104 research outputs found

    Homozygous NMNAT2 mutation in sisters with polyneuropathy and erythromelalgia.

    Get PDF
    We identified a homozygous missense mutation in the gene encoding NAD synthesizing enzyme NMNAT2 in two siblings with childhood onset polyneuropathy with erythromelalgia. No additional homozygotes for this rare allele, which leads to amino acid substitution T94M, were present among the unaffected relatives tested or in the 60,000 exomes of the ExAC database. For axons to survive, axonal NMNAT2 activity has to be maintained above a threshold level but the T94M mutation confers a partial loss of function both in the ability of NMNAT2 to support axon survival and in its enzymatic properties. Electrophysiological tests and histological analysis of sural nerve biopsies in the patients were consistent with loss of distal sensory and motor axons. Thus, it is likely that NMNAT2 mutation causes this pain and axon loss phenotype making this the first disorder associated with mutation of a key regulator of Wallerian-like axon degeneration in humans. This supports indications from numerous animal studies that the Wallerian degeneration pathway is important in human disease and raises important questions about which other human phenotypes could be linked to this gene

    Gene expression patterns vary in clonal cell cultures from Rett syndrome females with eight different MECP2 mutations

    Get PDF
    BACKGROUND: Females with the neurological disorder Rett syndrome are heterozygous for mutations in X-linked MECP2 that encodes methyl-CpG binding protein 2 (MeCP2) thought to act as a transcriptional repressor. To identify target genes for MeCP2 modulation, we studied global gene expression in single cell-derived wild-type and mutant MECP2 expressing fibroblast clones with four common mutations (R106W, R306C, 705delG, 1155del32) and in lymphoblastoid cell lines (LCLs) that included four mutant MeCP2 (T158M, 803delG, R168X and 1159del28) expressing, and five (1159del28, R106W, R255X, 803delG, 803delG) wild-type MeCP2 expressing lines. METHODS: Clonality and mutation status were verified by androgen receptor methylation assays for X-inactivation and by sequencing MECP2 transcripts. Expression studies were done with oligonucleotide microarrays (Affymetrix U95) and verified with real-time quantitative RT-PCR using Sybr Green. RESULTS: Expression of 49 transcripts was increased, and expression of 21 transcripts was decreased, in at least 3 of 4 mutant/wild-type fibroblast comparisons. Transcript levels of 11 genes, determined by quantitative RT-PCR, were highly correlated with the microarray data. Therefore, multiple additional clones from two Rett individuals were tested by RT-PCR only. Striking expression differences were found in both mutant and wildtype MeCP2 expressing clones. Comparing expression profiles of lymphoblastoid cell lines yielded 16 differentially expressed genes. CONCLUSIONS: MeCP2 deficiency does not lead to global deregulation of gene expression. Either MeCP2's in vivo function does not involve widespread transcriptional repression, or its function is redundant in cell types that also express other methyl-CpG binding proteins. Our data suggest that clonal fibroblast strains may show substantial inter-strain variation, making them a difficult and unstable resource for genome-wide expression profiling studies

    Pediatric multiple sclerosis: update on diagnostic criteria, imaging, histopathology and treatment choices

    Get PDF
    Pediatric multiple sclerosis (MS) represents less than 5% of the MS population, but patients with pediatric-onset disease reach permanent disability at a younger age than adult onset patients. Accurate diagnosis at presentation and optimal long-term treatment is vital to mitigate ongoing neuroinflammation and irreversible neurodegeneration. However, it may be difficult to early differentiate pediatric MS from acute disseminated encephalomyelitis (ADEM) and neuromyelitis optica spectrum disorders (NMOSD) as they often have atypical presentation that differs from that of adult-onset MS. The purpose of this review is to summarize the updated views on diagnostic criteria, imaging, histopathology and treatment choices

    Role of MeCP2, DNA methylation, and HDACs in regulating synapse function

    Get PDF
    Over the past several years there has been intense effort to delineate the role of epigenetic factors, including methyl-CpG-binding protein 2, histone deacetylases, and DNA methyltransferases, in synaptic function. Studies from our group as well as others have shown that these key epigenetic mechanisms are critical regulators of synapse formation, maturation, as well as function. Although most studies have identified selective deficits in excitatory neurotransmission, the latest work has also uncovered deficits in inhibitory neurotransmission as well. Despite the rapid pace of advances, the exact synaptic mechanisms and gene targets that mediate these effects on neurotransmission remain unclear. Nevertheless, these findings not only open new avenues for understanding neuronal circuit abnormalities associated with neurodevelopmental disorders but also elucidate potential targets for addressing the pathophysiology of several intractable neuropsychiatric disorders

    A Kinome-wide screen identifies a CDKL5-SOX9 regulatory axis in epithelial cell death and kidney injury

    Get PDF
    © 2020, The Author(s). Renal tubular epithelial cells (RTECs) perform the essential function of maintaining the constancy of body fluid composition and volume. Toxic, inflammatory, or hypoxic-insults to RTECs can cause systemic fluid imbalance, electrolyte abnormalities and metabolic waste accumulation- manifesting as acute kidney injury (AKI), a common disorder associated with adverse long-term sequelae and high mortality. Here we report the results of a kinome-wide RNAi screen for cellular pathways involved in AKI-associated RTEC-dysfunction and cell death. Our screen and validation studies reveal an essential role of Cdkl5-kinase in RTEC cell death. In mouse models, genetic or pharmacological Cdkl5 inhibition mitigates nephrotoxic and ischemia-associated AKI. We propose that Cdkl5 is a stress-responsive kinase that promotes renal injury in part through phosphorylation-dependent suppression of pro-survival transcription regulator Sox9. These findings reveal a surprising non-neuronal function of Cdkl5, identify a pathogenic Cdkl5-Sox9 axis in epithelial cell-death, and support CDKL5 antagonism as a therapeutic approach for AKI

    Bioavailable Trace Metals in Neurological Diseases

    Get PDF
    Medical treatment in Wilson’s disease includes chelators (d-penicillamine and trientine) or zinc salts that have to be maintain all the lifelong. This pharmacological treatment is categorised into two phases; the first being a de-coppering phase and the second a maintenance one. The best therapeutic approach remains controversial, as only a few non-controlled trials have compared these treatments. During the initial phase, progressive increase of chelators’ doses adjusted to exchangeable copper and urinary copper might help to avoid neurological deterioration. Liver transplantation is indicated in acute fulminant liver failure and decompensated cirrhosis; in cases of neurologic deterioration, it must be individually discussed. During the maintenance phase, the most important challenge is to obtain a good adherence to lifelong medical therapy. Neurodegenerative diseases that lead to a mislocalisation of iron can be caused by a culmination of localised overload (pro-oxidant siderosis) and localised deficiency (metabolic distress). A new therapeutic concept with conservative iron chelation rescues iron-overloaded neurons by scavenging labile iron and, by delivering this chelated metal to endogenous apo-transferrin, allows iron redistribution to avoid systemic loss of iron

    A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome

    Get PDF
    Rett syndrome (RTT) is an inherited neurodevelopmental disorder of females that occurs once in 10,000–15,000 births1,2. Affected females develop normally for 6–18 months, but then lose voluntary movements, including speech and hand skills. Most RTT patients are heterozygous for mutations in the Xlinked gene MECP2 (refs. 3–12), encoding a protein that binds to methylated sites in genomic DNA and facilitates gene silencing13– 17. Previous work with Mecp2-null embryonic stem cells indicated that MeCP2 is essential for mouse embryogenesis18. Here we generate mice lacking Mecp2 using Cre-loxP technology. Both Mecp2-null mice and mice in which Mecp2 was deleted in brain showed severe neurological symptoms at approximately six weeks of age. Compensation for absence of MeCP2 in other tissues by MeCP1 (refs. 19,20) was not apparent in genetic or biochemical tests. After several months, heterozygous female mice also showed behavioral symptoms. The overlapping delay before symptom onset in humans and mice, despite their profoundly different rates of development, raises the possibility that stability of brain function, not brain development per se, is compromised by the absence of MeCP2

    Treatment of neuromyelitis optica: state-of-the-art and emerging therapies.

    Get PDF
    Neuromyelitis optica (NMO) is an autoimmune disease of the CNS that is characterized by inflammatory demyelinating lesions in the spinal cord and optic nerve, potentially leading to paralysis and blindness. NMO can usually be distinguished from multiple sclerosis (MS) on the basis of seropositivity for IgG antibodies against the astrocytic water channel aquaporin-4 (AQP4). Differentiation from MS is crucial, because some MS treatments can exacerbate NMO. NMO pathogenesis involves AQP4-IgG antibody binding to astrocytic AQP4, which causes complement-dependent cytotoxicity and secondary inflammation with granulocyte and macrophage infiltration, blood-brain barrier disruption and oligodendrocyte injury. Current NMO treatments include general immunosuppressive agents, B-cell depletion, and plasma exchange. Therapeutic strategies targeting complement proteins, the IL-6 receptor, neutrophils, eosinophils and CD19--all initially developed for other indications--are under clinical evaluation for repurposing for NMO. Therapies in the preclinical phase include AQP4-blocking antibodies and AQP4-IgG enzymatic inactivation. Additional, albeit currently theoretical, treatment options include reduction of AQP4 expression, disruption of AQP4 orthogonal arrays, enhancement of complement inhibitor expression, restoration of the blood-brain barrier, and induction of immune tolerance. Despite the many therapeutic options in NMO, no controlled clinical trials in patients with this condition have been conducted to date
    • …
    corecore