211 research outputs found
Stable periodic density waves in dipolar Bose-Einstein condensates trapped in optical lattices
Density-wave patterns in (quasi-) discrete media with local interactions are
known to be unstable. We demonstrate that \emph{stable} double- and triple-
period patterns (DPPs and TPPs), with respect to the period of the underlying
lattice, exist in media with nonlocal nonlinearity. This is shown in detail for
dipolar Bose-Einstein condensates (BECs), loaded into a deep one-dimensional
(1D) optical lattice (OL), by means of analytical and numerical methods in the
tight-binding limit. The patterns featuring multiple periodicities are
generated by the modulational instability of the continuous-wave (CW) state,
whose period is identical to that of the OL. The DPP and TPP emerge via phase
transitions of the second and first kind, respectively. The emerging patterns
may be stable provided that the dipole-dipole (DD) interactions are repulsive
and sufficiently strong, in comparison with the local repulsive nonlinearity.
Within the set of the considered states, the TPPs realize a minimum of the free
energy. Accordingly, a vast stability region for the TPPs is found in the
parameter space, while the DPP\ stability region is relatively narrow. The same
mechanism may create stable density-wave patterns in other physical media
featuring nonlocal interactions, such as arrayed optical waveguides with
thermal nonlinearity.Comment: 7 pages, 4 figures, Phys. Rev. Lett., in pres
Thermodynamic Limit Of The Ginzburg-Landau Equations
We investigate the existence of a global semiflow for the complex
Ginzburg-Landau equation on the space of bounded functions in unbounded domain.
This semiflow is proven to exist in dimension 1 and 2 for any parameter values
of the standard cubic Ginzburg-Landau equation. In dimension 3 we need some
restrictions on the parameters but cover nevertheless some part of the
Benjamin-Feijer unstable domain.Comment: uuencoded dvi file (email: [email protected]
Three-dimensional gravity-capillary solitary waves in water of finite depth and related problems
Bifurcations of discrete breathers in a diatomic Fermi-Pasta-Ulam chain
Discrete breathers are time-periodic, spatially localized solutions of the
equations of motion for a system of classical degrees of freedom interacting on
a lattice. Such solutions are investigated for a diatomic Fermi-Pasta-Ulam
chain, i. e., a chain of alternate heavy and light masses coupled by anharmonic
forces. For hard interaction potentials, discrete breathers in this model are
known to exist either as ``optic breathers'' with frequencies above the optic
band, or as ``acoustic breathers'' with frequencies in the gap between the
acoustic and the optic band. In this paper, bifurcations between different
types of discrete breathers are found numerically, with the mass ratio m and
the breather frequency omega as bifurcation parameters. We identify a period
tripling bifurcation around optic breathers, which leads to new breather
solutions with frequencies in the gap, and a second local bifurcation around
acoustic breathers. These results provide new breather solutions of the FPU
system which interpolate between the classical acoustic and optic modes. The
two bifurcation lines originate from a particular ``corner'' in parameter space
(omega,m). As parameters lie near this corner, we prove by means of a center
manifold reduction that small amplitude solutions can be described by a
four-dimensional reversible map. This allows us to derive formally a continuum
limit differential equation which characterizes at leading order the
numerically observed bifurcations.Comment: 30 pages, 10 figure
Riemann solvers and undercompressive shocks of convex FPU chains
We consider FPU-type atomic chains with general convex potentials. The naive
continuum limit in the hyperbolic space-time scaling is the p-system of mass
and momentum conservation. We systematically compare Riemann solutions to the
p-system with numerical solutions to discrete Riemann problems in FPU chains,
and argue that the latter can be described by modified p-system Riemann
solvers. We allow the flux to have a turning point, and observe a third type of
elementary wave (conservative shocks) in the atomistic simulations. These waves
are heteroclinic travelling waves and correspond to non-classical,
undercompressive shocks of the p-system. We analyse such shocks for fluxes with
one or more turning points.
Depending on the convexity properties of the flux we propose FPU-Riemann
solvers. Our numerical simulations confirm that Lax-shocks are replaced by so
called dispersive shocks. For convex-concave flux we provide numerical evidence
that convex FPU chains follow the p-system in generating conservative shocks
that are supersonic. For concave-convex flux, however, the conservative shocks
of the p-system are subsonic and do not appear in FPU-Riemann solutions
Hyperbolic planforms in relation to visual edges and textures perception
We propose to use bifurcation theory and pattern formation as theoretical
probes for various hypotheses about the neural organization of the brain. This
allows us to make predictions about the kinds of patterns that should be
observed in the activity of real brains through, e.g. optical imaging, and
opens the door to the design of experiments to test these hypotheses. We study
the specific problem of visual edges and textures perception and suggest that
these features may be represented at the population level in the visual cortex
as a specific second-order tensor, the structure tensor, perhaps within a
hypercolumn. We then extend the classical ring model to this case and show that
its natural framework is the non-Euclidean hyperbolic geometry. This brings in
the beautiful structure of its group of isometries and certain of its subgroups
which have a direct interpretation in terms of the organization of the neural
populations that are assumed to encode the structure tensor. By studying the
bifurcations of the solutions of the structure tensor equations, the analog of
the classical Wilson and Cowan equations, under the assumption of invariance
with respect to the action of these subgroups, we predict the appearance of
characteristic patterns. These patterns can be described by what we call
hyperbolic or H-planforms that are reminiscent of Euclidean planar waves and of
the planforms that were used in [1, 2] to account for some visual
hallucinations. If these patterns could be observed through brain imaging
techniques they would reveal the built-in or acquired invariance of the neural
organization to the action of the corresponding subgroups.Comment: 34 pages, 11 figures, 2 table
Localized Breathing Modes in Granular Crystals with Defects
We investigate nonlinear localized modes at light-mass impurities in a
one-dimensional, strongly-compressed chain of beads under Hertzian contacts.
Focusing on the case of one or two such "defects", we analyze the problem's
linear limit to identify the system eigenfrequencies and the linear defect
modes. We then examine the bifurcation of nonlinear defect modes from their
linear counterparts and study their linear stability in detail. We identify
intriguing differences between the case of impurities in contact and ones that
are not in contact. We find that the former bears similarities to the single
defect case, whereas the latter features symmetry-breaking bifurcations with
interesting static and dynamic implications
Two-soliton collisions in a near-integrable lattice system
We examine collisions between identical solitons in a weakly perturbed
Ablowitz-Ladik (AL) model, augmented by either onsite cubic nonlinearity (which
corresponds to the Salerno model, and may be realized as an array of strongly
overlapping nonlinear optical waveguides), or a quintic perturbation, or both.
Complex dependences of the outcomes of the collisions on the initial phase
difference between the solitons and location of the collision point are
observed. Large changes of amplitudes and velocities of the colliding solitons
are generated by weak perturbations, showing that the elasticity of soliton
collisions in the AL model is fragile (for instance, the Salerno's perturbation
with the relative strength of 0.08 can give rise to a change of the solitons'
amplitudes by a factor exceeding 2). Exact and approximate conservation laws in
the perturbed system are examined, with a conclusion that the small
perturbations very weakly affect the norm and energy conservation, but
completely destroy the conservation of the lattice momentum, which is explained
by the absence of the translational symmetry in generic nonintegrable lattice
models. Data collected for a very large number of collisions correlate with
this conclusion. Asymmetry of the collisions (which is explained by the
dependence on the location of the central point of the collision relative to
the lattice, and on the phase difference between the solitons) is investigated
too, showing that the nonintegrability-induced effects grow almost linearly
with the perturbation strength. Different perturbations (cubic and quintic
ones) produce virtually identical collision-induced effects, which makes it
possible to compensate them, thus finding a special perturbed system with
almost elastic soliton collisions.Comment: Phys. Rev. E, in pres
Bifurcations of periodic orbits with spatio-temporal symmetries
Motivated by recent analytical and numerical work on two- and three-dimensional convection with imposed spatial periodicity, we analyse three examples of bifurcations from a continuous group orbit of spatio-temporally symmetric periodic solutions of partial differential equations. Our approach is based on centre manifold reduction for maps, and is in the spirit of earlier work by Iooss (1986) on bifurcations of group orbits of spatially symmetric equilibria. Two examples, two-dimensional pulsating waves (PW) and three-dimensional alternating pulsating waves (APW), have discrete spatio-temporal symmetries characterized by the cyclic groups Z_n, n=2 (PW) and n=4 (APW). These symmetries force the Poincare' return map M to be the nth iterate of a map G: M=G^n. The group orbits of PW and APW are generated by translations in the horizontal directions and correspond to a circle and a two-torus, respectively. An instability of pulsating waves can lead to solutions that drift along the group orbit, while bifurcations with Floquet multiplier +1 of alternating pulsating waves do not lead to drifting solutions. The third example we consider, alternating rolls, has the spatio-temporal symmetry of alternating pulsating waves as well as being invariant under reflections in two vertical planes. This leads to the possibility of a doubling of the marginal Floquet multiplier and of bifurcation to two distinct types of drifting solutions. We conclude by proposing a systematic way of analysing steady-state bifurcations of periodic orbits with discrete spatio-temporal symmetries, based on applying the equivariant branching lemma to the irreducible representations of the spatio-temporal symmetry group of the periodic orbit, and on the normal form results of Lamb (1996). This general approach is relevant to other pattern formation problems, and contributes to our understanding of the transition from ordered to disordered behaviour in pattern-forming systems
- …
