 3 we need some restrictions on the parameters but cover nevertheless some part of the Benjamin-Feijer unstable domain.Comment: uuencoded dvi file (email: [email protected]

    Bifurcations of discrete breathers in a diatomic Fermi-Pasta-Ulam chain

    Full text link
    Discrete breathers are time-periodic, spatially localized solutions of the equations of motion for a system of classical degrees of freedom interacting on a lattice. Such solutions are investigated for a diatomic Fermi-Pasta-Ulam chain, i. e., a chain of alternate heavy and light masses coupled by anharmonic forces. For hard interaction potentials, discrete breathers in this model are known to exist either as ``optic breathers'' with frequencies above the optic band, or as ``acoustic breathers'' with frequencies in the gap between the acoustic and the optic band. In this paper, bifurcations between different types of discrete breathers are found numerically, with the mass ratio m and the breather frequency omega as bifurcation parameters. We identify a period tripling bifurcation around optic breathers, which leads to new breather solutions with frequencies in the gap, and a second local bifurcation around acoustic breathers. These results provide new breather solutions of the FPU system which interpolate between the classical acoustic and optic modes. The two bifurcation lines originate from a particular ``corner'' in parameter space (omega,m). As parameters lie near this corner, we prove by means of a center manifold reduction that small amplitude solutions can be described by a four-dimensional reversible map. This allows us to derive formally a continuum limit differential equation which characterizes at leading order the numerically observed bifurcations.Comment: 30 pages, 10 figure

    Riemann solvers and undercompressive shocks of convex FPU chains

    Full text link
    We consider FPU-type atomic chains with general convex potentials. The naive continuum limit in the hyperbolic space-time scaling is the p-system of mass and momentum conservation. We systematically compare Riemann solutions to the p-system with numerical solutions to discrete Riemann problems in FPU chains, and argue that the latter can be described by modified p-system Riemann solvers. We allow the flux to have a turning point, and observe a third type of elementary wave (conservative shocks) in the atomistic simulations. These waves are heteroclinic travelling waves and correspond to non-classical, undercompressive shocks of the p-system. We analyse such shocks for fluxes with one or more turning points. Depending on the convexity properties of the flux we propose FPU-Riemann solvers. Our numerical simulations confirm that Lax-shocks are replaced by so called dispersive shocks. For convex-concave flux we provide numerical evidence that convex FPU chains follow the p-system in generating conservative shocks that are supersonic. For concave-convex flux, however, the conservative shocks of the p-system are subsonic and do not appear in FPU-Riemann solutions

    Hyperbolic planforms in relation to visual edges and textures perception

    Get PDF
    We propose to use bifurcation theory and pattern formation as theoretical probes for various hypotheses about the neural organization of the brain. This allows us to make predictions about the kinds of patterns that should be observed in the activity of real brains through, e.g. optical imaging, and opens the door to the design of experiments to test these hypotheses. We study the specific problem of visual edges and textures perception and suggest that these features may be represented at the population level in the visual cortex as a specific second-order tensor, the structure tensor, perhaps within a hypercolumn. We then extend the classical ring model to this case and show that its natural framework is the non-Euclidean hyperbolic geometry. This brings in the beautiful structure of its group of isometries and certain of its subgroups which have a direct interpretation in terms of the organization of the neural populations that are assumed to encode the structure tensor. By studying the bifurcations of the solutions of the structure tensor equations, the analog of the classical Wilson and Cowan equations, under the assumption of invariance with respect to the action of these subgroups, we predict the appearance of characteristic patterns. These patterns can be described by what we call hyperbolic or H-planforms that are reminiscent of Euclidean planar waves and of the planforms that were used in [1, 2] to account for some visual hallucinations. If these patterns could be observed through brain imaging techniques they would reveal the built-in or acquired invariance of the neural organization to the action of the corresponding subgroups.Comment: 34 pages, 11 figures, 2 table

    Localized Breathing Modes in Granular Crystals with Defects

    Get PDF
    We investigate nonlinear localized modes at light-mass impurities in a one-dimensional, strongly-compressed chain of beads under Hertzian contacts. Focusing on the case of one or two such "defects", we analyze the problem's linear limit to identify the system eigenfrequencies and the linear defect modes. We then examine the bifurcation of nonlinear defect modes from their linear counterparts and study their linear stability in detail. We identify intriguing differences between the case of impurities in contact and ones that are not in contact. We find that the former bears similarities to the single defect case, whereas the latter features symmetry-breaking bifurcations with interesting static and dynamic implications

    Two-soliton collisions in a near-integrable lattice system

    Full text link
    We examine collisions between identical solitons in a weakly perturbed Ablowitz-Ladik (AL) model, augmented by either onsite cubic nonlinearity (which corresponds to the Salerno model, and may be realized as an array of strongly overlapping nonlinear optical waveguides), or a quintic perturbation, or both. Complex dependences of the outcomes of the collisions on the initial phase difference between the solitons and location of the collision point are observed. Large changes of amplitudes and velocities of the colliding solitons are generated by weak perturbations, showing that the elasticity of soliton collisions in the AL model is fragile (for instance, the Salerno's perturbation with the relative strength of 0.08 can give rise to a change of the solitons' amplitudes by a factor exceeding 2). Exact and approximate conservation laws in the perturbed system are examined, with a conclusion that the small perturbations very weakly affect the norm and energy conservation, but completely destroy the conservation of the lattice momentum, which is explained by the absence of the translational symmetry in generic nonintegrable lattice models. Data collected for a very large number of collisions correlate with this conclusion. Asymmetry of the collisions (which is explained by the dependence on the location of the central point of the collision relative to the lattice, and on the phase difference between the solitons) is investigated too, showing that the nonintegrability-induced effects grow almost linearly with the perturbation strength. Different perturbations (cubic and quintic ones) produce virtually identical collision-induced effects, which makes it possible to compensate them, thus finding a special perturbed system with almost elastic soliton collisions.Comment: Phys. Rev. E, in pres

    Bifurcations of periodic orbits with spatio-temporal symmetries

    Get PDF
    Motivated by recent analytical and numerical work on two- and three-dimensional convection with imposed spatial periodicity, we analyse three examples of bifurcations from a continuous group orbit of spatio-temporally symmetric periodic solutions of partial differential equations. Our approach is based on centre manifold reduction for maps, and is in the spirit of earlier work by Iooss (1986) on bifurcations of group orbits of spatially symmetric equilibria. Two examples, two-dimensional pulsating waves (PW) and three-dimensional alternating pulsating waves (APW), have discrete spatio-temporal symmetries characterized by the cyclic groups Z_n, n=2 (PW) and n=4 (APW). These symmetries force the Poincare' return map M to be the nth iterate of a map G: M=G^n. The group orbits of PW and APW are generated by translations in the horizontal directions and correspond to a circle and a two-torus, respectively. An instability of pulsating waves can lead to solutions that drift along the group orbit, while bifurcations with Floquet multiplier +1 of alternating pulsating waves do not lead to drifting solutions. The third example we consider, alternating rolls, has the spatio-temporal symmetry of alternating pulsating waves as well as being invariant under reflections in two vertical planes. This leads to the possibility of a doubling of the marginal Floquet multiplier and of bifurcation to two distinct types of drifting solutions. We conclude by proposing a systematic way of analysing steady-state bifurcations of periodic orbits with discrete spatio-temporal symmetries, based on applying the equivariant branching lemma to the irreducible representations of the spatio-temporal symmetry group of the periodic orbit, and on the normal form results of Lamb (1996). This general approach is relevant to other pattern formation problems, and contributes to our understanding of the transition from ordered to disordered behaviour in pattern-forming systems
    corecore