We consider FPU-type atomic chains with general convex potentials. The naive
continuum limit in the hyperbolic space-time scaling is the p-system of mass
and momentum conservation. We systematically compare Riemann solutions to the
p-system with numerical solutions to discrete Riemann problems in FPU chains,
and argue that the latter can be described by modified p-system Riemann
solvers. We allow the flux to have a turning point, and observe a third type of
elementary wave (conservative shocks) in the atomistic simulations. These waves
are heteroclinic travelling waves and correspond to non-classical,
undercompressive shocks of the p-system. We analyse such shocks for fluxes with
one or more turning points.
Depending on the convexity properties of the flux we propose FPU-Riemann
solvers. Our numerical simulations confirm that Lax-shocks are replaced by so
called dispersive shocks. For convex-concave flux we provide numerical evidence
that convex FPU chains follow the p-system in generating conservative shocks
that are supersonic. For concave-convex flux, however, the conservative shocks
of the p-system are subsonic and do not appear in FPU-Riemann solutions