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 27 

ABSTRACT 28 

Renal tubular epithelial cells (RTECs) perform the essential function of maintaining the constancy of body 29 

fluid composition and volume. Toxic, inflammatory, or hypoxic-insults to RTECs can cause systemic fluid 30 

imbalance, electrolyte abnormalities and metabolic waste accumulation- manifesting as acute kidney injury 31 

(AKI), a common disorder associated with adverse long-term sequelae and high mortality. Here we report 32 

the results of a kinome-wide RNAi screen for cellular pathways involved in AKI-associated RTEC-33 

dysfunction and cell death. Our screen and validation studies reveal an essential role of Cdkl5-kinase in 34 

RTEC cell death. In mouse models, genetic or pharmacological Cdkl5 inhibition mitigates nephrotoxic and 35 

ischemia-associated AKI. We propose that Cdkl5 is a stress-responsive kinase that promotes renal injury 36 

in part through phosphorylation-dependent suppression of pro-survival transcription regulator Sox9.  These 37 

findings reveal a surprising non-neuronal function of Cdkl5, identify a pathogenic Cdkl5-Sox9 axis in 38 

epithelial cell-death, and support CDKL5 antagonism as a therapeutic approach for AKI. 39 

 40 

 41 

 42 

 43 

 44 

 45 

 46 

 47 

 48 

 49 

 50 
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 51 

Introduction 52 

The ability of vertebrates to maintain a stable, relatively constant ‘internal milieu' is inextricably 53 

linked to the function of the kidneys1. Through a continuous filtration-reabsorption process, kidneys 54 

regulate the fluid and molecular composition of blood. Within the kidneys, the renal tubular epithelial cells 55 

(RTECs) carry out the enormous task of selective reabsorption of water, ions, and essential nutrients as 56 

well as excretion of metabolic waste, thereby converting the glomerular filtrate into a concentrated urine 57 

whose composition is constantly fine-tuned to maintain organismal homeostasis. RTEC dysfunction can 58 

thus lead to systemic electrolyte and fluid imbalances along with accumulation of metabolic and toxic 59 

waste triggering deleterious systemic effects and multi-organ failure. 60 

Numerous clinical conditions such as sepsis, cardiac surgery, drug toxicities, cancer therapy and 61 

rhabdomyolysis are associated with inflammatory, toxic, and hypoxic insults to RTECs2–6.  The resulting 62 

RTEC dysfunction and cell-death7 are the hallmarks and underlying cause of acute kidney injury (AKI), a 63 

common disorder that predominantly develops in hospitalized patients8. Due to the lack of treatment 64 

options, annually an estimated two million people worldwide die of AKI9. Importantly, the patients that 65 

recover from an AKI episode are at increased risk of developing chronic kidney disease, end-stage renal 66 

disease and cardiovascular dysfunction- disorders associated with significant morbidity and mortality10,11. 67 

Over the past decade, it has become apparent that the pathophysiology of AKI is exceedingly complex12. 68 

Multiple molecular and cellular pathways are involved in RTEC dysfunction and cell-death7. Vascular and 69 

immune cells also contribute to renal impairment13–15. Recent advancements in our understanding of the 70 

pathophysiological basis of AKI have however not yet resulted in clinical benefits, in part, due to the non-71 

druggable nature of several identified molecular targets and associated pathways. One possible way to 72 

transcend these difficulties is to utilize unbiased functional genomic screening to systematically uncover 73 

the role of ‘druggable genes’ in AKI. 74 

Of the estimated ~20,000 protein-coding genes in the human genome, ~10% encode proteins that 75 

can currently be targeted by small-molecule drugs, a group defined as ‘druggable genome’16. Protein 76 
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kinases17 are one of the largest family in the ‘druggable genome’, along with G-coupled protein receptors. 77 

Due to the potential wide-spread role of kinases in disease pathogenesis as well as suitable 78 

pharmacological properties and clinical safety profile of kinase inhibitors, protein kinases have emerged as 79 

attractive therapeutic targets18,19. Nevertheless, the underlying biology of the majority of kinases remains 80 

yet to be fully elucidated. Moreover, the role of protein kinases in the pathogenesis of non-oncological 81 

diseases, especially AKI remains underexplored. 82 

Here, we have used a kinome-wide screening approach to identify kinases that contribute to RTEC 83 

cell-death in order to reveal therapeutic targets for AKI.   Initial in vitro RNAi-based screening and 84 

subsequent in vivo validation experiments identified cyclin-dependent kinase-like 5 (Cdkl5) also known as 85 

serine/threonine kinase 9 (Stk9)20 as a key regulator of renal cell-death and injury. CDKL5 has mostly been 86 

studied for its role in human neuronal development since mutations in this X-linked gene are associated 87 

with neurodevelopmental disorders including early-onset seizures21,22. Surprisingly, we have uncovered a 88 

previously unrecognized function of Cdkl5 as a crucial regulator of renal injury and have identified the 89 

transcription factor Sox9 as one of its crucial downstream target.  90 

 91 

RESULTS 92 

Identification of kinases involved in RTEC cell-death.  We performed a kinome-wide small interfering 93 

RNA (siRNA) screen in BUMPT cells in order to identify protein kinases that regulate renal epithelial cell-94 

death. High transient transfection efficiency (~95%) of this murine RTEC cell-line makes it a suitable model 95 

for high-throughput (siRNA) screening assays. For the primary screen, BUMPT cells were transfected with 96 

either control siRNAs (non-targeting, Pkcδ and Plk1) or siRNAs targeting protein kinases, phosphatases 97 

and related targets (780 genes, Dharmacon), followed by induction of cell-death by treatment with cisplatin 98 

and assessment of cellular viability by cell-titer glo assay (Fig. 1a). Cisplatin-induced cell-death in BUMPT 99 

cells partially mimics conditions observed during cisplatin-associated AKI23. The in vitro screening assay 100 

involved the treatment of BUMPT cells with 15 µM cisplatin, which reduced the cell viability by ~75% in 48 101 

hours in the un-transfected and control siRNA (non-targeting) transfected cells (Supplementary Figure 102 
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1a-b). Cisplatin-induced cell-death was partially ameliorated by protein kinase c δ (Pkcδ) knockdown 103 

(positive control), which is an established24 pro-apoptotic gene and significantly increased by polo-like 104 

kinase 1 (Plk1) knockdown (negative control).   105 

The primary screen was carried out in triplicate and subsequent data analysis (Fig. 1b-c) yielded 106 

seven hit candidates (Supplementary Table 1) that mitigated cell-death to an extent that was significantly 107 

(p < 0.05, 1-way ANOVA followed by Dunnett’s test) greater than the positive control (Pkcδ siRNA). For 108 

stringent validation of these identified-hits, we performed confirmatory experiments by employing distinct 109 

siRNAs/shRNAs, cell lines and assay systems. In the secondary screening, we utilized dissimilar siRNAs 110 

from a different source (Sigma) and used different cell viability and cell-death assays (MTT, Trypan Blue 111 

and Caspase assay). Secondary screening in BUMPT cells (Fig. 1d and Supplementary Figure 1c-d) 112 

validated three out of seven hits obtained in the primary screen.  Similar studies in HK-2 (human kidney-2) 113 

cells, a human RTEC cell-line showed that CDKL5 knockdown significantly reduced cisplatin-induced cell-114 

death (Fig. 1e and Supplementary Figure 1e-f). Cdkl5 was the top-hit in both the primary and secondary 115 

screens and hence we selected it for further confirmation.  116 

The CDKL-family (CDKL1-5) comprises five members that share structural similarities with cyclin-117 

dependent kinases (CDKs) as well as mitogen-activated protein kinases (MAPKs), however, their 118 

biological functions and linked signal transduction pathways remain obscure25,26. CDKL5 is highly 119 

expressed in the brain and CDKL5 loss-of-function mutations are associated with neurodevelopmental 120 

disorders in humans, although the underlying mechanisms are incompletely understood27. It also remains 121 

unknown if CDKL5 kinase controls any biological processes in non-neuronal tissues, such as testes and 122 

kidneys, where it is known to be expressed20,28. 123 

Mechanisms underlying CDKL5 activation also remain unclear. However, similar to MAPKs, 124 

CDKL5 contains the TEY sequence within its activation loop (Fig. 1f). The TEY motif  in the extracellular 125 

signal-regulated kinases (ERKs) undergoes dual phosphorylation resulting in kinase activation. This 126 

mechanism of activation is in most cases initiated by other upstream kinases or in some cases via auto-127 

phosphorylation as has been proposed for ERK7 and CDKL529. To confirm the role of Cdkl5 kinase in 128 

RTEC cell-death, we carried out tertiary screening where we silenced Cdkl5 expression in BUMPT cells 129 
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using a shRNA targeting the 3’ UTR (untranslated region) of Cdkl5 gene and carried out ‘add-back’ 130 

experiments by over-expressing shRNA-resistant Cdkl5 constructs including wild-type, kinase-dead and 131 

TEY mutants (Fig. 1g-h and Supplementary Figure1g-h). We found that shRNA-mediated Cdkl5 132 

knockdown reduces cisplatin-induced cell-death and importantly this phenotype was reversed by wild-type 133 

but not kinase-dead or TEY-mutant Cdkl5 overexpression. Of note, overexpression of WT Cdkl5 in the 134 

control cells did not influence RTEC cell-death. This may be due to limiting upstream activation signals, 135 

since unlike the wild-type Cdkl5, overexpression of catalytically active Cdkl5 (lacking the regulatory 136 

domain) increases cisplatin-associated RTEC cell death (Supplementary Figure 1i-k). Collectively, our 137 

siRNA screening and validation studies identified Cdkl5 kinase (Fig. 1h) as a crucial, previously unknown 138 

regulator of renal epithelial cell-death. 139 

 140 

Cdkl5 kinase activity increases in RTECs during AKI.  141 

While we used a cisplatin-based in vitro screening method to identify putative regulators of RTEC 142 

cell-death and dysfunction, our overall goal was to identify and validate targets that contribute to the 143 

pathogenesis of AKI associated with multiple etiologies. Hence confirmatory in vivo studies were carried 144 

out in   two distinct and widely-used models of AKI namely, ischemia-reperfusion injury and cisplatin-145 

associated AKI30. In these mouse models, the onset of AKI was determined by three diverse indicators of 146 

renal structure and function: accumulation of nitrogenous waste (blood urea nitrogen and serum 147 

creatinine), biomarkers (kidney injury molecule-1 [Kim-1]31 and neutrophil gelatinase-associated lipocalin 148 

[Ngal]32) and histological analysis (H&E staining and renal damage score) (Fig. 2 a-g). In the ischemic 149 

injury model, AKI onset occurs 24-hours post-surgery, while in the cisplatin-associated renal injury model, 150 

renal impairment is seen 72-hours post-injection.  We found that Cdkl5 protein levels showed significant 151 

variations, but overall we observed marginal increase during the early phases of AKI, followed by reduction 152 

at later time-points (Fig. 2h). To examine the Cdkl5 phosphorylation status in the activation loop, we 153 

generated a phospho-threonine-169 antibody that recognizes phosphorylated threonine within the TEY 154 

motif (Supplementary Figure 2). Western-blot analysis showed that Cdkl5 phosphorylation increased 155 
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during AKI (Fig. 2h). Subsequently, kinase assays showed increased Cdkl5 activity in renal tissues during 156 

the early stages of AKI (Fig. 2i-k).  157 

We next investigated whether the increased Cdkl5 activity is localized in the RTECs- the major cell-158 

type that are impacted during AKI7. In order to label and isolate RTECs from murine kidneys, we crossed 159 

the ROSAmT/mG strain with the renal tubular epithelial cell-specific Ggt1-Cre (gamma-glutamyltransferase-1) 160 

mice to generate transgenic mice that express membrane-localized GFP (green fluorescent protein) in the 161 

tubular epithelial cells (Fig. 2i and Supplementary Figure 3). We then isolated GFP positive cells from 162 

the kidneys of untreated and cisplatin-treated mice (Fig. 2m), followed by examination of Cdkl5 kinase 163 

activity (Fig. 2n). These studies confirmed that Cdkl5 activity increases in RTECs (GFP positive cells) early 164 

during the development of AKI. Furthermore, increased Cdkl5 kinase activity was also observed in murine 165 

models of rhabdomyolysis and folic acid-associated AKI as well as in a previously described33 porcine-166 

model of ischemic AKI (Supplementary Figure 4a-g). In support of the in vivo studies, increased Cdkl5 167 

activity was also observed in primary RTECs under multiple stress conditions, including cisplatin, hydrogen 168 

peroxide, hypoxia and hemin treatments (Supplementary Figure 4h-i). Under these conditions, increased 169 

Cdkl5 activity seemed to be independent of the cell cycle phase.  In summary, these results show that 170 

irrespective of the nature of the initial injury, increase in Cdkl5 kinase activity is a common phenomenon 171 

during AKI, signifying a potential functional role in disease pathogenesis. 172 

 173 

Cdkl5 gene ablation in epithelial cells mitigates AKI. We next sought to examine the consequence of 174 

Cdkl5 gene deletion on the severity of AKI. Germline Cdkl5 knockout mice are viable27, although they 175 

exhibit certain non-lethal neuronal phenotypes. We found that Cdkl5 knockout mice do not have any overt 176 

renal abnormalities under normal conditions (Supplementary Figure 5a-b), which gave us the opportunity 177 

to examine the effect of Cdkl5 deficiency on the severity of AKI. We found that as compared to wild-type 178 

littermates, Cdkl5-/y mice showed protection from ischemia-associated AKI as revealed by multiple 179 

indicators: BUN, Creatinine, Kim1 expression, and histological analysis (Supplementary Figure 6a-e). 180 

Likewise, Cdkl5-/y mice displayed resistance to cisplatin-associated AKI (Supplementary Figure 6f-i).  181 
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To probe the RTEC-specific role of Cdkl5 in the pathogenesis of AKI, we generated Cdkl5 182 

conditional knockout mice (Cdkl5PT-/y) by crossing the Cdkl5-floxed mice with the Ggt1-Cre mice. In Ggt1-183 

Cre mice, Cre recombinase is expressed in RTECs 7-10 days after birth, such that Cre expression most 184 

likely occurs after the completion of renal development34. We found that normal renal function 185 

(Supplementary Figure 5c-d) is un-affected by Cdkl5 deficiency (Fig. 3a). Importantly, Cdkl5 gene 186 

ablation in RTECs provided significant protection from ischemia-associated (Fig. 3b-e) and cisplatin-187 

mediated (Fig. 3f-i) AKI. To investigate the effect of Cdkl5 deficiency on renal cell-death and to exclude the 188 

possibility of non-specific compensatory changes, we cultured primary RTECs from the Cdkl5-floxed mice 189 

and carried out Cdkl5 deletion under in vitro conditions using lentivirus-mediated Cre expression (Fig. 3j-190 

k). We found that Cdkl5 deletion provides significant protection from cisplatin-mediated cell-death. 191 

Collectively, these studies suggested that Cdkl5 kinase plays a pathogenic role during the development of 192 

AKI. 193 

 194 

Cdkl5 phosphorylates Sox9 during AKI. We next pursued the Cdkl5-dependent mechanisms that 195 

contribute to renal dysfunction. CDKL5 regulates several neuronal functions; however, the downstream 196 

signaling pathways remain incompletely understood. Previous reports have described functional 197 

interactions of CDKL5 with other proteins with important neuronal functions25,35–39. Whether these 198 

interactions are relevant in renal epithelial cells is however unclear. Therefore, in an attempt to understand 199 

the mechanistic basis of Cdkl5-dependent renal injury, we sought to identify Cdkl5 interacting proteins. To 200 

this end, we immunoprecipitated (IP) endogenous Cdkl5 from ischemic renal tissues and found that a ~65 201 

kDa protein was associated with Cdkl5. Mass spectrometric analysis identified this protein as the 202 

transcription factor Sox9 (Sex-determining Region Y (SRY) box 9) (Fig. 4a). Sox9 is a member of Sox 203 

family, which are a group of transcription factors that have essential roles in cell-fate determination during 204 

embryonic development and adult tissue homeostasis40. Interestingly, Sox9 is also known to suppress cell-205 

death during development, adult tissue homeostasis and oncogenesis41,42. 206 

We confirmed that Cdkl5 interacts with Sox9, by Cdkl5-IP and reverse IP (Sox9-IP) experiments 207 

(Supplementary Figure 7). Notably, Sox9 protein is expressed at low amounts in control kidneys and its 208 
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expression is induced during AKI (input blots, Supplementary Figure 7). Given the physical association 209 

between Cdkl5 and Sox9 in renal tissues, we considered if Sox9 is a previously unknown Cdkl5 substrate. 210 

Based on sequence analysis and global phospho-proteomics data43, we identified 5 putative 211 

phosphorylation sites in the Sox9 protein.  We then tested the ability of purified Cdkl5 to phosphorylate 212 

wild-type and Ser-to-Ala Sox9 mutants. We found that Cdkl5 could phosphorylate wild-type Sox9 (Fig. 4b). 213 

Importantly, Ser-199 was found to be the major site of phosphorylation since Ser-to-Ala mutation at this 214 

site significantly abolished Cdkl5-mediated Sox9 phosphorylation (Fig. 4b). The Ser-199 site is 215 

evolutionarily conserved (Fig. 4c), however the functional consequence of phosphorylation at this site has 216 

not been previously studied. 217 

To ascertain the functional consequence of Cdkl5-mediated Sox9 phosphorylation, we investigated 218 

the potential effect of phosphorylation at Ser-199 site on Sox9 localization and stability. We generated 219 

S199A (non-phosphorylatable) and S199D (phospho-mimetic) Sox9 mutants and then examined their 220 

localization and stability in BUMPT cells. Sox9 sub-cellular localization was predominantly nuclear and was 221 

unaffected by S199A or S199D mutation (Supplementary Figure 8a). Interestingly, cycloheximide (CHX) 222 

pulse-chase experiments showed that S199A mutant was more stable than the wild-type Sox9, while the 223 

phospho-mimetic S199D mutant had significantly reduced stability (Supplementary Figure 8b-c). Based 224 

on these studies, we hypothesized that Cdkl5-dependent phosphorylation at Ser-199 suppresses Sox9 225 

function during AKI. 226 

To test our hypothesis and observe Sox9 phosphorylation in vivo, we generated an anti-phospho- 227 

Ser-199 specific antibody (Supplementary Figure 9), and then examined the levels of total and 228 

phosphorylated Sox9 in renal tissues. In the wild-type mice, total Sox9 protein level were low in control 229 

kidneys, however, its expression increased during both ischemia-reperfusion and cisplatin-associated AKI 230 

(Fig. 4d-f). Intriguingly, AKI-induced increase in the Sox9 protein expression had strikingly different 231 

dynamics in the Cdkl5PT-/y mice. Firstly, as compared to wild-type mice, AKI-associated Sox9 induction 232 

occurred at a much earlier time-point in the Cdkl5PT-/y mice and secondly, the magnitude of Sox9 induction 233 

was higher in the Cdkl5PT-/y mice. Interestingly, phospho-Ser-199 -Sox9 levels also increased during AKI in 234 

the wild-type mice, however, Sox9 phosphorylation  in the Cdkl5PT-/y kidneys was pointedly suppressed 235 
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(Fig. 4e & g). We also examined total and phosphorylated Cdkl5 protein levels in these tissues 236 

(Supplementary Figure 10). Importantly, the levels of Sox9 mRNA induction during AKI was not 237 

significantly different in the wild-type and Cdkl5PT-/y mice (Supplementary Figure 11).  Based on these 238 

findings, we postulated that Cdkl5 activation might contribute to AKI, in part through phosphorylation-239 

dependent regulation of Sox9 function. 240 

 241 

Sox9 plays a protective role during AKI.  In the murine kidneys, Sox9 facilitates recovery of renal 242 

function after the onset of AKI44,45. After the initial injury phase, Sox9 expressing RTECs contribute to 243 

regeneration and recovery, however the role of Sox9 in the initial injury phase remains unclear. To study 244 

the role of Sox9 in the early acute phase of AKI we generated RTEC-specific Sox9 deficient (Sox9PT-/-) 245 

mice (Fig. 5a), which had normal renal function under baseline conditions (Supplementary Figure 5e-f). 246 

Importantly, Sox9 deficiency markedly increased renal damage in both the ischemia (Fig. 5b-e) and 247 

cisplatin-associated (Fig. 5f-i) AKI. Primary RTECs with Sox9 gene ablation were also sensitive to 248 

cisplatin-mediated cell-death (Fig. 5j-k). Interestingly, unlike the normal untreated kidneys (which have 249 

very low Sox9 expression); the primary RTECs expressed clearly detectable levels of Sox9 and were used 250 

for further studies. We carried out ‘add-back’ experiments in the Sox9-/- primary RTECs and found that 251 

S199A mutation provided significantly higher protection than the WT Sox9, while S199D mutant had 252 

minimal effects, which could be partly due to reduced S199D stability during cisplatin treatment 253 

(Supplementary Figure 12).  These results suggest that Sox9 plays a protective role during the early 254 

phase of AKI and Cdkl5 mediated phosphorylation at S199 site likely reduces its functional activity. 255 

To elucidate the underlying mechanisms, we next carried out chromatin immunoprecipitation 256 

(ChIP) based analysis of Sox9 target genes in normal and injured kidneys (Supplementary Figure 13a). 257 

Targets were selected based on ChIP-seq analysis in a previous study46 and included genes known to be 258 

differentially regulated during AKI47. Our results show that during ischemic injury, Sox9 binds to the 259 

promoter region (±2 kb of transcription start sites) of several genes (Wwp2, Ap2β, Pi3kca, Myof, sema3e 260 

and Gadd45a). For Wwp2, myof, Sema3e and Gadd45a these findings were confirmed in three distinct 261 

models of AKI (Supplementary Figure 13b-e). For further confirmation, gene expression analysis was 262 
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carried out, which showed that as compared to the littermate controls, renal tissues of Sox9PT-/- mice have 263 

diminished mRNA expression of Wwp2, Myof and Sema3e, while Gadd45a expression is elevated 264 

(Supplementary Figure 14). In the Cdkl5PT-/y mice, which had elevated levels of Sox9 protein during AKI, 265 

the mRNA levels of Sox9-dependent pro-survival genes (Wwp2, Myof and Sema3e ) was significantly 266 

increased, while Gadd45a gene expression was reduced (Supplementary Figure 15). Luciferase based 267 

reporter assays confirmed Sox9 binding within the promoter regions of Wwp2, Myof and Sema3e genes 268 

(Supplementary Figure 16).  Finally, functional studies show that Wwp2, Myof and Sema3e  knockdown 269 

sensitizes RTECs to injury, while Gadd45a knockdown provides protection from cell-death 270 

(Supplementary Figure 17). Thus by increasing the expression of pro-survival genes like Wwp2, myof 271 

and sema3e, Sox9 likely promotes cellular survival during AKI. These genes are known to regulate 272 

phosphoinositide 3-kinase (PI3K)- phosphatase and tensin homolog (PTEN) signaling (Wwp2)48, 273 

membrane and mitochondrial functions (Myoferlin)49,50 and cell-death (Sema3e)51 in non-renal epithelial 274 

cells. Whether these genes regulate RTEC dysfunction and cell-death in vivo through similar mechanisms 275 

remains unknown.  Notably, along with Wwp2, Myof and Sema3e, Sox9-dependent renal protective 276 

transcriptional program likely involves multiple target genes that would require further exploration. 277 

However, our results support the notion that by suppressing Sox9 function, Cdkl5 subdues and delays a 278 

Sox9-dependent protective transcriptional program, contributing to epithelial cell-death and AKI. 279 

 280 

Targeted Cdkl5 inhibition mitigates renal injury in vivo. Genetic Cdkl5 ablation alleviated renal injury, 281 

raising the prospect that a targeted Cdkl5-kinase inhibitor might prevent and or reduce renal injury. While 282 

CDKL5-specific inhibitors have not been specifically pursued, several known protein kinase inhibitors have 283 

been tested for their ability to inhibit CDKL5 in global kinome-wide assays52. Based on these studies, we 284 

compiled a panel of small-molecules with demonstrated CDKL5 inhibition activity. We then tested these 285 

compounds for their ability to inhibit Cdkl5 function using in vitro kinase assays (Fig. 6a). Among these 286 

inhibitors, AST-487 was found to be the most potent Cdkl5 inhibitor (EC50=87 nM). AST-487 also inhibited 287 

Cdkl5 activity in BUMPT cells and provided protection from cisplatin-induced cell-death (Supplementary 288 

Figure 18a-d). While AST-487 potently inhibited Cdkl5 activity, similar to most kinase inhibitors, AST-487 289 
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likely inhibits multiple kinases including RET kinase53.  To examine the role of Cdkl5 inhibition in the renal 290 

protective effect of AST-487, we thus utilized a chemical genomics approach54,55. To this end, we 291 

generated a Cdkl5 construct with a gatekeeper mutation (F89A), which confers resistance to AST-487-292 

mediated kinase inhibition (Supplementary Figure 18e). Importantly, overexpression of Cdkl5-gate-293 

keeper mutant abrogated AST-487-mediated protection from cisplatin-induced cell-death (Supplementary 294 

Figure 18f-h). Since an AST-487 resistant Cdkl5 mutant is able to reverse the cytoprotective effects of 295 

AST-487, these studies provide compelling evidence that AST-487 mediated Cdkl5 inhibition is at least 296 

partly responsible for its renal protective effects. 297 

To ascertain the potential efficacy of AST-487 in vivo, we performed pilot assessment studies. Oral 298 

administration of a single dose of 25 mg/kg AST-487 reduced Cdkl5 kinase activity in the kidneys by ~90% 299 

(Fig. 6b). Remarkably, AST-487 treatment (single dose of 25 mg/kg, 6 hours after cisplatin injection or 300 

ischemic surgery) significantly reduced cisplatin and ischemia-associated AKI in the wild-type mice (Fig. 301 

6c-h). We then carried out further studies in both control and Cdkl5-deficient mouse models. We found that 302 

AST-487 treatment reduced Cdkl5 phosphorylation and kinase activity (Supplementary Figure 19a-b). 303 

Importantly, AST-487 treatment did not afford protective effects in the Cdkl5-deficient mice 304 

(Supplementary Figure 19c-e). Furthermore, AST-487 treatment in wild-type mice resulted in blunted 305 

Sox9 phosphorylation and markedly increased accumulation of Sox9 during AKI (Fig. 6i and 306 

Supplementary Figure 20). Even though AST-487 treatment conferred protection in the wild-type mice, 307 

we questioned if Cdkl5 inhibition just delayes the development of kidney injury or it has long-term 308 

protective effects. Indeed, long-term survival experiments showed that AST-487 treatment reduces 309 

cisplatin-associated mortality (Supplementary Figure 21a). In further support, genetic Cdkl5-deficiency 310 

also provides long-term protection and survival benefits (Supplementary Figure 21b).  311 

 312 

Sox9 dependent and independent regulation of AKI. To examine the dependence of Sox9 pathway in 313 

Cdkl5-associated renal injury, we initially examined the effect of Cdkl5 inhibition in control and Sox9-314 

deficient mice challenged with ischemic injury. We found that Cdkl5 inhibition provides protection in both 315 

WT and Sox9PT-/- mice; however, the extent of protection is much lower in the Sox9PT-/- mice (Fig. 7a-c). 316 
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Mice treated with cisplatin showed a similar phenotype (Supplementary Figure 22a-c). We confirmed 317 

these results in primary RTECs, where Cdkl5 inhibition protected both WT and Sox9-/- cells; however, the 318 

extent of protection was lower in the Sox9-/- cells (Supplementary Figure 23a-c).  319 

To corroborate these findings, we next used the genetic knockout approach and performed similar studies 320 

in control, single and double knockout mice (dKOPT) (Fig. 7d). As compared to the Cdkl5PT-/y mice, the 321 

dKOPT mice showed higher injury when challenged with ischemia, while as compared to the Sox9PT-/- mice, 322 

the dKOPT mice showed lower injury (Fig. 7d-g).  We observed similar results in the cisplatin-toxicity model 323 

(Supplementary Figure 22d-f). Studies with primary RTECs with single or double gene ablation also 324 

confirmed the in vivo findings (Supplementary Figure 23d-g). These results suggest that Cdkl5 regulates 325 

renal injury in both Sox9 dependent and independent manner. Furthermore, it is likely that regulation of 326 

Sox9 function during AKI occurs in both Cdkl5 dependent and independent manner. 327 

Finally, we performed series of studies in female mice. We found that similar to male mice, Cdkl5 activity 328 

increases during AKI in females and genetic or pharmacological inhibition of Cdkl5 function provides 329 

protection from ischemia and cisplatin-associated AKI (Supplementary Figure 24 and 25). Cdkl5-330 

dependent Sox9 phosphorylation was also confirmed in female mice (Supplementary Figure 26). 331 

Collectively, these proof-of-principle experiments in multiple AKI mouse models showed robust therapeutic 332 

effects of Cdkl5 inhibition. 333 

 334 

DISCUSSION 335 

Here we have found that cyclin-dependent kinase-like 5 (Cdkl5) also known as serine/threonine 336 

kinase 9 (Stk9) is a stress responsive kinase that controls epithelial cell fate during acute kidney injury. We 337 

propose that Cdkl5 activation promotes renal dysfunction through phosphorylation-mediated functional 338 

suppression of pro-survival transcription factor Sox9. 339 

Very little is known about the five members of the CDKL family (CDKL1-5), though they have been 340 

linked to certain neuronal functions56. In humans, mutations in the X-linked CDKL5 gene are associated 341 

with neurodevelopmental disorders characterized by infantile seizures and developmental delay22,35,35,57–60. 342 
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Some of these phenotypes have been recapitulated in the germline Cdkl5 knockout mice27. Most studies 343 

on CDKL5 function remain predominantly focused on its role in neuronal development. Interestingly, 344 

CDKL5 expression is not restricted to the brain, but is also detected in peripheral organs, particularly testes 345 

and kidney20. Our studies demonstrates Cdkl5 expression in RTECs and reveals its functional activation 346 

during AKI. It is noteworthy that germline or renal epithelial-cell specific Cdkl5 deficiency did not have any 347 

overt effect on normal kidney structure or function. Importantly, germline or RTEC-specific Cdkl5 deletion 348 

conferred significant protection from AKI. Primary RTECs with Cdkl5 deficiency were also resistant to 349 

cellular injury. These studies suggest that Cdkl5 is not required for normal renal development or function, 350 

however, under stress conditions, Cdkl5 contributes to renal cell-death and dysfunction. 351 

 The CDKL-family shares structural features with CDKs (cyclin-dependent kinases) as well as 352 

MAPKs (mitogen-activated protein kinases) and GSKs (Glycogen synthase kinases)56. Although their 353 

nomenclature suggests similarity with CDKs, CDKLs have several features that distinguish them from 354 

CDKs, including the lack of evidence that CDKLs require cyclin binding, the presence of variant PSTAIRE 355 

motifs within the C-helix and large C-terminal regulatory domains with nuclear localization signals56. 356 

Moreover, there is no clear evidence that CDKLs are involved in cell cycle regulation. Interestingly, our 357 

studies suggest that Cdkl5 might be a cell-cycle-independent stress-responsive kinase in RTECs, with 358 

much more functional similarity with MAPKs than CDKs. In support of this notion, our studies show Cdkl5 359 

activation under markedly distinct conditions of cellular stress both in vitro and in vivo. In this regard, Cdkl5 360 

seems to share functional similarities with MAPKs, which are known components of cellular stress 361 

response pathways61.  362 

While the upstream signaling remains unknown, we have identified the transcription factor Sox9 as 363 

a bona fide Cdkl5 substrate and a key downstream target in renal epithelial cells. The endogenous 364 

substrates of CDKL5 have been previously investigated to understand its function in neurons25,35–39. 365 

Whether these previously identified substrates are involved in Cdkl5-dependent renal cell-death remains 366 

unclear. However, through a pull-down experiment, we identified Sox9 as a Cdkl5 substrate in RTECs. 367 

Sox9 is a transcription factor that controls cell-fate decisions during embryonic development and 368 

homeostasis of a broad range of adult tissues62–64. Moreover, in cancer cells, SOX9 inhibits apoptosis and 369 
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promotes proliferation, invasion, and metastasis65–67. Interestingly, two recent studies44,45 have shown that 370 

transcriptional up-regulation of Sox9 is an early cellular response to renal injury and Sox9 is essential for 371 

repair and recovery post AKI. After the initial injury phase, Sox9 expressing renal epithelial cells play a 372 

crucial role in the subsequent repair processes. Here we show that renal tubule specific conditional Sox9 373 

knockout mice are hypersensitive to AKI, indicating that along with its role in recovery and repair, Sox9 374 

plays a pro-survival role in the early phase of AKI.  375 

We also found that Cdkl5 phosphorylates Sox9 at Ser-199 residue during kidney injury in vivo. 376 

Cdkl5-mediated phosphorylation seems to reduce the stability of Sox9 protein. Indeed, while the injury-377 

induced transcriptional up-regulation of Sox9 was similar in the control and Cdkl5-null mice, Cdkl5 deletion 378 

in RTECs both hastened and markedly increased the accumulation of Sox9 protein (Fig. 4). 379 

Pharmacological inhibition of Cdkl5 kinase also resulted in increased accumulation of Sox9 during AKI 380 

(Fig. 6). Importantly, examination of the protein stability of various Sox9 mutants (S199A>WT>S199D) 381 

indicated that Sox9 phosphorylation at Ser-199 likely causes increased proteasomal degradation resulting 382 

in diminished half-life. However, we cannot rule out the possibility that Sox9 phosphorylation at Ser-199 383 

might have other biological effects, including changes in dimerization or altered binding to partner proteins. 384 

Ser-199 phosphorylation might also alter the affinity of Sox9 for target genes, a possibility that we cannot 385 

currently examine due to the inability to perform chromatin-immunoprecipitation with the phospho-Sox9 386 

antibody. However, these studies have revealed robust Cdkl5-dependent Sox9 phosphorylation in RTECs 387 

as part of cellular stress response to distinct injuries. 388 

AKI is associated with a high risk for mortality, development of chronic kidney disease, and multi-389 

organ dysfunction2,10. Currently, no specific treatments or prophylactic approaches are available to treat or 390 

prevent AKI. We provide proof-of-principle studies showing that targeted Cdkl5 inhibition can provide 391 

protection from renal injury. The small molecule Cdkl5-inhibitor AST-487 mitigated renal injury in multiple 392 

mouse models of AKI. While these studies provide promising proof-of-concept data, clinical translation of 393 

these studies would depend on the development and or identification of Cdkl5 inhibitors with much more 394 

specificity than AST-487. Our study also raises three important questions that require further exploration. 395 

Firstly, in adults, could systemic Cdkl5 inhibition cause toxicity in the central nervous system? While Cdkl5 396 
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is clearly important for early neuronal development, it is unclear if it has any essential function in the adult 397 

brain and so, it remains unknown whether short-term pharmacological Cdkl5 inhibition would have any 398 

CNS toxicities. However, we propose that the likelihood of any neuronal side effects could be easily 399 

reduced by selecting Cdkl5-inhibitors that do not cross the blood-brain barrier. Secondly, could systemic 400 

Cdkl5 inhibition cause toxicity in other peripheral organs or influence renal recovery, regeneration and 401 

fibrosis? Future studies would be required to examine these possibilities, however, we have found that 402 

Cdkl5 inhibition not just delays renal injury, but also confers long-term survival benefits, without overt 403 

systemic toxicities (Supplementary Figure 21). Thirdly, it would be critical to examine if Cdkl5-inhibition 404 

dependent Sox9 stabilization has any detrimental long-term effects in the kidneys. 405 

Our study also raises the possibility that the Cdkl5-Sox9 axis might have important biological 406 

functions in other non-renal cell types, especially neurons and cancer cells. An essential question that 407 

merits further investigation is whether disruption of CDKL5-SOX9 axis underlie some of the neuronal 408 

phenotype observed in humans and mice with loss-of-function CDKL5 mutations. Moreover, SOX9 has 409 

emerged as an essential regulator of cancer cell stem-ness, differentiation and apoptosis. We find that 410 

CDKL5 is widely expressed in cancer cell lines (Supplementary Figure 27); raising the possibility, that 411 

CDKL5 might regulate SOX9 function in cancer cells. CDKL5 might be a crucial nuclear kinase that 412 

suppresses SOX9 function under conditions of cellular stress. Future studies will likely provide insights into 413 

these important questions and provide a better understanding of the biological function of the enigmatic 414 

CDKL family of kinases. 415 

 416 

 417 

METHODS 418 

Cell Culture and reagents. Boston University mouse proximal tubule cells (BUMPT; clone 306; originally 419 

from Drs. Wilfred Lieberthal and John Schwartz, Boston University School of Medicine, Boston, MA and 420 

obtained from Dr. Zheng Dong, Augusta University, Augusta, GA) were grown at 37°C in Dulbecco's 421 

modified Eagle's medium with 10% fetal bovine serum (FBS). The human renal tubular cell line, HK-2 cells 422 
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(ATCC, CRL-2190) were grown in keratinocyte media (K-SFM) according to the provider’s instructions. 423 

Protein kinase inhibitors were obtained from Sigma-Aldrich or Selleckchem. Radiolabelled compounds 424 

were obtained from American Radiochemicals or Moravek Biochemicals. 425 

Primary tubular cell culture and transduction. Anti-GFP antibody and MACS columns (Miltenyi Biotech) 426 

were used to isolate GFP positive tubular epithelial cells. For primary cell culture, tubular epithelial cells 427 

were isolated from 6-8 weeks old male mice24. Briefly, mice were euthanized by carbon dioxide 428 

asphyxiation, kidneys were excised and renal cortical tissues were minced thoroughly and digested with 429 

0.75 mg/ml collagenase IV (Thermo Fisher Scientific). Renal tubular epithelial cells were then purified by 430 

centrifugation at 2,000 g for 10 min in DMEM/F-12 medium with 32% Percoll (Amersham). After washes 431 

with serum-free media, the cells were plated in collagen-coated dishes and cultured in DMEM/F-12 432 

medium supplemented with 5 μg/ml transferrin, 5 μg/ml insulin, 0.05 μM hydrocortisone, 50 μM vitamin C 433 

(Sigma-Aldrich). Fresh media was supplemented every alternate day and after 5–7 days of growth, the 434 

isolated proximal tubular cells were trypsinized and re-plated at 1 × 105 cells per well in 24-well plates. For 435 

Cre mediated gene excision, cultured primary tubular cells were transduced with high titer (1 x 108 CFU/ml) 436 

LV-CMV-Cre-GFP lentivirus (Kerafast), followed by cisplatin treatment 48 hours later. Microscopic 437 

examinations were carried out to ensure that greater than 90% cells were GFP (Cre) positive before 438 

proceeding with cisplatin treatment. For Sox9 ‘add-back’ experiments, proximal tubular cells from WT and 439 

Sox9PT-/- cells were transduced with either lentivirus (pLenti-C-Myc-DDK-P2A-Puro, Origene) encoding WT 440 

or Sox9 mutants (S199A and S199D). To induce cell death, primary RTECs were incubated with 50 μM 441 

cisplatin (Sigma-Aldrich) in fresh culture medium for 24 hours, followed by viability and caspase assays. 442 

 siRNA kinome screening. BUMPT cells were used for the siRNA kinome screening using methods 443 

similar to our previous study55. Briefly, the Dharmacon mouse siRNA library targeting protein kinases and 444 

related genes (780 genes) containing four pooled siRNAs for each gene was utilized in the primary screen. 445 

Briefly, the BUMPT cells were plated in 96-well plates and reverse transfected with 25 nM siRNA using 446 

Lipofectamine RNAiMAX reagent (Life Technologies). At 48 hours post-transfection, cells were treated with 447 

15 µM cisplatin in fresh media. Subsequently, 48 hours post-treatment, CellTiter-Glo luminescent cell 448 

viability assay (Promega) was carried out to determine cellular viability. The siRNAs that protected BUMPT 449 
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cells from cisplatin-induced cell death greater than the positive control (Pkcδ siRNA) were selected for 450 

secondary screening. The primary screen was carried out in triplicate samples and data analysis was 451 

performed according to established methods55.    452 

Cell Viability and Caspase assays. Cellular viability was examined using three different assays, namely 453 

MTT, CellTiter-Glo, and trypan blue staining. MTT assays were performed using 3-(4,5-dimethylthiazol-2-454 

yl)-2,5-diphenyltetrazolium bromide (MTT) reagent (Sigma-Aldrich). BUMPT cells or RTECs were seeded 455 

in 96-well plates, followed by cisplatin treatment for 24-48 hours.  After treatment, 10 μL of MTT reagent (5 456 

mg/mL MTT in PBS) was added to each well and plates were incubated at 37°C with 5 % CO2 for 4 hours, 457 

followed by addition of 100 μl acidified isopropanol (Sigma-Aldrich) and measurement of absorbance at 458 

590 nm. The half maximal inhibitory concentration (IC50) was evaluated by nonlinear regression analysis 459 

using GraphPad Prism. Similar to MTT assays, CellTiter-Glo (Promega) assays were performed according 460 

to established methods followed by luminescence measurement.  Cell viability was also measured by 461 

trypan blue exclusion method. Briefly, cell were harvested, followed by trypan blue staining and manual cell 462 

counting with a hemocytometer and/or by using Countess Automated Cell Counter (Thermo Fischer); 463 

translucent cells were considered as viable and blue-stained cells were counted as dead. Cell viability was 464 

calculated by dividing the number of viable cells by total cell number; each sample was done in triplicate. 465 

Caspase activity was measured in cell lysates using an in vitro assay68. Briefly, RTECs were lysed in a 466 

buffer containing 1% Triton X-100 and 10 μg protein from cell lysates was added to an enzymatic assay 467 

buffer containing 50 μM DEVD-AFC for 60 minutes at 37°C. Fluorescence at excitation 360 nm/emission 468 

535 nm was measured and free AFC was used to plot a standard curve, and using the standard curve, the 469 

fluorescence reading from the enzymatic reaction was converted into the nM AFC liberated per mg protein 470 

per hour as a measure of caspase activity. 471 

Mice Breeding. All animals were housed and handled in accordance with approved Institutional Animal 472 

Care and Use Committee procedures.  All animal studies were conducted according to protocols approved 473 

by the Institutional Animal Care and Use Committees of The Ohio State University (2017R00000006). Mice 474 

used in the current study were housed in a temperature-controlled environment with a 12 hour light cycle 475 



19 
 

and given a standard diet and water ad libitum. Germline Cdkl5-deficient mice (stock no. 021967) were 476 

obtained from Jackson Laboratories and heterozygous mice were bred in-house to obtain wild-type and 477 

knock-out littermates.  Conditional gene knock-out in renal tubular epithelial cells was achieved through 478 

breeding of Cdkl5 floxed mice (Jackson Laboratory, stock no. 030523) and Sox9 floxed mice (Jackson 479 

Laboratory, stock no. 013106)  with Ggt1-Cre mice (Jackson Laboratory, stock no. 012841). Double 480 

Knockout mice (dKOPT) were generated by crossing Cre positive Cdkl5 and Sox9 floxed mice. mT/mG 481 

mice which express cell membrane-targeted, two-color fluorescent Cre-reporter allele were obtained from 482 

Jackson Laboratories (stock no. 007676). In these mice prior to Cre recombination, cell membrane-483 

localized tdTomato (mT) fluorescence expression is widespread in cells/tissues and Cre recombinase 484 

expression induces cell membrane-localized EGFP (mG) fluorescence expression replacing the red 485 

fluorescence. The mT/mG mice were bred with Ggt1-Cre strain. For all mouse colonies, the pups were ear 486 

tagged and genotyped at 3 weeks of age.  487 

Animal models of Acute Kidney Injury. For all experiments, age-matched (8–12 week) male or female 488 

mice were used. Littermates were used in studies with germline, mutant or conditional knockout mice. For 489 

experiments where only wild-type mice were used, 8- to12-wk-old male C57BL/6J or FvB mice were 490 

obtained from Jackson Laboratories. 491 

For cisplatin nephrotoxicity experiments, cisplatin (15-30 mg/kg) was administered by i.p. injection24. 492 

Optimal cisplatin dose was determined for each strain by dose-response experiments. After cisplatin 493 

injection, blood was collected on days 0–3 by submandibular vein bleed or on day 3 via cardiac puncture 494 

after carbon dioxide asphyxiation. Renal tissues were collected and processed for Western blot and 495 

histological analysis.  496 

For ischemia-reperfusion experiments, mice were anesthetized by isoflurane and placed on a surgical 497 

platform where the body temperature was monitored throughout the procedure. The skin was disinfected, 498 

kidneys were exposed and bilateral renal pedicles were clamped for 28-35 minutes. Subsequently, the 499 

clamps were released to initiate the reperfusion followed by suturing to close the muscle and skin around 500 

the incision. To compensate for the fluid loss, 0.5 ml warm sterile saline was administered via intra-501 
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peritoneal injection. Blood was collected on days 0–2 by submandibular vein bleed or on day 2 via cardiac 502 

puncture after carbon dioxide asphyxiation. Renal tissues were collected and processed for Western blot 503 

and histological analysis. For Cdkl5 pharmacological inhibition studies, vehicle (1:10 v/v N-504 

methylpyrrolidone/PEG300) or AST-487 were administered by oral gavage (25 mg/kg) six hours post-505 

cisplatin injection or ischemic surgery. 506 

To induce rhabdomyolysis, 8-12 weeks old male C57BL/6J mice were injected with 7.5 ml/kg 50% glycerol 507 

intramuscularly to the two hind-legs or injected with saline as a control, followed by blood and tissue 508 

collection on day 0-2.  To induce folic acid (FA) mediated kidney injury, male FvB wild-type mice (~25 g, 10 509 

weeks old) were purchased from Jackson Laboratory and administered with FA (250 mg/kg, dissolved in 510 

300 mM NaHCO3) through intraperitoneal injection. 511 

Assessment of renal damage. Renal damage was assessed by serum analysis (blood urea nitrogen and 512 

creatinine), histological examination (H&E staining) and analysis of renal expression of injury biomarkers 513 

(Kim-1 and Ngal).  Mouse blood samples were collected at indicated time-points, followed by blood urine 514 

nitrogen and creatinine measurement by QuantiChromTM Urea Assay Kit (DIUR-100) and Creatinine 515 

Colorimetric Assay Kit (Cayman Chemical). For histological analysis, mouse kidneys were harvested and 516 

embedded in paraffin at indicated time-points before and after AKI induction. Tissue sections (5 µm) were 517 

stained with hematoxylin and eosin by standard methods. Histopathologic scoring was conducted by in a 518 

blinded fashion by examining ten consecutive 100x fields per section from at least three mice per group. 519 

Tubular damage was scored by calculation of the percentage of tubules that showed dilation, epithelium 520 

flattening, cast formation, loss of brush border and nuclei, and denudation of the basement membrane. 521 

The degree of tissue damage was scored based on the percentage of damaged tubules as previously24 522 

described: 0: no damage; 1: <25%; 2: 25–50%; 3: 50–75%; 4: >75%. 523 

Gene expression analysis. Total RNA was extracted from cell lines and murine kidneys using the 524 

RNeasy Mini Kit (Qiagen). NanoDrop was used to measure RNA quality and quantity. 1 μg total RNA was 525 

then reverse transcribed using the high capacity cDNA Reverse Transcription Kit (Thermo Fischer 526 

Scientific). qPCR analysis was then performed using the SYBR green master mix with sequence-specific 527 
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predesigned primers (Sigma). The sequences of qPCR primers are shown in Supplementary Table 2. For 528 

quantitative analysis, target gene values were normalized to β-actin gene expression using the ∆∆CT 529 

value method. 530 

Protein analysis. Whole cell lysates from RTECs, cell lines and renal cortical tissues were made in 531 

modified RIPA buffer (20 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM Na2EDTA, 1 mM EGTA, 1% NP-40, 532 

2.5 mM sodium pyrophosphate, 1 mM beta-glycerophosphate, protease and phosphatase inhibitors) 533 

supplemented with 1% SDS. Cellular lysates for CDKL5 immunoprecipitation and kinase assay were made 534 

in modified RIPA buffer supplemented with 0.1% SDS. For co-immunoprecipitation experiments, cell 535 

lysates were made in modified RIPA buffer supplemented with 0.2% β-maltoside. Immunoprecipitations 536 

were carried out as described previously55 using anti-FLAG (EZview Red ANTI-FLAG M2 Affinity Gel, 537 

Sigma-Aldrich), anti-CDKL5 (Millipore, MABS1132) and anti-SOX9 antibodies (Abcam, ab3697). Invitrogen 538 

Bis-tris gradient mini or midi-gels were used for western blot analysis, followed by detection by ECL 539 

reagent (Cell Signaling). Primary antibodies used for western blot analysis were from Cell Signaling: FLAG 540 

(14793), Histone H3 (4499), GAPDH (5174), and Santa Cruz Biotech: β-actin (47778), NGAL (50351), 541 

Myoferlin (376879), Sema3e (74554), Gadd45a (6850), Abcam: SOX9 (EPR14335-78), and CDKL5 542 

(ab22453). All primary antibodies were used at 1:1,000 dilution. Secondary antibodies were from Jackson 543 

Immunoresearch and used at 1:2,000 dilutions. Uncropped images of western blots are shown in Source 544 

Data File.  Protein lysates used to determine CDKL5 expression in cancer cell lines were obtained from 545 

the DCTD Tumor Repository, National Cancer Institute at Frederick and the list of cell lines is provided in 546 

Supplementary Table 3. 547 

Protein kinase assay. Protein kinase assays of purified proteins and immuno-precipitated kinases were 548 

carried by in vitro assays55,68. For assays with purified proteins, CDKL5 recombinant human protein was 549 

obtained from Life technologies (A30493). To purify Sox9 wild-type and mutant proteins, FLAG-tagged 550 

Sox9 constructs were sub-cloned into pT7CFE1-CHis plasmid (Thermo Fischer). These constructs were 551 

then used for in vitro translation using a HeLa cell lysate-based Kit (1-Step Human Coupled IVT Kit – DNA; 552 

88881, Life Technologies). The in vitro translated proteins were then purified using His Pur cobalt spin 553 

columns (Thermo Scientific). For in vitro kinase assays, recombinant CDKL5 and purified Sox9 proteins 554 
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were incubated in a kinase buffer (Cell Signaling, 9802) supplemented with [gamma-P32] Adenosine 5'-555 

triphosphate (ATP) at 30°C for 30 min. After the incubation period, the reaction was terminated, followed by 556 

auto-radiographic examination of phosphorylated proteins and subsequent western blot analysis to 557 

determine the level of input proteins. For assays used to examine multiple kinase inhibitors, purified 558 

kinases (CDK2, CDK4, CDK6, and CDKL5) were incubated with 1 µM concentration of kinase inhibitors for 559 

30 minutes followed by kinase assays using ADP-Glo Kinase Assay kit (Promega).  560 

Renal tissues and cells were lysed with a buffer containing 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% 561 

(vol/vol) Triton X-100, 2.5 mM sodium pyrophosphate, 1 mM β-glycerol phosphate, 1 mM Na3VO4, 10 562 

μg/ml leupeptin, 10 μg/ml aprotinin, 1 mM phenylmethylsulfonyl fluoride, 50 mM NaF, 0.2% (wt/vol) 563 

dodecyl β-d-maltoside, and 20 mM Tris (pH 7.5). The soluble extracts were then subjected to Cdkl5 564 

immunoprecipitation. Briefly, 500 µg protein lysate was incubated with 2 μg IgG or anti-Cdkl5 antibody at 565 

4oC overnight, followed by addition of 30 μl of agarose protein A/G beads. Bead-bound immunoprecipitates 566 

were washed and collected by centrifugation. Immunoprecipitates were added to a protein kinase reaction 567 

buffer containing 20 µM ATP and myelin basic protein (Millipore) as substrate and incubated at 30°C for 568 

30 min. The ADP-Glo™ Kinase Assay (promega) kit was then used to measure kinase activity. This is a 569 

luminescent ADP detection assay that provides a method to measure kinase activity by quantifying the 570 

amount of ADP produced during a kinase reaction. After the reaction was terminated western blot analysis 571 

was carried out to determine the level of inmmunoprecipiated proteins. Relative kinase activity was 572 

calculated by normalizing the kinase activity (luminescence) to the amount of immunoprecipitated protein 573 

(densitometry of Cdkl5 signal). The specificity of Cdkl5 kinase assay was verified by conducting assays 574 

using wild type and Cdkl5-/y tissues, which demonstrated undetectable activity in the Cdkl5 deficient tissues 575 

(Supplementary Figure 19 a-b). 576 

Mass spectrometry analysis. Mass spectrometric analysis was performed at the Taplin Biological Mass 577 

Spectrometry Facility (Harvard University). Excised gel bands were cut into approximately 1 mm3 pieces. 578 

Gel pieces were then subjected to a modified in-gel trypsin digestion procedure69. Gel pieces were washed 579 

and dehydrated with acetonitrile for 10 min. followed by removal of acetonitrile. Pieces were then 580 

completely dried in a speed-vac. Rehydration of the gel pieces was with 50 mM ammonium bicarbonate 581 
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solution containing 12.5 ng/µl modified sequencing-grade trypsin (Promega, Madison, WI) at 4ºC. After 45 582 

min., the excess trypsin solution was removed and replaced with 50 mM ammonium bicarbonate solution 583 

to just cover the gel pieces. Samples were then placed in a 37ºC room overnight. Peptides were later 584 

extracted by removing the ammonium bicarbonate solution, followed by one wash with a solution 585 

containing 50% acetonitrile and 1% formic acid. The extracts were then dried in a speed-vac (~1 hr) and 586 

reconstituted in 5 - 10 µl of HPLC solvent A (2.5% acetonitrile, 0.1% formic acid). A nano-scale reverse-587 

phase HPLC capillary column was created by packing 2.6 µm C18 spherical silica beads into a fused silica 588 

capillary (100 µm inner diameter x ~30 cm length) with a flame-drawn tip. After equilibrating the column 589 

each sample was loaded via a Famos auto sampler (LC Packings, San Francisco CA) onto the column. A 590 

gradient was formed and peptides were eluted with increasing concentrations of solvent B (97.5% 591 

acetonitrile, 0.1% formic acid). As peptides eluted they were subjected to electrospray ionization and then 592 

entered into an LTQ Orbitrap Velos Pro ion-trap mass spectrometer (Thermo Fisher Scientific, Waltham, 593 

MA). Peptides were detected, isolated, and fragmented to produce a tandem mass spectrum of specific 594 

fragment ions for each peptide. The peptides were fragmented using CID (collision induced 595 

disassociation). A high resolution scan was done at 60,000 resolution, followed by 20 low-resolution 596 

MS/MS scans in the ion-trap. Peptide sequences (and protein identity) were determined by matching 597 

protein databases (Uniprot) with the acquired fragmentation pattern by the software program, Sequest 598 

Version 3.2 (ThermoFisher, San Jose, CA). The database was indexed based on a trypsin digestion, with 599 

two missed cleavages. Fixed modification of 57.0214 Da on cysteine (iodoacetamide) and a variable 600 

modification of 15.9949 Da on methionine were considered. The MS1 mass tolerance was 50 ppm and the 601 

MS2 tolerance was 1.0 Da. The peptide mass range used was 600–6000 Da. All accepted peptides have a 602 

cross-correlation (Xcorr) score of at least 0.5. All databases include a reversed version of all the 603 

sequences and the data was filtered to between a one and two percent peptide false discovery rate (FDR). 604 

For analysis, we applied a cutoff of five unique peptides per protein. The peptides used for identification of 605 

Sox9 are shown in Supplementary Table 4.  606 

Generation of phospho-Ser-199-SOX9 and Phoshpo-Thr-169-Cdkl5 antibodies. Phospho-specific 607 

antibodies was generated and characterized by established methods70. Briefly, the rabbit anti–phospho-608 
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antibodies was generated by using the 118-day protocol (Covance). Peptide surrounding the Ser-199 of 609 

Sox9 and Thr-169 region of Cdkl5 was used for immunization. Immunoblot and ELISA-based method were 610 

used to test the bleeds for antibody production, followed by purification of phospho- antibody by affinity 611 

purification. The specificity of the purified antibody was confirmed in vitro kinase assays and tissues from 612 

knockout mice. De-phosphorylation assays were carried out by incubation of cell lysates with recombinant 613 

lambda phosphatase (New England Biolabs, P0753) at 30°C for 2 hours, followed by western blot analysis 614 

with phospho- and total Sox9 and Cdkl5 antibodies. 615 

Chromatin immunoprecipitation–qPCR. Chromatin immunoprecipitation (ChIP) assays were performed 616 

using the Pierce Magnetic ChIP Kit according to the manufacturer’s instructions70. Briefly, cross-linking 617 

with 1% formaldehyde was carried out in RTECs or renal tissues, followed by quenching with glycine, cell 618 

harvesting and DNA fragmentation by sonication. Lysates were precleared for 1 hour with Protein A+G 619 

magnetic beads (EMD Millipore). Precleared lysates were then incubated with 5 μg of anti-SOX9 620 

antibodies (Abcam, ab3697) overnight at 4°C, followed by addition of Protein A+G magnetic beads and 621 

incubation for 4 hours at 4°C. Subsequently, the beads were repeatedly washed, followed by elution of the 622 

protein-DNA complexes, reversal of cross-links, and DNA purification. Standard qPCR analysis was then 623 

carried out using primers spanning the promoters of target genes. The sequences of primers are shown in 624 

Supplementary Table 2. 625 

Plasmids and site-directed mutagenesis. The Cdkl5 and Sox9 plasmids with pCMV6-entry backbone 626 

were obtained from Origene. The QuikChange II XL Site-Directed Mutagenesis Kit (Agilent) was utilized to 627 

generate mutants, according to suggested methods. The QuikChange primer design program was 628 

employed to design mutagenesis primers55. Primers were synthesized by Integrated DNA Technologies. 629 

All constructs were sequenced to confirm successful mutagenesis. The mutagenesis primer sequences are 630 

shown in Supplementary Table 2. 631 

Promoter Luciferase Assay HEK293 cells were stably transfected with either empty vector (pCMV6) or 632 

Sox9 expression vector (Origene). These cells were then utilized for promoter luciferase reporter assays70. 633 

Briefly, 5 × 103 cells were plated overnight on white poly-l-lysine–coated 96-well plates, followed by 634 
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transient transfection with either promoter constructs (Switchgear Genomics, encoding 2kb sequence 635 

upstream of transcription start sites of following genes: Gadd45a, Wwp2, Sema3e and Myof) or empty 636 

promoter construct at 30 ng in combination with the Cypridina TK control construct (Switchgear Genomics) 637 

at 1 ng, according to the manufacturer’s protocol (Switchgear Genomics, Lightswitch Dual Assay kit, 638 

DA010). The promoter construct encodes a Renilla luminescent reporter gene, called RenSP, while the 639 

transfection and normalization vector encodes a Cypridina luciferase. The Renilla luciferase activity was 640 

normalized with the Cypridina luciferase activity. 641 

Statistical considerations. Data are presented as mean with s.e.m, unless stated otherwise. Statistical 642 

calculations (Student’s t-test or analysis of variance) were carried our using GraphPad Prism. p<0.05 was 643 

considered statistically significant. To calculate statistical significance between two groups, two-tailed 644 

unpaired Student’s t test was performed. One-way ANOVA followed by Tukey’s or Dunnett’s multiple-645 

comparisons test was used for comparisons among three or more groups. For all the experimental data 646 

presented in the manuscript, no sample outliers were excluded.  647 
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 823 

 824 

 825 

 826 

 827 

FIGURE LEGENDS 828 

Figure 1: A Kinome-wide screen uncovers protein kinases involved in RTEC cell-death. (a) Scheme 829 

depicting the assay conditions used in the primary siRNA screen. BUMPT cells were transfected with 830 

Kinome-wide siRNA library (Dharmacon), followed by cisplatin treatment and cell-titer-glo based viability 831 

assay. (b) Results of primary RNAi screening, shown by plotting the relative survival post-cisplatin 832 

treatment of individual siRNA-targeted genes obtained from triplicate samples. (c) Kinome map (KinMap) 833 

depicting kinases identified in the primary screen. (d) Validation of primary hits by distinct siRNAs (Sigma) 834 

in BUMPT cells. Survival data (MTT assay) are presented as individual data points (n = 4 biologically 835 

independent samples), from one out of three independent experiments, all producing similar results. (e) 836 

Further secondary screening was carried out in HK-2 cells, by RNAi mediated knockdown of indicates 837 

genes, followed by MTT-based cellular viability assay. Data are presented as individual data points (n = 4 838 

biologically independent samples), from one out of three independent experiments, all producing similar 839 

results. (f) Schematic representation of CDKL5, the top hit and other members of CMGC kinase family. (g-840 

h) Tertiary screening was carried for the top hit (Cdkl5) by shRNA mediated knockdown in BUMPT cells 841 

and ‘add back’ of wild-type and mutant Cdkl5. Cellular viability assays (MTT) showed that shRNA mediated 842 
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Cdkl5 knockdown protects BUMPT cells from cisplatin-mediated cell-death, an effect that was reversed by 843 

re-introduction of wild-type but not mutant Cdkl5. Data are presented as individual data points (n = 4 844 

biologically independent samples), from one out of three independent experiments, all producing similar 845 

results. Representative western blot results demonstrating shRNA mediated CDKL5 kinase knockdown 846 

and introduction of un-tagged wild-type, kinase dead (KD), and TEY/AEF Cdkl5 constructs. Data is 847 

representative of three independent experiments. In all the bar graphs, experimental values are presented 848 

as mean ± s.e.m. The height of error bar=1 s.e. and p<0.05 was indicated as statistically significant. 1-way 849 

ANOVA followed by Dunnett’s (d and e) or Tukey’s multiple-comparisons test (h) was carried out and 850 

statistical significance is indicated by *p < 0.05, **p < 0.01, ***p < 0.001. Source data are provided as a 851 

Source Data file. 852 

 853 

Figure 2: CDKL5 activity increases in renal tubular epithelial cells during AKI. (a-c) Bilateral renal 854 

ischemia was induced in male wild-type (C57BL/6) mice for 30 minutes followed by reperfusion for 855 

indicated time-points. Blood urea nitrogen, serum creatinine and histological analysis (H&E staining) were 856 

used to examine renal function and damage. (d-f) C57BL/6 mice were treated with cisplatin (30 mg/kg, 857 

intra-peritoneal injection) and BUN, serum creatinine and histological analysis were conducted at the 858 

indicated time-points. (g) Representative H&E staining depicting tubular damage (indicated by asterisk) in 859 

both ischemic and cisplatin treated mice. The graphs (a-f) represent data from a single experiment (n = 5 860 

biologically independent samples), from one out of three independent experiments, all producing similar 861 

results.  (h) Renal tissues from control, ischemic and cisplatin treated mice were used for western blot 862 

analysis of indicated proteins. Data presented is representative of five independent experiments, which 863 

yielded similar results. (i-k) Cdkl5 was immuno-precipitated from the kidneys of control, ischemic and 864 

cisplatin treated mice, followed by in vitro kinase assays. The representative western blots show the levels 865 

of Cdkl5 immuno-precipitated from tissue samples. The graphs represent data from a single experiment 866 

(n = 6 biologically independent samples), from one out of four independent experiments, all producing 867 

similar results. (l) Ggt1-Cre mice were crossed with ROSA
mT/mG

 mice to generate transgenic mice that 868 

express membrane localized EGFP in renal tubular epithelial cells. Representative image shows EGFP 869 
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expression in renal tubular cells. Arrows with dotted lines indicate tubular cells, while arrows with solid line 870 

shows the glomerulus. (m) Schematic representation of procedure used to isolate EGFP positive renal 871 

epithelial cells. (n) Cdkl5 immunoprecipitation and in vitro kinase assay from indicated cells. The graph 872 

(n=4) is representative of two independent experiments. In all the bar graphs, experimental values are 873 

presented as mean ± s.e.m. The height of error bar=1 s.e. and p<0.05 was indicated as statistically 874 

significant. 1-way ANOVA followed by Dunnett’s (a-f and i-j) or Tukey’s multiple-comparisons test (n) was 875 

carried out and statistical significance is indicated by *p < 0.05, **p < 0.01, ***p < 0.001. Scale bar (g & i): 876 

100 µm. Source data are provided as a Source Data file. 877 

 878 

 879 

Figure 3: RTEC specific Cdkl5 deletion provides protection from AKI. To generate mice with RTEC 880 

specific Cdkl5 knockout, Ggt1-Cre mice were crossed with Cdkl5 floxed mice. (a) Representative western 881 

blots showing successful knockout in the renal tissues. Littermate control and Cdkl5 conditional knockout 882 

male mice (indicated by Cdkl5
PT-/y

) were then challenged with bilateral renal ischemia or cisplatin 883 

treatment. Bilateral renal ischemia was induced in wild-type and Cdkl5
PT-/y

 mice for 30 minutes followed by 884 

examination of renal structure and function. (b) Blood urea nitrogen (c) Serum creatinine (d) renal Kim1 885 

mRNA expression (e) renal histological analysis (H&E) showed that tubular epithelial-specific Cdkl5 886 

deficiency confers protection from ischemia-associated AKI. Data presented (b-e) is cumulative of two 887 

independent experiment (n=6). Wild-type and Cdkl5
PT-/-

 mice were treated with cisplatin (25 mg/kg) 888 

followed by examination of renal function. (f) Blood urea nitrogen (g) Serum creatinine (h) renal Kim1 889 

mRNA expression (i) renal histological analysis (H&E) showed that Cdkl5 contributes to cisplatin-mediated 890 

AKI. Data presented (f-i) is cumulative of two out of four independent experiment (n=8), that showed 891 

similar results. (j) Primary renal tubular cells were cultured from female wild-type and Cdkl5 floxed mice. 892 

One week later, lentiviral transductions (Cre) were carried out to ablate Cdkl5 gene. Western blot analysis 893 

confirmed CDKL5 ablation. Blots are representative of two independent experiments. (k) Primary renal 894 

tubular cells with indicated genotype were treated with 50 µM Cisplatin, followed by cell viability 895 
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assessment using trypan blue staining. Data are presented as individual data points (n = 4 biologically 896 

independent samples), from one out of three independent experiments, all producing similar results. In all 897 

the bar graphs, experimental values are presented as mean ± s.e.m. The height of error bar=1 s.e. and 898 

p<0.05 was indicated as statistically significant. 1-way ANOVA followed by Tukey’s multiple-comparisons 899 

test was carried out and statistical significance is indicated by *p < 0.05, **p < 0.01, ***p < 0.001. Source 900 

data are provided as a Source Data file. 901 

 902 

 903 

 904 

 905 

Figure 4: Cdkl5 phosphorylates Sox9 at Serine 199 site. (a) Bilateral renal ischemia was induced in 906 

C57BL/6 mice for 30 minutes followed by reperfusion for one day. Renal cortical lysates were then used to 907 

immunoprecipitate Cdkl5, while IgG was used as negative control. Immunoprecipiates were then run on a 908 

4-12% gradient SDS-PAGE gel followed by protein visualization with SYPRO Ruby Protein Gel Stain. The 909 

~65 Kda Cdkl5-interacting protein was then identified by mass spectrometric analysis as Sox9 as 910 

described in the Methods section (b) Purified wild-type Cdkl5 and wild-type and mutant Sox9 proteins were 911 

co-incubated in a kinase assay buffer with [gamma-32P]-ATP for 30 minutes. Samples were then run on 912 

SDS-PAGE gel followed by transfer to PVDF membrane. Radiolabeled Sox9 was examined by 913 

autoradiography, followed by western blot analysis to examine the input proteins. Blots are representative 914 

of two independent experiments. (c) Schematic representation of Sox9 protein (modified from Ref. 64). 915 

Protein sequence analysis showed that the sequence surrounding the Ser-199 site is highly conserved. 916 

HMG, indicates high mobility group box DNA binding domain, CD, indicates Conserved domain and, PQA 917 

indicates proline-glutamine-alanine rich domain. (d) Control, cisplatin and ischemic renal tissues from 918 

control and Cdkl5
PT-/y

 mice were subjected to immunoblot analysis of indicated proteins. Blots are 919 

representative of at least three independent experiments. (e-f) Densitometric analysis of Sox9 and p-Ser-920 

199 Sox9 protein levels. Graph represents cumulative results (n=5 independent biological samples) from 921 
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three independent experiments. Densitometric analysis was carried out using Image J and the signals of 922 

indicated proteins were normalized by actin levels in the same samples. In all the bar graphs, experimental 923 

values are presented as mean ± s.e.m. The height of error bar=1 s.e. and p<0.05 was indicated as 924 

statistically significant. 1-way ANOVA followed by Tukey’s multiple-comparisons test was carried out and 925 

statistical significance is indicated by *p < 0.05, **p < 0.01, ***p < 0.001. Source data are provided as a 926 

Source Data file. 927 

 928 

 929 

 930 

 931 

 932 

Figure 5: SOX9 plays a protective role during AKI. To generate mice with renal tubule specific Sox9 933 

knockout, Ggt1-Cre mice were crossed with Sox9 floxed mice. (a) Representative western blots showing 934 

successful knockout in the renal tissues. Littermate control and Sox9 conditional knockout mice (indicated 935 

by Sox9
PT-/-

) were used to study the role of SOX9 in AKI. Bilateral renal ischemia was induced in wild-type 936 

and Sox9
PT-/- 

mice for 30 minutes followed by examination of renal structure and function. (b) Blood urea 937 

nitrogen (c) Serum creatinine (d) renal Kim1 mRNA expression (e) renal histological analysis (H&E) 938 

showed that tubular epithelial-specific Sox9 deficiency exacerbates ischemia-associated AKI. Data 939 

presented (b-e) is cumulative of three independent experiment (n=6-7). Wild-type and Sox9
PT-/- 

mice were 940 

treated with cisplatin (30 mg/kg) followed by examination of renal function. (f) Blood urea nitrogen (g) 941 

Serum creatinine (h) renal Kim1 mRNA expression (i) renal histological analysis (H&E) showed that SOX9 942 

regulates cisplatin-mediated AKI. Data presented (f-i) is cumulative of two out of four independent 943 

experiment (n=8), that showed similar results. (j) Primary renal tubular cells were cultured from wild-type 944 

and Sox9 floxed mice. One week later, lentiviral transductions (Cre) were carried out to delete Sox9 gene. 945 

Western blot analysis confirmed SOX9 deletion. Blots are representative of two independent experiments. 946 
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(k) Primary renal tubular cells with indicated genotype were treated with 50 µM Cisplatin, followed by cell 947 

viability assessment using trypan blue staining. Data are presented as individual data points (n = 4 948 

biologically independent samples), from one out of three independent experiments, all producing similar 949 

results. In all the bar graphs, experimental values are presented as mean ± s.e.m. The height of error 950 

bar=1 s.e. and p<0.05 was indicated as statistically significant. 1-way ANOVA followed by Tukey’s 951 

multiple-comparisons test was carried out and statistical significance is indicated by *p < 0.05, **p < 0.01, 952 

***p < 0.001. Source data are provided as a Source Data file. 953 

 954 

 955 

 956 

 957 

 958 

Figure 6. A small molecule Cdkl5 inhibitor mitigates AKI.  (a) In vitro kinase assays were carried out 959 

for cell cycle-related kinases and CDKL5 for the indicated inhibitors at a single concentration of 1µM. 960 

Kinase activity is presented as a heat map, where blue indicates no inhibition (high kinase activity), while 961 

red indicates kinase inhibition (low kinase activity). AST-487 was found to inhibit CDKL5, without affecting 962 

the activity of cell cycle related kinases. Data presented here is the mean of three independent 963 

experiments. (b) C57BL/6 mice were treated with either vehicle or AST-487 through oral administration 964 

followed by examination of Cdkl5 activity in renal tissues. Data are presented as individual data points 965 

(n = 5 biologically independent samples), from one out of two independent experiments, all producing 966 

similar results. (c-e) Bilateral renal ischemia was induced in wild-type C57BL/6 mice for 30 minutes 967 

followed by reperfusion for indicated time-points. Mice were treated with either vehicle or AST-487 (25 968 

mg/kg, oral gavage) 6 hours post-ischemia, followed by assessment of renal function and damage. (c) 969 

Blood urea nitrogen (d) Serum creatinine (e) renal histological analysis (H&E) Data presented (c-e) are 970 

cumulative of three independent experiment (n=8). (f-h) Wild-type C57BL/6 mice were injected with 971 
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cisplatin (30 mg/kg, i.p.) followed by treatment with either vehicle or AST-487 (25 mg/kg, oral gavage) 6 972 

hours later, followed by assessment of renal function and damage at indicated time-points. Data presented 973 

(e-h) are cumulative of two out of four independent experiment (n=8), that showed similar results. (i) 974 

Western blot analysis of renal tissues indicated that AST-487 suppress Sox9 phosphorylation and 975 

increases Sox9 stability in vivo. Blots are representative of three independent experiments. In all the bar 976 

graphs, experimental values are presented as mean ± s.e.m. The height of error bar=1 s.e. and p<0.05 977 

was indicated as statistically significant. 1-way ANOVA followed by Dunnett’s (b) or Tukey’s multiple-978 

comparisons test (c-h) was carried out and statistical significance is indicated by *p < 0.05, **p < 0.01, ***p 979 

< 0.001. Source data are provided as a Source Data file. 980 
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 984 

 985 

Figure 7: Cdkl5 regulates AKI in a Sox9 dependent and independent manner. Bilateral renal ischemic 986 

surgery was carried out in littermate control and Sox9
PT-/-

 mice, followed by administration of either vehicle 987 

or AST-487 (25 mg/kg, oral gavage, 6 hours post-IR). At 48 hours renal function and damage were 988 

assessed through measurement of (a) Blood urea nitrogen (b) Serum creatinine and (c) renal histological 989 

analysis (H&E). Age-matched WT, Cdkl5
PT-/y

, Sox9
PT-/-

, and Cdkl5
PT-/y

Sox9
PT-/- 

(double knock out mice 990 

indicated as dKO
PT

)
 
underwent bilateral renal ischemia for 30 minutes, followed by (d) Western blot 991 

analysis of renal tissues at 24 hours post-reperfusion (one out of two independent experiments) and 992 

assessment of renal structure and function at 48 hours through measurement of (e) Blood urea nitrogen (f) 993 

Serum creatinine and (g) renal histological analysis (H&E). Data presented (a-c, e-g) are cumulative of 994 

three independent experiment (n=6). In all the bar graphs, experimental values are presented as mean ± 995 

s.e.m. The height of error bar=1 s.e. and p<0.05 was indicated as statistically significant. 1-way ANOVA 996 
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followed by Tukey’s multiple-comparisons test was carried out and statistical significance is indicated by *p 997 

< 0.05, **p < 0.01, ***p < 0.001. Source data are provided as a Source Data file. 998 
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