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Mixed Spectra and Rotational Symmetry 

HENK BROER & FmR~S TAKENS 

Communicated by M. GOLUmTSKY 

1. Introduction 

There are some physical experiments which produce time series whose 
power spectra seem to be superpositions of continuous spectra and delta func- 
tions: mixed spectra. On the other hand, there are no mathematical examples 
known of persistent attractors in dynamical systems with continuous time, hav- 
ing such spectra. (For the interpretation of power spectra in terms of 
dynamical systems see Section 2.) In this paper we show that persistent attrac- 
tors with a mixed spectrum do exist in the context of dynamical systems with 
rotational or SO(2)-symmetry. The introduction of symmetry in the problem 
is motivated by the fact that one of the very accurate experiments, leading to 
mixed spectra, is the Couette-Taylor flow as reported in [BS, 1987]. 

Our SO(2)-equivariant attractor is closely related to the quasi-periodic 
attractors whose unfoldings and bifurcations were studied, e.g., in [BHTB, 
1990]. The main difference, apart from having a mixed spectrum, is that our 
present example has sensitive dependence on initial conditions (in a topological 
sense), however, without having positive Lyapunov exponents or positive en- 
tropy. Because of  this relation with quasi-periodic attractors and with the skew 
products in ergodic theory, we call them SQP (skew-quasi-periodic) attractors. 

We also investigate the bifurcations leading to SQP attractors, in particular 
a variation of the Hopf  bifurcation between quasi-periodic attractors of 
dimension two and three, the so-called skew Hopf  bifurcation. In the presence 
of  symmetry this bifurcation is fairly well understood. Interesting problems 
seem to arise when considering such transitions from a quasi-periodic attractor 
with two frequencies to an SQP attractor after a non-SO(2)-symmetric pertur- 
bation has been added. This seems to give a new route to chaos, in which a quasi- 
periodic attractor becomes chaotic. Here, however, we mainly have numerical 
results. Now we give a description of  the content of the different sections. 

In Section 2 we discuss the interpretation of the power spectrum in terms 
of the concepts of  ergodic theory and recall the relevant results on the ergodic 
theory of differential dynamical systems. In this section there are no new 
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results, but we include it because this interpretation of the power spectrum is, 
as far as we know, missing in the general texts dealing with the applications 
of  the theory of dynamical systems to physical experiments. 

In Section 3 we construct the SQP attractors and discuss their persistence. 
To indicate the relation with the usual quasi-periodic attractors, we recall that, 
for dynamical systems with discrete time, a quasi-periodic attractor with two 
frequencies admits coordinates x, y in ~ mod I such that the time evolution 
has the form (x, y) ~ (x + c~, y + fl), with o~ and fl irrational and satisfying 
certain Diophantine conditions. An SQP attractor admits such coordinates for 
which the time evolution has the form (x, y) ~ (x + a, y + k-x)  for some 
k ( Z -  [01. This map commutes with the standard SO(2)-action on the last 
coordinate. Corresponding attractors with continuous time are obtained by 
suspension. It is important to note that the map describing the time evolution 
of an SQP attractor is not homotopic to the identity. In the present case this 
implies that after suspension we get an attractor on which the SO(2)-action 
is non-trivial, i.e., the attractor cannot be decomposed as a product of a 
2-manifold and SO(2) in a way which is compatible with the SO(2)-action. 

In Section 4 we discuss the bifurcational aspects of the SQP attractors 
related to the fact that they are non-trivial SO(2)-bundles. In order to make 
the paper self-contained, we start with a brief review of the global aspects of 
principal fibre bundles, and in particular principal SO(2)-bundles. (Here we 
have to assume that the reader is familiar with cohomology theory.) This 
theory of SO(2)-bundles then is used to show that certain bifurcations are im- 
possible: In particular, a bifurcation from a quasi-periodic attractor with two 
frequencies, on which SO(2) acts non-trivially, to an SQP attractor is ruled 
out; from this we conclude that the transition from quasi-periodic (modulated 
rotating wave, see [GSS, 1988]) to chaotic dynamics in the Couette-Taylor ex- 
periment cannot be explained in terms of SQP attractors. On the other hand, 
there exists a possibility of  a bifurcation from a quasi-periodic attractor, on 
which SO(2) acts trivially, to an SQP attractor. 

The latter bifurcation, the skew Hopf  bifurcation, has strong analogies with 
the generalized Hopf  bifurcations for quasi-periodic attractors from two to 
three frequencies, studied in [BHTB, 1990]. In our Section 5 we construct the 
formal normal forms for skew Hopf  bifurcations and in Section 6 analytical 
properties of this bifurcation, in particular, of the invariant tori, are in- 
vestigated. We shall see that in the parameter-direction the complexity of 
'Chenciner bubbles' arises. 

In the final section, we comment on various aspects of the dynamics, main- 
ly based on numerical simulations. First we discuss what happens when the 
SQP attractor, and the corresponding torus, are destroyed by resonance. Then 
we consider the skew Hopf  bifurcation with a non-symmetric perturbation 
added: We describe the first obstruction to regaining the symmetry by a coor- 
dinate change (normal-form approach) and then show some of the attractors 
which are possible when the symmetry is violated. 

This work was motivated by experimental results which we discuss now in 
some more detail. First, in the Couette-Taylor experiment (on the motion of 
fluid between two rotating cylinders) clearly an SO(2)-symmetry is present: 
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rotations around the common axis of the two cylinders. In fact there is more 
symmetry: a Zz-symmetry corresponding to reflection about the horizontal 
midplane. However, anything which occurs persistently in a situation with low 
symmetry also can occur persistently in a situation with higher symmetry. This 
holds in particular if the extra symmetry is discrete and if the dynamics is 
restricted to the part of the state space on which the action is free (i.e., if 
we consider attractors which are disjoint from their symmetric images). Besides 
this we have to point out that mixed spectra were also observed in situations 
without symmetry (compare the Rayleigh-Bdnard instability, see [GB, 1980]). 

We recall that this problem of mixed spectra was also considered in 
[FCFPS, 1980] for numerical simulations of  a system without symmetry, where 
it was shown that certain attractors, especially versions of the ROssler attractor, 
have power spectra with sharp peaks, which, numerically, cannot be distin- 
guished from delta functions. There are good reasons, though no proofs, to 
expect these attractors to have a continuous spectrum. This might also be the 
case for the Couette-Taylor and the Rayleigh-B6nard experiments: namely, that 
the delta functions, suggested by the experimental results, are just sharp (local) 
maxima in a continuous distribution. 

In some sense our results support this latter idea: Although we succeed 
in making a persistent attractor with mixed spectrum for SO(2)-equivariant 
systems, our bifurcation results indicate that the results of BRAND- 
STATER & SWINNEY [BS, 1987] concerning the Couette-Taylor flow cannot be 
modelled by an SQP attractor. 

2. Spectral theory 

The purpose of  this section is to interpret power spectra, as they are 
calculated routinely from experimental time series, in terms of the notions of 
ergodic theory, as applied to the dynamical system modelling the experiment 
giving rise to the time series. There are no new results in this section, but we 
include it since we do not know of  any reference discussing this material, 
which is a combination of ergodic theory (SBR measures), functional analysis 
(spectral theorems), and Fourier theory, and which is fundamental for applying 
the mathematical theory of dynamical systems to the interpretation of 
(physical) experiments. 

2.L General setting 

We begin by defining the notions of dynamical system, observable, attrac- 
tor, and the physical, or SBR measure. 

A dynamical system is a smooth flow ~ t : M  ~ M, where M is a differen- 
tiable manifold, usually finite-dimensional, and where ~t is a one-parameter 
group of diffeomorphisms, generated by a smooth vector field X on M. We 
think of the points x ~ M as possible states of a physical system of which ~t 
describes the time evolution. We assume that M is compact, or, if not, that 
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each forward orbit • + ( x )  = [~t(x)[  t __> 01 has a compact  closure. In some 
cases we shall also have to consider dynamical systems with discrete time 
(t~ Z) ;  they are generated by a diffeomorphism ~0 = 41.  

Often one does not observe the complete state of  a system, but only part  
of  it. We incorporate this into our setting by including a function Y : M ~  •, 
the observable, assigning to each state x E M the value Y(x),  which we observe, 
or measure, when the system is in that state. So an evolution x( t )  = ~t (x)  
leads to the time series y( t )  = Y ( ~ t ( x ) ) .  Of course, one can measure more 
'coordinates '  of  each state. This could be modelled by a function g with values 
in ~q. For simplicity we here only consider the case q = 1. 

Roughly speaking, one says that a dynamical system, given by ~t ,  has an 
attractor if there is a set of  positive measure so that any two points in that 
set asymptotically have the same future behaviour. We formalize this as 
follows. A compact  set K C M, which is the support  of  a Borel probability 
measure p, is an attractor if for some open neighbourhood B of K, and for 
some subset B' C B such that B - B '  has Lebesgue measure zero, we have for 
each x ~ B'  and each continuous g : M -~ ~, that 

T 
lim T -1 ~ g(  ~ t (x ) )  dt = ~ g d/~. 
T-~ oo 0 K 

The set B is called the basin of the attractor. A few remarks are in order. It 
would be formally more correct to speak of an attractor (K, p) .  However, in 
the cases we consider it will be clear what the measure ~ is. Our definition 
differs from the usual ones which do not refer to a measure, but simple (i.e., 
stationary and periodic) attractors clearly have a probability measure with 
the above property. The corresponding measures, also called SBR (Sinai- 
Bowen-Ruelle) or physical measures, were constructed by SINAI [S, 1968] for 
Anosov diffeomorphisms, by RUELLE [R, 1976] for Axiom A attractors of  dif- 
feomorphisms, and by BOWEN & RUELLE [BR, 1975] for Axiom A attractors 
of  flows. For more information on these measures see also [R, 1980] and 
[R, 1989]. 

It  may seem inconsistent that, on the one hand we take into account that 
not x ~ M but only Y(x) E ~ can be observed, while, on the other hand we are 
using arbitrary continuous functions g : M ~ [R in the definition of an attractor. 
This can be justified, however, by observing that if we follow the evolution 
of a state xEM,  we obtain Y ( q ~ t ( x ) ) =  (Yodpt)(x)  by looking at the 
measurement after time t. So not only Y, but also Y o ~t  is 'observable'. Final- 
ly, under generic conditions on q~t (or X) and Y,, any continuous function 
g : M  ~ [R can be written as a continuous function of Y o q~tl . . . . .  Y ~ ~rq for 
some finite sequence fl, . . . ,  tq; see [T, 1981]. 

In the following subsections we assume M, q~t, X, K,/x, B, and B'  to be as 
above. We then also consider the induced one-parameter group of unitary 
transformations q~t in 2 2 ( K ) ,  the space of square-integrable functions on K, 
defined by ~)t(g)= g ~ This one-parameter group has an infinitesimal 
generator i ~  ~,  where 

- i  
f =  lim - -  (q~t - Id) 

t-~O t 
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is a densely defined self-adjoint operator: For any c l - func t ion  g : M ~  ~, 
one has ~ ( g ]  K)  = - i .  X(g) l  K, where X(g)  is the function on M obtained 
by taking the derivative of g in the direction of X. 

2.2. The spectral theorem 

Here we describe the spectral decomposition of a one-parameter group of  
unitary transformations 4)t:H ~ H in a complex Hilbert space H with in- 
finitesimal generator i ~ .  This is mainly based on on [CFS, 1982] and 
[M, 1963], but there are many more references, e.g., see [L, 1962]. First we 
have to define a measure whose values are projections in a Hilbert space H. 

A projection-valued measure P on [R assigns to each Borel subset E C ~ a 
projection P(E)  in a Hilbert space H, i.e., P(E)  is a self-adjoint idempotent 
map, such that 
(i) P(0)  = 0; 
(ii)  P ( N )  = Id; 
(iii) P(E1) o P(E2) = P(E1 c~ E2) ; 
(iv) if El ,  E2, . . .  is a countable collection of mutually disjoint Borel sets, 
then P ( U E  i) = ~P (E i ) .  

For such a projection-valuded measure P and for f~  H, the Borel measure 
Pf is defined by Pf(E) = (P(E) f ,  f ) ,  where ( , ) denotes the inner product on 
H. This measure is positive, and if [[ f]l = 1, it is a probability measure. From 
these measures we obtain a quadratic map QP on H by setting 

Q p ( f , f )  = I x.  dPf(x) .  
- -  o o  

Note that Q~ may be unbounded (and only densely defined), but at least 
I m ( P ( E ) ) ,  for bounded E, is in the domain of Qp. From Qp we obtain a 
unique self-adjoint operator ~ p  by putting 

( ~ p ( f ) ,  F> = Q~(f ,  f )  

for all f in the domain of Qp. 
According to the spectral theorem, for Or and ~ a s  in (2.1), there is a 

~- 2 unique projection-valued measure P (with projections in J-(~u(K)) such that 
~U= ~ p .  It then follows from the above definitions and the fact that 
4)t = e i~t (properly defined), that 

+ o o  

< q ~ ( f ) , f ) =  I ei~t 'dPf(x)  
- - o o  

for all f~  ~ ] ( K ) .  We call P the spectrum of Z o r  of the group {6t}. 
To clarify the notions introduced above, we discuss their analogues, in 

terms of eigenvalues and eigenspaces, for the case of a finite-dimensional 
Hilbert space H. In this case there are no problems with densely defined but 
unbounded linear maps. If ~ i s  self-adjoint, then it has a finite number of 
real eigenvalues 2~ . . . . .  2k with mutually orthorgonal eigenspaces V 1 . . . . .  V~. 
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Then the corresponding projection-valued measure P is given by 

P(E) = Pvi, 
i : )~i~E 

where Pvl is the orthogonal projection on V~. For a vector f =  

f l  + . . .  +fk, f i (  Vi, we have Pf({2i}) =llf i l]  2, so P completely describes the 
decomposition of H into its eigenspaces. 

The main difference in the infinite-dimensional case is that the measures 
need no longer be concentrated in points. In fact, for any positive Borel 
measure a on • with ~ ( ~ )  < c~, there is a Hilbert space H, a self-adjoint 
operator 2 ,  on H, and a vector ffi  H, such that, in the above notation, 
PU=/~. Namely, take H =  2 2 ( ~ ) ,  ( 2 , ( g ) )  (x) = x . g ( x ) ,  and f ( x )  = 1 for 
all x ( R. 

We say that the spectrum P of 2 ,  as above is continuous if P ( E ) =  0 
whenever E has Lebesgue measure zero; we say that P has a pure point spec- 
t rum if there is a countable set of  points {)~i}i(Y_ such that P({)~i}iez) = Id. We 
say that P has a mixed spectrum if there are both points x E N such that 
P({x}) . 0 and Borel subsets B C R on which P is continuous and non-zero. 
Of  course, there are more possibilities: P may be concentrated on a set of  
Lebesgue measure zero without having atoms, i.e., without having points x 
with P({x}) . 0. 

For completeness, and for later reference, here we also state the spectral 
theorem for unitary operators: For each unitary operator U: H-- .  H there is a 
unique projection-valued measure Pv  on the complex unit circle S 1 C C such 
that for each fE H, one has ( U ( f ) ,  f )  = J s~ s .dPf(s) .  U is then isometrically 

equivalent with the operator ~Z o n  Cz~2f(~l) which maps g(z) to zg(z). 
Combining the two spectral theorems with Ot = eiy~t, we see that the spec- 
tra P~, and Pr of  2 "  and q~t are related by P~ = ( 2 t ) , P ~ ,  where 

2t: P~ ~ S 1 is given by at(x) = e ixt. This implies that 2 , h a s  a continuous, a 
pure point, or a mixed spectrum if and only if the same holds for 0t, for 
all t .  0. 

2.3. The power spectrum 

Let M, q~t, Y, K,/~, B etc. be as defined in Subsection 2.1. For each s~ 
and x ~ B', we define 

T 

a ( s )  = l imT -1 j Y(q)t(x))" Y(q~,+,(x)).  dt 
T ~  0 

= j y.  ( r o + : ) .  &. 
K 

We call o - the  autocorrelation function. Since Y(x).Y(cb~(x))  as a function 
of (x ,s )  is smooth, so is a. In terms of q ~ 5 : 2 2 ( g ) ~  2 2 ( K )  as in- 
vestigated in Subsection 2.2, we have 

+ c o  

or(s) = (Os(Y), Y) = ~ e ixs. dPr(x) .  
- 0 0  
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So er has a Fourier transform in the sense of a (positive) measure, which 
equals the spectral measure associated with the function Y as a vector in 
2 ~ ( K ) .  

From the theory of time series [P, 1981] we know that this Fourier 
transform Py of er is the power spectrum (or the non-normalized power spec- 
tral density function, in this reference) of the time series Y ( ~ ( x ) )  for any 
x E B'. This can be interpreted as the energy density as a function of the fre- 
quency, and it is calculated (up to normalization) as the squared norm of the 
Fourier transform of the time series. For complete details see the last reference. 
Below we shall explain, without entering the convergence problems, why this 
relation holds. 

First we recall that the Fourier transform f of f is given by 
+ m  

f ( co )  = (2zr) -J I e- i~  dt, 
- -  o o  

which implies that 
q-co 

f ( t )  = I ei~~176 d o .  

"We use the following notation. If y( t )  is a time series, for example, y( t )  = 
Y(~) t (x)) ,  defined for all t~ ~, or for all t __> 0, then yz( t )  is the time series 
defined by 

f y ( t )  if t [0, r l ,  
Yr(t) 

( 0  otherwise. 

For such a time series Y(0 we define 

err(s) = r-1  I y r ( t ) ,  yr( t  + s) tit, 
- - o o  

and hr by 
27r 

hz(cO) = TlYT(CO)I 2, 

Clearly, err converges to the autocorrelation function er as T--* oo. The func- 
tion hr(co), or rather its limit for T - ,  ~ ,  by definition is the non-normalized 
power spectral density function, although this limit in general only exists as 
a measure. We have 

2~z 12 hr(cg) = T [yr(co) 

= (2roT) -~5 e -icoIr-o. yv(t ' )  �9 yz(t)  dt dr" 

= (2re) -1 ~ e-i~os. T-1 yT-(t)" yr( t  + s) dt ds = a t ( co ) .  
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Passing to the limit, we get h ( a ) ) =  d(co).  So for x~B',  and y( t )=  
Y(q~t(x)), the spectral density functions hT converge, in the sense of  
measures, to the spectral measure Py as defined in Subsection 2.2. 

2.4. Spectra of attractors of dynamical systems 

It is not hard to see that periodic and quasi-periodic attractors have pure 
point spectra. This will be discussed in the next section. For non-periodic Ax- 
iom A attractors, e.g., see [B, 1977], the situation was investigated by SINM 
[S, 1968], RU~LE [R, 1976], and BowE~ & RUE~LE [BR, 1975]. 

For 'connected'  Axiom A attractors of  diffeomorphisms (see [R, 1976]) the 
autocorrelation of a smooth function (observable) converges exponentially to 
a constant value. This implies that the corresponding spectral density also is 
given by a smooth function, so we have a continuous spectrum. For a 'discon- 
nected' Axiom A attractor, i.e., an attractor K = K 1 w . . .  w K l which is the 
disjoint union of compact  sets Ki such that q)(K i) = Ki+l, i =  1 . . . . .  l -  1, 
and (o(Kl) = K1, the spectrum is the superposition of a continuous part,  cor- 
responding to ~0ll K1, and a part  concentrated in points, corresponding to the 
period I. 

In the case of  Axiom A attractors of  flows, the situation is more com- 
plicated; see [BR, 1975]. First we have to introduce the notion of C- 
denseness. We say that the flow q~t is C-dense on the Axiom A attractor K 
if for any xEK, W"(x) n K is dense in K. Here W"(x) denotes the unstable 
manifold of  x. For a C-dense Axiom A attractor, the autocorrelation of an 
'observable' converges to a constant (but it is not known how fast). This im- 
plies that the spectrum has no atoms, but does not yet imply that the spec- 
t rum is continuous. Still we expect generic Axiom A attractors of  flows only 
to have continuous spectra. The condition of C-denseness above is related to 
the fact that an Axiom A attractor K of a flow can have a mixed spectrum 
if it is a pure suspension, i.e., if there is a codimension-one manifold N, 
transverse to the flow and intersecting K, and a constant to such that for all 
xEKc~N, q~to(X)~Kc~N. In this case the point spectrum corresponds to 
the period t o . 

For the more complicated attractors, e.g., the examples of  HI'NON [H, 
1976], LORENZ [L, 1963], and R6SSLER [R, 1979], there are, as far as we 
known, no rigorous results. So there are no firm arguments for the sharp 
peaks, as reported in [FCFPS, 1980], to correspond to point spectra or not;  
however, it seems most likely that they do not. 

3. A persistent SO(2)-invariant attractor with mixed spectrum 

In this section we consider a sequence of examples, of  increasing complexi- 
ty, leading to the announced skew quasi-periodic attractor. 
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3.1. A 1-quasi-periodic attractor of a diffeomorphism - persistence 

We consider a C~-dif feomorphism ~ o : P ~  P of a manifold, defining a 
dynamical system with discrete time. We say that ~0 has a 1-quasi-periodic at- 
tractor if there is a smooth closed curve S C P such that 
(i) ~0(S) = S; 
(ii) ca IS is smoothly conjugate to a rotation over an angle 2rcoe, with a irra- 
tional and, moreover, satisfying the Diophantine condition below; 
(iii) for normal  vectors v # O ,  v6N~(S)=T~(P) /Tx(S ) ,  the sequence 
]]d(0~(v)[] decreases exponentially in n, uniformly in v. 

We introduce the Diophantine condition or DC as follows: c~ satisfies the 
DC if for some y > 0 ,  a__>2 and if for all k ~ ( Z - { 0 } ,  k z ( Z ,  

k2 

Note that one also defines the notion of quasi-periodic attractor without in- 
cluding the DC. We included it in order to obtain persistence. 

From the fact that ~0] S, as above, is smoothly conjugate to a Diophantine 
irrational rotation, it follows that there is a unique invariant Borel probability 
measure on S, e.g., see [CFS, 1982], i.e., ~01S is uniquely ergodic. This pro- 
bability measure is denoted by m. It follows from the unique ergodicity and 
the theory of normal hyperbolicity [HPS, 1977] that for a full neighbourhood 
B of S we even have that 

N - 1  

lira N -a ~ g(~oi(x)) = t gdm 
N - ~  c~ S 

i=0  

holds, for all x ~ B and all continuous g:P---, ~. So S, with the above measure 
m, is an attractor in the sense of  the previous section. 

Although a 1-quasi-periodic attractor is not persistent under small perturba- 
tions, it still is persistent in the following sense. For any generic k-parameter 
family ~0~, ... . .  u~:P-- ,P with ~00 .... .  0 = ~0, we have, for any p = (/~1 . . . .  ,/~k) 
near zero, a normally attracting smooth invariant closed curve Su. Further- 
more,  the set of  p-values for which (pu ISu is smoothly conjugate to a rotation 
over 2 7 ~ ( p ) ,  with c~(p) irrational and satisfying the DC, has p = 0 as a point 
of  density in the sense of Lebesgue. The present generic condition can be 
made explicit in terms of the derivative of  ~0u with respect to/~ at/~ = 0: In- 
formally it means that the rotation number ~ ( p )  should have a non-zero 
derivative for /~ = 0. These persistence properties are discussed in 
[BHTB, 1990]. We point out that an (irrational) rotation on the circle has a 
pure point spectrum. Indeed, if ~o : 51 --, ~1 is given by (p(x) = x + ~ mod 1, 
the Lebesgue measure m is invariant (if the rotation is irrational, it is the only 
invariant Borel probability measure) and there is an orthogonal  basis of  
eigenvectors of  ~2m(51) :  

{e2~inx}+= ~_ 

with eigenvalues e e~in~. 
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3.2. A 2-quasi-periodic attractor o f  a flow, a normal  f o r m  

The situation we consider here is the suspension of the example in the 
previous subsection. In other words, we consider a smooth vector field Z on 
a manifold Q, together with a codimension-one submanifold P C Q with the 
following property. A return or Poincard map (o : P ~ P is defined, i.e., a map 
~0 such that the positive orbit of  Z, starting in x ~ P, has its first intersection 
with P in (p(x). This return map ~o need not be defined on all of  P, but 
wherever it is defined, it is invertible. We say that Z has a 2-quasi-periodic 
attractor if a return map q) has a l-quasi-periodic attractor. We assume this 
to be the case, and denote the attracting closed curve for ~0 by S and the cor- 
responding attracting torus for Z by T. Such a 2-quasi-periodic attractor for 
a vector field is persistent in the same sense as the l-quasi-periodic attractor 
discussed before. Compared with the previous subsection there is one com- 
plication: Z I T is not completely described by (01S. For a complete description 
we also need the return time r : S - ~  N+, which is formally defined as follows. 
I f  x( t )  is a Z-integral curve with x(0)  (S,  then r ( x ( 0 ) )  is the smallest positive 
real number such that x ( r ( x ( 0 ) ) )  ~ S. We do not assume the return time to 
be constant (as we did for the 'pure suspension' mentioned in Subsection 2.4). 

We shall now show that, by a proper choice of  a (different) section S' C T, 
we can ensure the return map, with respect to S', is constant. We identify S 
with ~ /Z  such that ~olS is given by x ~ x + o~, o~ satisfying the DC. For a 
function g : S ~  ~ (or g : R  ~ ~ with period one), a new section Sg in T is 
defined by 

s= = I~=lxl (x)Ix ~ s l ,  

where ~t  denotes the flow of Z. The return time for Sg is easily seen to be 

72g(X) = "C(.lC) "~- g (x  + c~) - g ( x ) ,  

where also Sg is identified with R/Z in such a way that x ( S  and 0~g(x)(x) 
correspond to the same element of ~ /y .  This last equation is called the 
homological equation. We want to find, for a given function r, a function g 
such that the corresponding function rg is constant. 

Solution of  the homological equation. The solution of this type of equation is 
discussed in many places, e.g., see [A, 1983]. Since we shall encounter this 
equation several times in this article, we include a discussion of the existence 
and uniqueness of  its solutions. 

We write in Fourier series: 

72(X) = ~ 2rcinx ane , g (x )  = ~ bne 2ninx. 

By the Paley-Wiener theorem, r is in C ~ if and only if for each k, 
limn_~=~oo ann k = 0. We assume r to be in C ~. In order to get rg constant, the 
Fourier coefficients b~ of g have to satisfy 

a n - b  n + b n . e  2~inc~ = 0  
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for all n =~ 0. So we have to take bn = an/(1 - e2nina). Since we assumed that 
c~ satisfies the DC, this implies that also limn_~• oo bn' n k = 0 for all k. So g, 
defined by the Fourier coefficients bn, is in C = and, up to an additive con- 
stant, the unique solution making rg constant. 

Since we can make the return time constant, we can choose suitable coor- 

0 b 0 with a/b = a. Now dinates (x,y)~[R2/Z 2 on T s u c h  that Z IT=aOx + Oy 

it follows that Z IT is uniquely ergodic, meaning that it has only one invariant 
Borel probability measure m, which is the Lebesgue measure with respect to 
x, y. Therefore here we also have an attractor for which the sets B and B', 
as in the definition of Subsection 2.!, can be taken equal. If  i ~ d e n o t e s  the 
infinitesimal generator of  the one-parameter group of unitary transformations 
in 2 2 ( T )  induced by ~tlT, then for Z we have an orthonormal basis of 
eigenfunctions e 2~i~x. e 2~my with eigenvalues 2n (na + mb): Here we also have 
a pure point spectrum. 

3.3. An SQP attractor for SO(2)-equivariant diffeomorphisms 

We return to diffeomorphisms, but now we assume that they are 
equivariant with respect to, i.e., commute with, a given SO(2)-action. So let 
N be a manifold with an SO(2)-action. We only consider the region where the 
action is free, so we may just as well assume the SO(2)-action to be free on 
all of N. We can then identify points on the same SO(2)-orbit, thus obtaining 
a projection n :N ~ P. Clearly n is a circle bundle, even a principal SO(2)- 
bundle; e.g., see [H, 1966]. Let 9 F : N ~ N  be a diffeomorphism commuting 
with the SO(2)-action, i.e., such that for all g ~ SO(2), g o 5 u = 7' o g, where we 
identify the elements of SO(2) with the corresponding transformations in N. 
For such a ~ there is a 'projection' ~ : P --, P such that n o ~u = (o o n. We now 
assume that q) has a 1-quasi-periodic attractor S as in Subsection 3.1. We 
denote the corresponding attracting set in N by L = n -~ (S). This situation is 
as persistent as the l-quasi-periodic attractor in Subsection 3.1. 

For suitable coordinates (x, z )~  IR2/Z: on L we have 

n(x, z) = x ,  

7U(x, z) = (x + c~, z + f ( x ) ) ,  

where a is an irrational number satisfying the DC, and where f :  ~ --, ~ is a 
smooth function such that f ( x  + 1) - f ( x )  ~ Z, and hence is constant. We call 
this integer the twisting constant of the attracting set L; in the calculations 
below it is denoted by k. For most of what follows, we assume the twisting 
constant to be non-zero. Also this last assumption clearly is persistent under 
small pertubations of  gJ. 

Next we want to find coordinates 

~?=x + c m o d  1, g = z + h ( x )  m o d l ,  
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on L such that the function f ,  corresponding to the function f in the above 
representation of T, gets simplified. In the ~, y coordinates we have 

so that 

T(Y, ~) = (Y + a, g + f ( :~  - c) + h(Y - c + o~) - h(X - c ) ) ,  

f ( 2 )  = f ( 2  - c) + h(X - c + o~) - h(X - c ) .  

As in the previous subsection, using Fourier expansions for h(X) and 
( f ( x )  - kX), where k is the twisting constant, and the Payley-Wiener theorem, 
we find c and h such that for k = 0 ,  f ( x )  is constant, and for k . 0 ,  
f ( x )  = k .  x. 

For k ~: 0, the above normal  form shows that T I L  is a skew product;  see 
[CFS, 1982]. This implies that T ]L  is uniquely ergodic (implying that the at- 
tracting set L has an SBR measure and hence is an attractor) and that T]L  
has a mixed spectrum. This last fact can be understood in the following way: 
Because L, including its dynamics, projects on a 1-quasi-periodic attractor, 
there are atoms in the spectrum; the continuous part  is due to the fact that, 
given the present value of the 2-coordinate, the next value of this coordinate 
is completely unpredictable (or that successive values of  the ~-coordinate are 
completely uncorrelated). For a more formal proof  we construct a basis for 
~C~2m(L). Denote the coordinates for which the normal  form holds by x and 
z (instead of 2 and Z), so that we have T(x,  z) = (x + e~, z + kx). Then the 
invariant measure m is the Lebesgue measure with respect to x and z. We take 
the basis 

b l ,  n = e 27rilx . e 2 ~ i n z  

with I, nil7/. Then ~u* transforms bl, n to eZTric~l'b(l+kn),n. This implies, for 
n = 0, that e 2~icd, 16 Y_, are eigenvalues. On the other hand, for n * 0, we 
find or thonormal  systems 

�9 . . ,  e 2 n i e & n  �9 b _ k n ,  n ,  b o ,  n ,  b k n ,  n ,  . . .  

such that T*  maps each element to the next. The action of 7 j*, restricted to 
the linear span of  such an or thonormal  system, is called a Lebesgue compo- 
nent and has a continuous spectrum. 

This last point follows from the spectral theorem and the fact that 
H =  ~c~2(51), m the Lebesgue measure, has an or thonormal  base { e  2 ~ i n s }  

such that the t ransformation y ,  which maps the function g(s) to e2~iSg(s) 
(or  g(z) to zg(z) if we consider S 1 as the unit circle in C), also maps each 
base vector to its successor. 

We call L a skew-quasi-periodic (SQP) attractor. 
Summary. We constructed an SO(2)-invariant attractor of  a diffeomorphism T 
with a mixed spectrum that is as persistent as a 1-quasi-periodic attractor for 
diffeomorphisms without symmetry. On such an attractor there are C~-coor  - 
dinates x and z with values in [Rmod 1 such that T ( x , z )  = ( x + a , z + k x )  
for some integer k =~ 0. Such an attractor is called an SQP attractor. 
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3.4. An SQP attractor for an SO(2)-invariant flow 

As we suspended the 1-quasi-periodic attractor of  a diffeomorphism to ob- 
tain a 2-quasi-periodic attractor of  a flow, we now consider a suspension of 
the SQP attractor constructed in the previous subsection. The relation between 
all these constructions is given in Figure 1. 

So let M be a manifold with a free SO(2)-action, an SO(2)-invariant vector 
field X, i.e., for g ~ SO(2), g ,  (X) = X, and a codimension-one SO(2)-invariant 
submanifold N. Let T : N --, N be a return map for X. The orbit manifolds of  
M and N are denoted by Q and P, respectively; the induced map in P is 
denoted by q~ and the induced vector field in Q by Z. 

diffeomorphisms vector fields 
(return maps) 

L C N ~" C M x D K free SO(2)-action 

S C P~o C Qz D T no group action 

Figure 1. Relation between different attractors: left diffeomorphisms, right vector fields, 
below with no group action, above with free SO(2)-action. 

Now we impose the following conditions. The map q~ has a l-quasi-periodic 
attractor S with rotation number c~ satisfying the DC, and TI~z- I (S)  has a 
non-zero twisting constant k. We have seen that when these conditions are 
satisfied, they are persistent in the sense of Subsection 3.1. We denote the cor- 
responding attractors of T, Z and X by L, T and K, respectively. It  follows 
from Subsection 3.2 that  for suitable coordinates (x, y) ~ N2/22 on T, we have 
Z J T =  alO/Ox + a20/Oy with alia2 = c~. By rechoosing the sections P and N, 
if necessary, we obtain the situation where S =  T c~P  = [ y  =0}.  Then for 
suitable coordinates (x, y ) ~  [R2/772 on L, where we identify x and x ozr, we 
have 

T ( x , z )  = (x + c~, z + kx) mod 7/2 , 

with k r 0. Then it is clear from the theory of skew products (e.g., see 
[CFS, 1982]) that X I K is uniquely ergodic, that K is an attractor in the sense 
of  Subsection 2.1, and that it has a mixed spectrum, see Subsection 3.3. Also 
K is called skew-quasi-periodic or SQP. 

A final remark is the following. The projection 7r I K : K ~  T is an SO(2)- 
bundle. Since the twisting constant is non-zero, this bundle is non-trivial. So 
not every manifold with an SO(2)-action admits an SQP attractor. We return 
to this in the next section. 
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4. Global considerations 

We here review some general results from the theory of principal fibre 
bundles, which will only be formulated for SO(2)-bundles, and discuss the con- 
sequences for our SQP attractors in terms of possible existence and bifurca- 
tions. As a general reference for (principal) fibre bundles we recommend 
[H, 1966], which contains all the proofs of  the facts we recall here. Except 
when explicitly stated otherwise, all the topological spaces considered are 
manifolds, either finite-dimensional or modelled on Hilbert or Banach spaces. 

4.1. SO(2)-bundles 

We say that a space E with a free SO(2)-action, which is locally trivial, is 
a (principal) SO(2)-bundle. The action being free means that for g E SO(2) and 
e EE, g(e) = e implies that g is the identity element in SO(2). The action is 
locally trivial if each orbit, or fibre F0 = SO(2)'eo, has a neighbourhood W 
which is homeomorphic  to U• for some space U, and if there is a 
homeomorphism h : UxSO(2) ~ W such that gl (h(u, g2)) = h(u, glg2) for all 
u E U, gl ,  g2 E SO(2). We say that the SO(2)-bundle is trivial if the neighbour- 
hood W above can be taken equal to E. For an SO(2)-bundle as above, the 
space B of SO(2)-orbits is called its base space, and its projection is zr : E ~ B, 
mapping points to their orbit; E is the total space. Sometimes the bundle is 
denoted by its projection. 

For a continuous map f :  X ~ B, with B the base space of an SO(2)-bundle 
as above, there is an induced SO(2)-bundle with total space 

f * (E)  = {(x, e) E X x E I f ( x )  = n(e)},  

and with the obvious SO(2)-action. I f  the maps f l ,  f2 :X ~ B are homotopic, 
i.e., if they can be continuously deformed i n t o  each other, then fT(E) 
and f~(E) are equivalent in the sense that there is a homeomorphism 
h:fT(E) ~ f ~ ( E )  such that  for all eEf~(E),  gESO(2), 
(i) r~l(e) = zr2(h(e) ), 
(ii) h(g(e)) = g(h(e)) ,  
where rci is the projection of f*(E) to X. 

We say that an SO(2)-bundle E, with projection rc:E--* B, is universal if 
for each space X there is a one-to-one correspondence between homotopy 
classes of  continuous maps f : X ~  B and equivalence classes, in the above 
sense, of  SO(2)-bundles with base space X. There is a general theorem asserting 
the existence of such universal bundles - these universal bundles are 
characterized by the property that their total space is contractible, in the sense 
that all their homotopy groups are zero. An explicit construction of a universal 
SO(2)-bundle with total space, projection, and base Eso(2), 7Cso(2 ), and Bso(2), 
respectively, is the following. Let H be a complex separable Hilbert space. We 
take Eso(21 to be the unit sphere in H, which happens to be contractible. The 
SO(2)-action is defined by the scalar multiplication with complex numbers of  
norm one. The base space  Bso(2 ) then is the infinite-dimensional complex 
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projective space. Its fundamental group is trivial, implying that any SO(2)- 
bundle over the circle 5 1 is trivial, and H2(Bso(2); 7/) _-_ 7/. For any orientable 
closed surface M and any continuous f :  M ~ Bso(2), the bundle f *  (Eso(2)), 
and hence the homotopy class of f ,  is completely determined by f* (c )  
H2(M; 7/) = 77, where c is a fixed generator of H2(Bso(2); 7/). The element 
f * (c )  is called the Chern class of the bundle induced by f .  

Combining the above facts, we see that for any SO(2)-bundle n:E-~ B, 
there is a continuous f :  B ~ Bso(2 ) such that f *  (Eso(2)) is equivalent to E. If 
now f is a homeomorphism onto its image, then the bundle E is even 
equivalent to the subbundle nZo}z)(f(B)). If B is a closed 2-manifold, then 
every continuous f :  B -~ Bso(2) can be approximated by an embedding, because 
Bso(2) is infinite-dimensional. So any SO(2)-bundte over a closed 2-manifold is 
a subbundle of  the universal bundle, in fact of any universal bundle whose 
base space is a manifold. 

Finally, for later use we observe that as long as we are interested only in 
SO(2)-bundles having as their base a (closed) surface we may use, instead of 
a universal bundle, any SO(2)-bundle whose total space is 2-connected, mean- 
ing that its first and second homotopy groups are zero. 

4.2. Special SO(2)-actions 

For physical systems in the three-dimensional Euclidean space having rota- 
tional symmetry, say around the z-axis, and whose time evolution can be described 
by partial differential equations, the state space is usually as described below. In 
particular, this description is valid for the Couette-Taylor flow. 

Let D be a compact domain (i.e., D is the closure of its interior) in R 3, 
invariant under rotations around the z-axis. We think of D as the spatial do- 
main of our system; each possible state is given by a function, or a vector 
field, or another such 'field' defined on D, possibly satisfying some rotational- 
ly invariant boundary conditions. These fields together form the state space 
Z .  We assume that Z has the structure of an infinite-dimensional linear or 
affine space. The SO(2)-action (rotation around the z-axis) induces an affine 
SO(2)-action in ~ .  The topology of ~ as a topological vector space, will be 
chosen so that the evolution equation makes sense. In all the usual cases, 
however, corresponding to, e.g., L p or Sobolev norms, we have the following 
property (P) : 

(P) Let 

Z0 = {XE • I X  is not invariant under any g~SO(2), g .  Id}, 

={X6  ~ I X  is invariant under all g6SO(2)}, 

and for i > 2 ,  

~ / =  IX6 Yd'IX is invariant under the subgroup of SO(2) of order i}. 

Then each ~d~, for i __> 1, is a closed linear, or affine, subspace of  infinite 
dimension and infinite codimension. Moreover Ui%l ~ is closed. 
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We assert that ~U0 contains every SO(2)-bundle (over a surface) as a sub- 
bundle. Indeed from (P) and the fact that ~ is the complement of UT=a 
it follows that s is contractible: Any k-sphere in ~ can be contracted in 
~W, and by transversality this contraction can be made to avoid each Yc~, for 
i _> 1. On the other hand, ~U0 is just the part on which SO(2) acts freely, so, 
apart from the local triviality, s is a universal bundle and hence contains 
any SO(2)-bundle (over a closed surface) as a subbundle. Because the SO(2)- 
action induced in the above way is not differentiable, local triviality is harder 
to prove, and therefore we proceed differently. For the finite-dimensional case 
see [W, 1969]. 

We assume, which is realistic in the present context, that there are infinite- 
dimensional linear subspaces F n C Y~, n = 0, 1, 2 . . . .  such that 

o F 0 = ~ ;  
o Fn is SO(2)-invariant and the SO(2)-action on Fn is equivalent (in the sense 

of real vector spaces) with complex multiplication by z" in a complex 
Banach space (with SO(2) identified with the complex numbers with norm 
one); 

o each element in Y c a n  be approximated by elements which are finite sums 
of elements f0 ~ F0, f l  ~ FI,  etc. 

In the case where • i s  a space of  functions on D, Fn contains those func- 
tions which, in cylindrical coordinates, have the form &(z ,  r ) c o s  nq~ + 
g2(z, r) sin no. It is clear that the SO(2)-action is smooth on each F , ,  and 
also on each P~ = |  Furthermore, apart from F0 = Z-~I, we have for 

i __> 2, and n __> 1, that Pn n ~ /  has infinite codimension in F , ,  so P~ c~ s 
is contractible for n __> 1, and hence a universal SO(2)-bundle. Hence ~ 0  con- 
tains any SO(2)-bundle as a subbundle. 

4.3. Obstruction to bifurcations 

The purpose of this subsection is to show, under some mild conditions, 
that, in an SO(2)-equivariant dynamical system, no direct bifurcation exists 
from a 2-quasi-periodic attractor with non-trivial SO(2)-symmetry to an SQP 
attractor. 

First, we have to say something about the manifolds (and SO(2)-actions) 
to be allowed as state spaces. In the previous subsection we argued that we 
have to allow Banach spaces with continuous but non-differentiable SO(2)- 
actions. Technically this is inconvenient. However, near compact attractors (and 
their bifurcations) one often can construct finite-dimensional invariant 
manifolds, attracting all evolutions, so-called centre manifolds, see [HPS, 1977]. 
Also, for certain partial differential equations, there is even a global analogue 
in the form of inertial manifolds; see [MS, 1987]. In all these cases one can 
replace the infinite-dimensional state space by a finite-dimensional one, in 
which the SO(2)-action and the evolution are smooth. In the following we 
assume such a reduction to have been carried out and hence assume our state 
space to be a finite-dimensional manifold and both our flow and SO(2)-action 
to be smooth. 
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A bifurcation of a 2-quasi-periodic attractor to an SQP attractor in a 
manifold M with SO(2)-action would lead to a one-parameter family Ku of 
compact  sets, varying continuously with respect to the Hausdor f f  metric, such 
that for/~ __< 0, Kr is a torus, invariant under the SO(2)-action, and for r > 0, 
K~ is a non-trivial SO(2)-bundle over a torus. Below we shall prove that the 
existence of  such a family K~, is impossible if we require that the induced 
SO(2)-action on K~, for g __< 0, is non-trivial. 

First, in the case where the action on K0 is free, and hence free in a 
neighbourhood of Ko, the argument is simple. We restrict our attention to 
the part  M 0 C M on which the action is free. Let rr : M0 ---' B0 denote the pro- 
jection on the orbit space. The projection n(K0) of  K0 is a closed curve and 
has a neighbourhood U such that z r - l ( u )  is a trivial SO(2)-bundle. But then 
r r - l ( u )  cannot contain a non-trivial subbundle like Ku, g > 0. 

In the case where the action on K0 is not free, we consider the vector 
field Y on M which generates the SO(2)-action, i.e., if SO(2) is identified with 
the complex numbers of  norm one, Y(x)  is the tangent vector of  the curve 
s ~ eiS(x). Since we assume that the SO(2)-action on K0 is neither trivial nor 
free, there is an integer l such that for each x ( K o ,  eiS(x) = x for s = 2n/ l  
and eiS(x) * x  for x (  (0, 27r/l). Now we take a smooth closed curve S C K0, 
everywhere transversal to Y and intersecting each SO(2)-orbit only once. Then 
we extend S to a codimension-one (open) manifold Z in M, transversal to K0, 
and to Y; we define U to be the union of all SO(2)-orbits through Z. Clearly, 
U is a neighbourhood of K0. Finally we define a projection 

H :  Z x  SO(2) ---, U 

by H ( x ,  e is) = eiS(x), again identifying SO(2) with the complex numbers with 
norm one. It is not hard to see that the number l (x)  of points in H - l ( x )  
is the largest integer such that ei(27r/l(x))(x) = x .  So /(/~ = H - I ( K u )  for r > 0 
is homeomorphic  to Ku. Also /(u = H - 1  (K/~) for g _< 0 is a torus, but now 
with a free SO(2)-action. Still /(u depends continuously on/~.  We saw before 
that this is impossible. 

4.4. Skew Hopf  bifurcation 

In this subsection we show that it is possible to have a bifurcation of a 
2-quasi-periodic attractor with trivial SO(2)-action to an SQP attractor. This 
is called a skew H o p f  bifurcation. In the usual H o p f  bifurcation the dimension 
of the attractor goes up by one, and one frequency is added; here the dimen- 
sion also goes up by one, but the attractor becomes a skew product. For per- 
sistence and normal  forms of this bifurcation, see the next section. 

As in the previous subsection, M is a manifold with an SO(2)-action, while 
Ms C M denotes the set of  points in M on which SO(2) acts trivially. We 
assume that Ms contains a 2-torus T. Also we assume that we can choose in 
the normal  bundle of  T a trivial subbundle N of  dimension 4 on which SO(2) 
acts freely. Note that it is possible to find in Fn, n = 2, as defined in Subsec- 
tion 4.2, a manifold M with induced SO(2)-action in which all the above ob- 
jects can be realized. Since the SO(2)-action is free in N, we can introduce a 
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complex structure in its fibres so that the SO(2)-action corresponds to complex 
multiplication. Since N is trivial, we can split it into two trivial 1-dimensional 
complex bundles N1 and N2 which we identify with T• C. Now we want to 
construct a non-trivial complex l-dimensional subbundle W in N. For this we 
need a map w:T--* p I ( c ) ,  P I (C)  being the complex projective line, whose 
elements we denote by pairs [zl :z2], not both equal to zero, while [zl :zz] and 
[2zl:2zz] define the same element. The bundle corresponding to w is W =  
[ (X,  b/ l ,  / 2 2 ) ] Z l ( X )  " Ul "~-Z2(X) �9 U 2 = 01,  where w(x) = [za(x):z2(x)],  and where 
x ~ T,, ul, u2 ~ C, with (x, ul), (x, u2) representing elements in N1, N2 respec- 
tively. Then W is non-trivial if and only if the degree of w is non-zero, i.e., 
if and only if w is not homotopic to zero. In fact, P I (C)  can be interpreted 
as the base of  a 'universal' SO(2)-bundle for SO(2)-bundles over surfaces (see 
the remark at the end of Subsection 4.1), the total space of this 'universal' 
bundle being the unit sphere in C 2, and hence 2-connected. Since W is a com- 
plex bundle, it is, as a real bundle with 2-dimensional fibres, invariant under 
the action of SO(2). 

A bifurcating attractor now can be obtained as follows. Take a one- 
parameter family X u of SO(2)-invariant vector fields on M such that T is in- 
variant and such that on T we have a quasi-periodic flow. Furthermore, we 
take X u such that the bundle W is invariant under the derivative of the flow 
defined by X~. Finally we arrange that the (normal) derivative of the flow is 
attracting to T (in all directions) for/~ < 0 and such that for/~ = 0 the attrac- 
tions in the W directions, and only in these directions, become repelling. Fur- 
thermore, we assume the higher-order terms to be such that for ~ = 0, X 0 is 
still attracting towards T. It is clear that such a one-parameter family Xu can 
be constructed. The corresponding attractors Ku then are: 

o for/~__<0: K ~ = T ;  
o for ~ > 0: Ku is an SO(2)-bundle over T, which is non-trivial since the 

bundle W is non-trivial. 

For p > 0, the dynamics on Ku is indeed the dynamics of  an SQP attractor 
if the induced flow in the orbit space Ku/SO(2) is 2-quasi-periodic, which is 
persistent in the sense dicussed in Section 3. This concludes the proof that a 
2-quasi-periodic attractor can become skew-quasi-periodic. 

We return now to the Couette-Taylor experiment and the possibility of ex- 
plaining the transition of the 2-quasi-periodic dynamics (modulated rotating 
wave) to the chaotic dynamics with mixed spectrum. In the 2-quasi-periodic 
situation, the states are not in the fixed-point set of the circle action (this is 
clear from the photographs of the experiment which show patterns which are 
not rotationally symmetric). This means that the dynamics is described here 
by a 2-quasi-periodic attractor on which the symmetry does not act trivially. 
Thus there is no possibility of an SQP attractor bifurcating off  in a con- 
tinuous way (continuous in the Hausdorff  sense for the attracting sets), and 
the experiment suggests strongly that we have here a soft bifurcation (i.e., that 
here the attracting set changes continuously). This means that, though the 
skew Hopf  bifurcation describes a persistent way to go from 2-quasi-periodic 
to SQP, it is probably not the explanation for the Couette-Taylor phenomenon. 
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5. Skew Hopf bifurcation and normal forms 

We consider the transition from a 2-quasi-periodic attractor to an SQP at- 
tractor, as in Subsection 4.4, but now from the point of  view of normal forms. 
In order to simplify our presentation we only discuss normal  forms for the 
corresponding return maps. So for such a return map we consider an attracting 
circle losing its stability; we assume, however, that it is still contained in a 
3-dimensional normally attracting invariant manifold (this assumption is at 
least persistent; see also [BHTB, 1990]). In our further discussion we shall 
restrict our attention to this invariant manifold, to be denoted by N. We 
assume the bifurcation to take place in the presence of SO(2)-symmetry: The 
attracting manifold then can be chosen to be SO(2)-invariant. From the discus- 
sion in the previous section it follows that we have to assume that SO(2) acts 
trivially on the (attracting) invariant circle S and that it acts freely on its nor- 
mal bundle. This means that we have the following normal  form for S and 
the SO(2)-action on N near S: There are coordinates (x, z.1, Z2)E ~ / Z X ~  2 =  
~ l x ~ 2  on N such that S = 51x{0} and such that SO(2) acts by rigid rota- 
tions in R 2. 

In this section we often identify [~2 with C through (zl,  z2) ~ Zl + iz2 = 

re 2gis with s E R/7/. The diffeomorphism (return map) ~u, due to the fact that 
it commutes with the SO(2)-action, has the form 

~ ( x ,  r, s) = ( f ( x ,  r2), rgl(x,  r2 ) , s  + g2(x, r2) ) ,  

where both x and s are in JR/Z, f ( x  + 1, r 2) = f ( x ,  r 2) q- 1 and 
g2(x + 1, r 2) = g2(x, r 2) + k, and, as in Subsection 3.3, kr Z is the twisting 
constant which is supposed to be non-zero. 

5.L Normal  form for  

The main purpose of putting ~u in normal  form is to make the x- 
dependence of ~g(x, r, s) as simple as possible. Restricting to r = 0 we have 
~ ( x ,  O, s) = ( f ( x ,  0), O, s + gz(x,  0)) (for notation see above). The map 

x ~ f ( x ,  0) is an g 1 diffeomorphism. Let c~ be its rotation number. We 
assume c~ to satisfy the DC, Then by [H, 1979] and [Y, 1982] we can choose 
a new C ~ x-coordinate so that f ( x ,  O) = x + c~ (rood l). Now, exactly as in 
Subsection 3.3, by changes of  coordinates consisting of  
(i) adding a constant to x (mod 1); 
(ii) applying an x-dependent rotation, i.e., replacing s by s + S (x ) ,  with 

S(x  + 1) = S(x) ;  
we obtain gZ(X, O) : kx. Next we show how to make gl (x ,  0) independent of  
x. We replace r by f = rG(x ) ,  where G is a positive function with G(x  + 1) : 
G ( x ) .  This corresponds to a smooth change of coordinates in 5 1 x  ~2 :Yl, Y2 
are replaced by Yi = y i G ( x )  �9 The expression for ~, with respect to (x, f, s) 
now is 

~P(x, f, s) = (x + c~ + O(f2),  G -1 (x) G(x  + ~). gl (x, 0).  ? + O(f3),  s + kx  + O ( f ) ) .  
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So we want to find a positive function G such that G - l ( x )  �9 G(x  + ~ ) .  
g~(x, 0),  or - l n  G(x)  + In G(x  + ~) + In gl(x ,  0), is constant. But this is 
exactly the problem we solved in Subsection 3.2 using Fourier series. In the 
same way we obtain here a solution for G which is unique up to a 
multiplicative constant. So again writing r for ? we have the following 
asymptotic expression for f ,  g l ,  and g: (i.e., up to terms which are infinitely 

flat in r ) :  
Cr 

f ( x ,  r 2) = x --I- o~ -k- ~.~ oti(x) r 2i , 

i=1 

gl(x,  r 2) = &  + ~/~i(x~ r 2i, 
i=1 

g2(x, r 2) = kx -}- E yi(x) r2i" 
i=1 

With the next change of coordinates we replace oq, ill ,  and Yl by constants. 
Consider the following change of coordinates, corresponding to a C ~ 

transformation for x, Yl, Y2: 

2 = X + a s (x) r 2, ? = r + b 1 (x) r 3, g = s + c 1 (x)  r 2 . 

With respect to these coordinates we have 

~./(.~, ?, g) = (S( .~ ,  ?2),  ?~1(2,  72), g _1_ g2(2 ,  ?2))  

with 

f ( 2 ,  ?2) = 2  + O~ + (0~1(2) + al(-g" + oz) -- a l(Y')  ) ?2 + 0 ( 7 4 )  , 

~1(2  ' ?2) = f l o  + ( i l l ( ~ )  + b1 (2  + o~) - h i ( x ) )  72 + 0 ( 7 4 ) ,  

g2(2 ,  72) = k3~ -'}- ()"1 ()~) - k .  a l ( x )  + Cl(~C + o/) - Cl(X))  72 -I- O ( 7 4 )  . 

It  is again a matter  of  solving the same problem as in Subsection 3.2 to make 
the coefficients of  ?2 independent of  ~, using the fact that o~ satisfies the DC. 
Note that if I/~0l * 1, we even do not need c~ to satisfy the DC when simpli- 
fying gl .  However, the case Ifl01 = 1 corresponds to the situation where the 
invariant circle is losing its stability, in which we are most interested. Going 
on inductively, and calling the new variables again x, r, s, we obtain, up to 
terms of order F2N+2; 

N 
= + + ~ ~r2i  f ,x, r 2,~ x c~ , , 

i=1 

N 
gl(x~ r2) -= flo q- E flir2i' 

i=1 

N 
g2(x, r 2) = kx -t- ~ yi r2i. 

i=1 
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5.2. Normal forms with parameters 

Here we consider the case where the map 7*, as described in the introduc- 
tion of this section, depends on parameter(s) / / =  (//1 . . . . .  //q) ~ ~q. Using 
the same arguments as in the previous subsection one can prove that the map 
can be put in the form 

gs/~ (x, r, s) = ( f ( / / ,  x, r2), rgl( / / ,  x, r2), s + g2(//,  x, r2 ) ) ,  

where f ,  gl ,  and g2 are, up to terms of order o ( I / / I  N + IrlN), independent 
of x. So up to these higher-order terms we have 

f( /~,  x, r 2) = x + c~(//) + f ( / / ,  r2) ,  

gl ( / / ,  X, r 2) =,60(/-/) + i l l ( / / )  r 2 - t -g l ( / / ,  r2) r4, 

g2(// ,  x, r 2) = kx + g2(// ,  r2) r2- 

See also [BT, 1989], e.g. 
Without loss of generality we may assume that fl0 > 0. As we observed 

before, the stability of the invariant circle { r =  01 changes for /7o( / / )=  1. 
We assume that /?0(0) = 1, i.e., we assume that the normal form is centred 
at a point where the stability changes. Furthermore, we assume that 
d/7o/d//(O) * O. For / / =  0, the stability of {r = 0} is determined by/71(0):  It 
is stable for i l l (0) < 0 and unstable for /71(0) > 0. The generic assumption 
is that /~1 (0) . 0; since we want to investigate a bifurcation to a nearby at- 
tractor, we (have to) assume that /Ta (0) < 0. A final generic assumption is 
that &~/d//(O) and d~o/d//(O) are linearly independent. 

Under the simplifying assumptions that the terms of  order O ( I//IN ..}_ I r I N) 
are zero, we can give the following description of  the dynamics. The parameter 
space is divided ( n e a r / / =  0) into two parts, separated by the codimension-one 
manifold H =  {//6 Rql/70(//) = 1}. On one side of H where rio(//) < 1, the in- 
variant circle is attracting, on the other side it is repelling. But on the side 
where /7o( / / )>  1, there is another attracting set, defined by { r=R( / / ) } ,  
where R(/ / )  is the positive solution, near zero, of 

/70(//"/) @/71(//) r2 + gl( / / ,  r2) r 4 =  1, 
SO 

R(//)  = ~/(1  -/70(//))//71 (//) 

This attracting set is a torus T/~ and is an SQP attractor whenever 
o~(//) q - f ( / / ,  R(/ / )  2) is irrational and satisfies the DC. 

Of course this simple picture changes somewhat if the terms of order 
O( ]// ]U ...[_ r N) are non-zero. However, a number of qualities are persistent: 

o If {r = 0} is hyperbolically attracting or repelling, this property remains 
under small perturbations. 

o The torus T u is normally attracting and hence persistent under small per- 
turbations (though the persistence becomes weaker as // approaches H) .  

o The irrationality (including DC) of rotation numbers of 7su/[r = 0} and of 
the map, induced by gs in the space of SO(2)-orbits of  Tv, is persistent in 
the sense of Section 3. 
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In fact in Section 6 we shall show that the above description of the 
dynamics remains valid for a set of  B-values (near zero) with large positive 
measure. 

6. Invariant tori 

In this section we investigate the existence of invariant 2-tori in our family 

~ ( x ,  r ,s)  = ( f ( B , x ,  r2) , rgl(B,x,  r2),s +g2(B,X, r2)) 

of maps. The starting point of  this study is the parameter-dependent normal  
form as obtained in Subsection 5.2. Indeed, we shall establish the persistence 
of the tori T, as found in the truncated normal  form. 

The parameters were named B ~ R q in a general way. From now on we 
simplify slightly, making use of  the (generic) conditions given in Subsection 5.2 
on the coefficients c~ and fl0 of  the normal form. In fact, we take q = 2, 
writing B = (2, a ) ,  where 2 :=  1 + rio. The parameters 2 and o~ here play a 
different r61e: 2 is a local parameter  as before, while o~ is allowed to vary 
globally over some compact  set. To be more precise, in the parameter  plane 
we fix a rectangle of  the form R : =  [ - 2 0 ,  20]x[c~_, o~+], f rom now on 
restricting our attention to the case where p ~ R. 

Let us consider the parameter-dependent normal form of Subsection 5.2 in 
some detail. The form given there holds on the nowhere dense, perfect subset 
RDC of R, defined by the DC. As is shown in [BB, 1987], [BHTB, 1990], the 
normalizing transformation depends on the parameter o~ in a W h i t n e y - C  ~ 
manner. This means that this t ransformation can be extended over the con- 
t inuum R as a C~ In this way, the functions f ,  gl and g2 
of the normalized part  in the a-direction extend in a C~-way. Moreover, the 
perturbation terms now obtain the form 

( 0 (  ])~ ]N + r N) ...[_ Pp(x, r, s ) ) ,  

r (O([~  I N + r N) + Ql, , (x,  r, s ) ) ,  

(O(I)~lu + r N) + Q2,u(x, r, s ) ) ,  

where P, Q1 and Q2 are infinitely flat on RDC. We note that all estimates in 
the above formulae are uniform for B ~ R, as well as in the angles x and s. 

6.1. Parameter domain of the tori 

We recall the obvious fact that for all B E R the circle r = 0 is invariant. 
From now on we assume that the normal  form coefficient i l l (P)  is negative 
on the whole of  R, if necessary taking R somewhat smaller. In this case, as 
)L changes from negative to positive, our invariant circle r = 0 changes from 
attracting to repelling and an attracting 2-torus may appear near T~. Indeed, 
using hyperbolicity on the above normal  form, we investigate the existence of 
invariant 2-tori of  the family ~ ,  for P ~ R, where 2 ranges over some right- 
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hand neighbourhood of the line 2 = 0. Here we use a well-known contraction 
method on cone-fields; compare [RT, 1971] and [L, 1973]. For other methods 
also compare,  e.g., [I, 1979] and [BHTB, 1990]. 

To this end we first fix some c~0E (~_ ,  c~+) satisfying the DC. That  the 
functions P and Qj, j = 1, 2, are flat on Rnc then implies that there exists an 
infinitely flat function, p :  (•+, 0) ~ (JR+, 0), such that 

IP[, IQy] = P ( r  c~ - ~01) O( lz l  ~ + 12 I~ 
j = 1, 2, where the estimate is uniform in x, s and O~o. Next we consider an 
open disc of the form 

2~0,a :=  {(2, c~) s  < )~ < a,p(]o~ - c~01) < 23}, 

determined by positive constant a. 
From now on, we restrict our attention to the case where lz ~ ~%,a .  

Observe that this disc ~ 0 ,  a is contained in a right-hand neighbourhood of 
the line 2 = 0, while its boundary touches this line with an infinite order of  
contact; see Figure 2. 

O 

Figure 2. A disc 2~0, a. 

Note that in this way the size of  the perturbation terms is controlled by 
the constant a. The main result of  this section states that, for sufficiently small 
a, for parameter  values /~ 6 ~ % . a ,  our family Tu indeed has a unique, at- 

tracting invariant 2-torus. Here the choice of  the constant, among other things, 
depends on the degree of differentiability of  these tori, which can be any finite 
number. By the uniformity in o~ 0, we obtain an uncountable union of such 
discs, which covers a large part  of  a right-hand neighbourhood of the line 
2 = 0 .  

In the complement  of  this union, near this line we meet so-called Chen- 
ciner bubbles, or resonance holes; e.g., compare [C, 1985a], [C, 1985b], 
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[C, 1988], [BB, 1987], [IL, 1988] or [BHTB, 1990]. In the present case, the 
dynamics for parameter values inside these 'bubbles' still is not quite 
understood; for a few remarks on this subject we refer to Subsection 7.1, 
below. 

6.2. Scaling 

In order to find the tori we first perform a standard scaling, writing 

r =  (1 + y) x / l u / ( - f l l ( O ,  c~)) . 

From now on we work in the coordinates (x, s, y).  After some computation, 
we find the following form for our family g*,: 

~ u ( x , s ,  y) = (x + o~ + a(i t )  2 ( 1 + y ) 2 + F ,  s + kx 

+ b(/a) 2(1 + y ) 2  + G2, (1 - 2it) y - 3ity 2 - ity3 q_ G1 ) , 

where 

Fv(x,  s , y )  = O(2 2) +p( ]o~  - o~01 ) 0 (20 )  = Ga, I~(x, s , y ) ,  

G,,u(x,  s , y )  = 0(22)  +p(Ic~ - o~01) O(it -I/2) 

as it $ 0. The search for the invariant 2-tori then is near y = 0. To be more 
precise, we shall look in a neighbourhood given by l yl__< b2, for an ap- 
propriate, positive constant b. 

It is not difficult to show that, for b sufficiently small, the region l Yl - bit 
is positively invariant under T~. Moreover, its derivative satisfies the estimate 

Dx, s,y ~ ( x ,  s, y) = k 1 "t- / O ( i t 2 )  0 (22)  O ( i t )  

0 0 1 - -2 i t  \ O ( i t  2) O(it 2) O( i t z ) j  

as it ; 0. Again uniformity holds on the compact domain under consideration. 
We note that the terms 0 ( 2 )  in the third column of the perturbation matrix 
are due to the lower-order terms of the normal form. 

6.3. Cone-fields 

In order to prove the existence of the invariant 2-tori, we construct a cone- 
field in the tangent-bundle of the phase-space. First we adopt the convention 
that tangent vectors in the point (x, s, y) are written as (~, a, t/), employing 
the usual connotation. We now consider such a field given by 

~2 ..].. 220.2 >_ C2/,/2, 

where c is a positive constant. It is not hard to verify that for an appro- 
priate choice of constants, this cone-field is invariant under the derivative 
Dx, s,y T , ( x ,  s, y) .  The constant c should be large enough in order to compen- 
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sate for the O(2)-terms in the perturbation, as mentioned before. Also, the 
constant a, which bounds 2, should be small enough now to compensate for 
the effect of the 'nilpotent '  term k. 

Moreover, the derivative contracts this cone-field, making it narrower in the 
r/-direction. Here we employ a weighted norm 

N/~ 2 -~ 220 .2 + c2r/2 . 

By a standard argument, this yields the unique existence of an invariant 
2-torus, as desired. See the references quoted above. To begin with, this 
method yields the regularity of the torus is C ~. However, using its uniqueness 
and considering its normal hyperbolicity, one can obtain any finite degree of  
differentiability. For this purpose, the parameter domain may have to be 
shrunk further. 

7. Discussion of the dynamics 

In this section we briefly discuss the dynamics of the family ~ , ,  for 
parameter values/ t  in some neighbourhood of the line 2 = 0. This discussion 
is mainly based on numerical simulation. In a forthcbming work, partly in 
the spirit of  [C, 1985b] and [C, 1988], we plan a more thorough mathematical 
investigation of this. 

7.L The present symmetric case 

We start with our symmetric family ~u, for parameter values ~ in a 
neighbourhood of  the line 2 = 0 in the rectangle R; see Figure 3. 

As said before, the circle r = 0 always is invariant, attracting for ;. < 0 and 
repelling for 2 > 0. As we saw in the previous section, for )~ > 0 sufficiently 
small and in the union of  the discs ~ 0 , a ,  over c~0 satisfying the DC, there 
exists a unique 2-torus attractor. 

< 
Figure 3. Union of discs, 'bubbles' in the complement. 
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The generic dynamics of the corresponding family of circle maps is well 
known, e.g., compare [A, 1983] or [BT, 1989]. There exists a C=-small per- 
turbation of the set RDC, containing parameter values /~ for which this 
dynamics is quasi-periodic. This perturbed set still has large measure in the 
rectangle R; e.g., compare [BHTB, 1990]. 

In the corresponding 2-tori the dynamics is SQP; see above. For g-values 
in the complement of this perturbed set, the circle dynamics is of  'phase-lock' 
type: These resonant circles contain periodic attractors and repellors, arranged 
in an alternate way. The corresponding dynamics in the 2-tori also is of 
'phase-lock' type, quite comparable to what happens in the usual quasi- 
periodic Hopf-bifurcation; again, e.g., see [BHTB, 1990]. 

As numerical simulations suggest, and probably due to the resonances, the 
dynamics for g-values inside the 'bubbles' is more involved. Here the 2-torus 
may decay to a surface with a non-regular projection on the circle r = 0, while 
for other parameter values it completely disappears. As we saw before, the 
SQP attractors do not have positive Lyapunov exponents. One question to ask 
is whether, say in the 'bubbles', evolutions can occur that do have a positive 
Lyapunov exponent. 

7.2. Near symmetry 

Here we consider the skew Hopf  bifurcation after a non-symmetric pertur- 
bation has been added. A first question is whether non-symmetric terms can 
be transformed away with coordinate transformations like those we applied in 
order to obtain (formal) normal forms. It turns out that this is impossible. 
We demonstrate this by explicitly displaying the obstructions in the simplest 
case: 

We consider transformations on $1•  ?a, that do not commute with the 
rotations in ~2. We use complex coordinates (x, z) ( 5 1 X C  ~--- 51X [~2 In the 
rotationally symmetric case, with an irrational and DC rotation in 51 x{0} we 
obtained the normal form 

7qx, z) = (x + ~ + O(Iz l2) ,  (flO e2~ikx -t- O([Z/2)) Z).  

The lowest-order term in z, not commuting with the SO(2)-action, that can be 
used as a perturbation, has the form (0, h(x ) ) ,  with h : 5 1 =  ~/77~ C. So, 
as the simplest perturbation away from the symmetric case, we consider 

7re(x, z) = (x + c~ + O([z]2) ,  ah(x) + (/3o eZ~ikx + O(Iz l2) )  z ) ,  

a being a small parameter. In accordance with the above, we assume h to be 
in C =. 

If the term ah(x) can be transformed away (modulo terms of the order 
o(Le l a+ I zl)), then this can be done by a coordinate change of the form 

= z + eg(x).  For such g we have, up to terms of the order a2: 

~ ( x ,  ~) = (x + c~ + O(IZt2), (floe a~ikX + O(IZ12)) g 

+ (h(x)  + g(x  + c~) --floeZ~ikXg(x)) e ) .  
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So the problem is to find, for a given h, a function g satisfying the equation 

h(x)  + g(x  + c~) - floeZrcikxg(x) = 0 (*) 

Since T is a diffeomorphism, we may assume that fl0 > 0. For ,60 =~ 1 the 
equation can be solved. However, this would correspond to the case of  an in- 
variant circle which is normally hyperbolic, while we are interested in the in- 
variant circle at the moment  that it loses its stability. So we assume that 
,O0 = 1. 

Figure 4. Numerical simulations in the symmetric case. 

Next we write h and g as Fourier series: 

h(x)  = ~.i hne2~Zinx' g(x)  = ~-I gme2~imx 

and we have to solve 

hn + gn ez~zinx - -  gn- -k  = 0.  (**) 

Since we assumed h to be in C ~, we have limn_,.~ hnn k = 0 for all k. On the 
other hand, in order to have the solution g of  (*) continuous, the solutions 
{gk} of (**) should at least satisfy limn_~• gn = 0. Clearly we can construct 
a unique solution [g~-} of (**) such that lim~_~_~ g7  = 0 and another unique 
solution {g+} for which lim~_~ g+ = 0. These two solutions are equal if and 
only if gl- = gl + . . . . .  gk- = gk +. In that case, denoting the coinciding solu- 
tions by {~n}, we have ]g~l--< ~'m<-nlhm[ and ]~ [  ___ ~]m_>n]hm]. This implies 
that lim~_~• g, ,nk= 0 for all k, and  hence that the co~responding function 
g is in c =. In the case where {g~-/ and {g+} are not equal, there is not even 
a continuous function g satisfying (*). So our normal form problem has an 
obstruction 

(21 . . . .  , )~k) E C k, "~i = g i -  - -  gi  + �9 
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Observe tha t  by al lowing for  ro ta t ions  and  scalar  mul t ip l ica t ions  in the  z-coor-  
d ina te ,  we can t r ans fo rm the obs t ruc t ion  (21,  . . . ,  )~k) to (c)~ 1 . . . . .  c~,k), for 
any c~ C\{0}. Moreover,  it turns  out  tha t  i f  one tries to remove o ther  non-  
symmet r ic  terms,  the  p rob lem always reduces to equa t ions  o f  the  fo rm (*) and  
(**), leading to the  same type  o f  cons t ruc t ions .  

Figure 5. Invariant attracting curve losing its differentiability near a non-symmetric 
Hopf bifurcation. The horizontal coordinate is the x-coordinate on ~2, the vertical 
coordinate is the real part of z. 

~%1~ 

Figure 6. A H~non-like attractor on an attracting invariant torus - coordinates as in 
the previous figure. 
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The above calculation also shows that the invariant circle {z = 0}, as a dif- 
ferentiable invariant closed curve, in general, is not persistent under non-sym- 
metric perturbations. This is illustrated in the accompanying figures, obtained 
by numerically detecting the attracting set. Here a non-symmetric perturbation 
term was used, as in the above example. 

The above discussion applies for the case of  )L < 0, before the skew H o p f  
bifurcation takes place. We point out that, also after the skew H o p f  bifurca- 
tion has taken place, so that )~ > 0, non-symmetric perturbations seem to have 
important  consequences. In Figure 6 below we show the attractor in an in- 
variant torus, as obtained by a numerical simulation. This structure looks like 
the closure of  some unstable separatrix - locally it looks like the H6non at- 
tractor. 
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