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Opinion statement

 Medical treatment in Wilson’s disease includes chelators (D-Penicillamine and

Trientine) or zinc salts that have to be maintain all the lifelong. This

pharmacological treatment is categorized into two phases; the first being a de-

coppering phase and the second a maintenance’s one. The best therapeutic

approach remains controversial, as only a few non-controlled trials have

compared these treatments. During the initial phase, progressive increase of

chelators’ doses adjusted to exchangeable copper and urinary copper might

help to avoid neurological deterioration. Liver transplantation is indicated in

acute fulminant liver failure and decompensated cirrhosis; in cases of

neurologic deterioration, it must be individually discussed. During the

maintenance phase, the most important challenge is to obtain a good

adherence to lifelong medical therapy.

 Neurodegenerative diseases that lead to a mislocalization of iron can be

caused by a culmination of localized overload (pro-oxidant siderosis) and

localized deficiency (metabolic distress). A new therapeutic concept with

conservative iron chelation rescues iron-overloaded neurons by scavenging

labile iron and, by delivering this chelated metal to endogenous apo-

transferrin, allows iron redistribution to avoid systemic loss of iron.



1. Introduction

Heavy metals, present in trace concentrations in the environment, are naturally

occurring elements with a relative high density compared to water [1]. Some of them

(e.g. lead, aluminium, mercury) are non-essential with high degree of toxicity for

humans. When absorbed or inhaled in high doses, they usually damage specific

organs such as kidneys, bone, brain and nerves (see Table 1) and may also be

implicated in the pathogenesis of neurodegenerative diseases, particularly

Alzheimer's or Parkinson’s disease.

Other bioavailable metals (e.g. copper, iron, zinc, manganese) are essential nutrients

for various biochemical and physiological human functions, and especially for brain

development and metabolism. When their concentrations are out of the normal

range, due to abnormal accumulation or inadequate supply from various origins (i.e.

genetic or toxicity), these microelements may play a role in disease pathogenesis,

especially through free radical formation.

This article will focus on the neurologic manifestations in connection with copper, iron

and manganese, three of these essential nutrients that are normally utilized in

biology systems due to their ease in transition of valence state.

Copper and Central Nervous System

1. Copper metabolism and brain pathology

During a normal diet, the daily intake of copper is about 2-3 mg. It is absorbed by the

enterocytes, stored with metallothioneins, copper-selective chaperone proteins and

then exported by Cu-ATPase ATP7A to the liver via the portal vein. In hepatocytes,

metallothioneins and ATPases (ATP7A and ATP7B) interact and allow the



hepatobiliary system to maintain a physiological copper homeostasis.

Despite the concentration of copper being higher in the liver, it is also predominantly

present in the normal brain. It has a heterogeneous distribution with stronger

concentration in the grey matter (e.g. basal ganglia, Substantia Nigra, dentate

nucleus, cortex) than in the white matter [2]. The current model for copper transport

through the brain is that the blood–brain barrier (BBB) regulates the influx of copper

into the brain and the blood–CSF barrier (BCB) contributes to the maintenance of the

copper homeostasis in the brain extracellular fluids [3]. This tight regulation mediated

by specific copper transporters and chaperones present at these two brain barriers,

allows the copper concentration in the CSF to be maintained at a 50-100 fold lower

level than in the serum [4].

Copper acts as a fundamental catalytic cofactor for numerous enzymes and proteins

involved in growth and brain development. Examples include the synthesis of

cytochrome C oxidase, superoxide dismutase 1, dopamine-beta-hydroxylase,

norepinephrine, and amyloid precursor protein as well as the functioning of

ceruloplasmin and others metalloproteins [5]. Deficiency in copper caused by an

inadequate supply can result in impaired energy production, increased oxidative

damage, tissue iron accumulation as well as aberrant neuropeptide synthesis and

processing. Increased CNS copper level is found in genetic disorders such as

Wilson’s disease (see section below), and in neurodegenerative diseases like

Alzheimer’s disease and amyotrophic lateral sclerosis where CNS copper is reported

to be two-fold higher than in age matched controls [6].

2. Disorders caused by a genetic mutation in a copper regulatory protein

Wilson’s disease (WD)



WD is an autosomal recessive disorder due to mutations in the ATP7B (Wilson

disease protein) gene that is predominantly expressed in the liver. Defective ATP7B

function impairs both copper incorporation to ceruloplasmin in hepatocytes and

copper release into the bile, resulting in liver copper accumulation with tissue

damage [7]. In the absence of diagnosis and treatment at this stage, the hepatic free

copper spills into the blood stream and deposits in other organs such as cornea,

brain and kidney [8].

Clinical prevalence of diagnosed WD is ~30 per million population, but this is

probably an inaccurate estimate as a recent genetic study reported the frequency of

individuals predicted to carry two mutant pathogenic ATP7B alleles to be 1/7026 [9].

The hepatic disease can remain asymptomatic for years or present as acute transient

hepatitis, fulminant hepatic failure, and either compensated or decompensated

cirrhosis. Neurological symptoms of WD include dysarthria, tremor, dystonia,

parkinsonism, oculomotor abnormalities and dysexecutive syndrome. Psychiatric

disorders are essentially depression, bipolar affection and dysthymia [8]. Brain

lesions are classically located in basal ganglia, midbrain and dentate nuclei (see

Figure 1A) but diffuse cerebral atrophy is frequent. White matter changes with

cortical lesions and abnormalities in the corpus callosum are also reported [10, 11].

Other extrahepatic features include corneal Kayser-Fleischer rings, renal

manifestations like lithiasis, osteoarticular disorders, myocardial abnormalities,

endocrine disturbances and repetitive miscarriages.

WD is biologically characterised by low serum ceruloplasmin and total copper

concentrations, associated with increased urinary copper excretion. The relative

exchangeable copper (non ceruloplasmin bound copper), measured as a ratio of total

copper, appears to be an excellent non-invasive diagnostic marker. At diagnosis,



patients with WD have a rate greater than 15% [12].

More than 500 mutations and 100 polymorphisms of the ATP7B gene are reported.

The absence of correlation phenotype/genotype, clinical heterogeneity and variable

penetrance, signify that genes modifiers may exist and influence the age of disease

onset or the phenotype.

With regards to treatment, a low copper diet is recommended and alcohol should be

avoided due to its high propensity in causing liver toxicity. Medical treatment is more

effective if administrated at an early stage of the disease and maintained for life [13].

It is typically based on copper chelators to promote copper excretion from the body

(D-penicillamine (DPA) and triethylenetetramine or Trientine) and zinc salts to

increase metallothionein synthesis and reduce copper absorption. In our experience,

DPA presents adverse effects in 30% of cases (sensitive reactions, nephrotoxicity,

hematological abnormalities, autoimmune diseases and elastopathy). Trientine has

the added inconvenience of requiring refrigerated storage and is associated with rare

sideroblastic anemia and lupus-like reactions. Adverse effects of zinc salts are

essentially gastrointestinal discomfort.

Two phases of treatment can be distinguished: the initial phase and the subsequent

maintenance therapy. During the acute phase, the major difficulty is the risk of

paradoxical worsening of neurological symptoms. A worsening of the neurological

disease is observed more frequently with DPA (13.8%) than with Trientine (8%) or

zinc salts (4.3%) [14]. In some cases, neurological deterioration is irreversible, the

disease continuing to evolve under treatment. The mechanisms of this paradoxical

worsening are discussed: treatment too slow to act in very acute forms, irreversible

tissue damage already present, direct effect of the treatment with rapid mobilization

and redistribution of copper resulting in high levels of free copper in blood and brain.



So, recommendations by experts emphasize the need of a slow increase in

chelators’ dose [8]. So far, the best therapeutic approach remains controversial, as

no prospective clinical trial has compared the different treatments. A retrospective

multicenter study analyzed the treatment outcome in 405 patients receiving DPA or

Trientine for at least 6 months [15]. After 4 years of treatment, chelation therapy lead

to hepatic improvement in more than 90% of patients and neurologic improvement in

only 62% of patients, these values did not differ between treatments. However,

neurologic deterioration was less frequently observed in patients on DPA first (6/293)

than those on Trientine first (4/38) (p=0.018). In a retrospective Polish study, 143

consecutive patients diagnosed with symptomatic WD were first line treated with

DPA or zinc salts. Neither therapy clearly appeared superior, but early worsening

was observed in 35% of patients treated with DPA and 19% of patients with zinc salts

[16]. Another retrospective study demonstrated that treatments with chelating agents

or zinc salts were effective in most patients with WD and that chelating agents are

better at preventing hepatic deterioration [17]. Despite these data do not allow a

strong recommendation, in our perspective, patients with newly diagnosed

neurological WD will still be treated in first line by chelation therapy. Choice between

DPA or Trientine depends of the treatment availability, but regardless of the

treatment improvement is not immediate and often takes 3 to 6 months.

The risk of initial neurological worsening could be lessened with tetrathiomolybdate,

another copper chelator, which acts by forming a tripartite complex with copper and

protein either in the intestinal lumen to prevent copper absorption, or in the circulation

where it blocks cellular copper trafficking [18]. However, clinical experience with this

drug remains insufficient and international studies are still only in the pipeline.

Liver transplantation should be considered in WD patients with acute liver failure or



decompensated cirrhosis as results are extremely satisfactory with 87% actuarial

patient survival rate at 5, 10 and 15 years [19]. However this remains a matter of

controversy in cases of neurological worsening without liver failure, despite reports of

70% of these patients improving after transplantation [20]. In our experience, after a

mean follow-up of five years, 12 of 16 patients (75%) improved when transplanted for

neurologic worsening. So, in this specific indication, liver transplantation must be

individually discussed.

During the maintenance phase, the major difficulty is the adherence to the treatment.

A regular clinical, biological and liver ultrasound follow-up is essential to make sure of

observance, efficiency and tolerance of the treatment, as well as to detect treatment

complications, increased liver enzymes (more frequent under zinc therapy) and liver

carcinoma. Dose adjustment during the maintenance phase is very important to

prevent overtreatment and copper deficiency. After years of regular treatment, more

often clinical signs progressively resolve and brain lesions disappear (see Figure 1A).

During pregnancy, treatments must be maintained, but dosages of drugs should be

reduced and adapted to urinary copper excretion and exchangeable copper. Since

treatment is more effective if initiated early, family screening is essential for this

autosomal recessive disorder. In relatives with presymptomatic disease, treatment is

mandatory (zinc salts or Trientine). Further treatments should focus on more site-

specific copper chelators that can act in the hepatocytes to excrete the copper-

complex into the bile. Gene therapy also seems an attractive alternative with effective

treatment on WD animal models [21, 22].

Menkes disease (MD)

MD is an X-linked recessive disorder of impaired copper absorption caused by

mutations in the ATP7A gene. Usually, developmental regression appears in boys



during the first two months of life with axial hypotonia, seizures and psychomotor

retardation. Other manifestations are relative to connective damages; coarse hair,

ligamentous hyperlaxity, skin hyperelasticity, bladder and ureter diverticula, arterial

tortuosities and anevrysms [23]. Magnetic Resonance Imaging (MRI) shows impaired

myelination, diffuse brain atrophy and tortuosity of cerebral arteries. Diagnosis of MD

can be established by detecting low levels of copper and ceruloplasmin in the serum,

and high levels in cutaneous fibroblasts. It is confirmed by identification of the gene

mutation. For some patients, parenteral administration of Histidine-copper improves

the neurological outcome and increases lifespan, but the prognosis remains

inevitably poor. Death usually occurs by 3 years of age, but some patients can

survive beyond 10 years. In 5-10 % of the patients, a milder form of MD presents with

a later onset, more moderate symptoms and longer survival. Preliminary results of

brain-directed ATP7A gene therapy using recombinant adeno-associated virus in a

mouse model of MD appear highly promising [24].

Other copper disorders

Occipital horn syndrome and ATP7A-related distal motor neuropathy are also

associated with ATP7A mutations. MEDNIK (mental retardation, enteropathy,

deafness, peripheral neuropathy, ichthyosis, and keratoderma) syndrome and

Huppke-Brendl syndrome are newly recognised genetic disorders that may indirectly

affect the function of ATP7A [23, 25]. MEDNIK syndrome is caused by mutations in

the s1A subunit of adaptor protein complex 1 (AP-1), which leads to detrimental

effects on ATP7A trafficking [26]. Huppke–Brendel syndrome is caused by mutations

in an acetyl-CoA transporter, SLC33A1, needed for acetylation of one or more

copper proteins [27]. Clinical, biochemical, molecular features and treatment options

of these rare diseases are summarized in Table 2.



3. Acquired disorders: copper deficiency and copper excess/toxicosis

Acquired Copper deficiency (ACD)

In developed countries, ACD is rarely due to a low dietary intake of copper

(malnutrition or prolonged parenteral nutrition without copper supplementation).

Instead, the two main causes responsible for inadequate supply of copper are

digestive disorders with impaired absorption and/or consumption of high dose of zinc

that provokes a zinc-induced copper deficiency. Digestive conditions can originate

from various malabsorption syndromes including celiac disease, inflammatory bowel

disease, upper gastro-intestinal surgeries and bariatric surgery to combat obesity.

High intake of zinc is usually associated with chronic use of dental adhesives

enriched in zinc [8] but prolonged zinc treatment in WD can also cause ACD in

extreme cases [28]. The precise molecular mechanisms of ACD are unknown [29].

Manifestations of ACD start with hematologic then neurologic abnormalities. Anaemia

and neutropenia are the most common hematologic findings but pancytopenia can be

also present [30]. Neurologic symptoms can be initially limited to ascending

paresthesias and gait disorder but can also mimic a B12 deficiency phenotype with a

posterior cord syndrome or a subacute combined degeneration. On most occasions

spinal cord MRI classically shows a posterior high T2 signal in cervical or dorsal

level, but it may also be normal. B12 dosage and CSF are always normal. Low serum

copper and ceruloplasmin levels confirmed the diagnosis but can be differentiated

from WD through urinary copper levels being typically low or normal. Treatment is

based on a chronic copper supplementation (but doses and duration are not well

established) and is dependent on the management of underlying risk factors. In our

experience, copper should be started as rapidly as possible with subcutaneous or

parenteral high doses (minimum 4 mg/d) and then maintained over years with oral



intake of a minimum of 2 mg/d copper. Using this regime, disturbances in copper and

hematology are rapidly resolved in a few weeks, MRI normalizes in a year but

neurologic improvement takes much longer if benefits are seen at all.

Acquired copper toxicity

Acute copper toxicity tends to results from accidental copper contamination of

drinking water or other beverages stored within copper-containing vessels. Clinical

manifestations range from a metallic taste, nausea, vomiting and diarrhoea, through

to jaundice, hemoglobinuria, hematuria, anuria, and oliguria. A lethal dose is ~1000

times the normal dietary intake. Chronic copper poisoning arises from accumulation

within the liver but is exceptional due to highly efficient systemic control mechanisms

for copper homeostatic that can alter intestinal absorption and biliary excretion in

response to the body’s copper levels [31].

Iron and Central Nervous System

1. Iron metabolism, brain pathology and iron chelation

Iron has allowed the existence of life on earth through an ability to act as an electron

donor for photosynthesis and aerobic respiration via mitochondrial oxidative

phosphorylation. Iron homeostasis relies on the orchestration of a network of

systemic and cellular mechanisms for the acquisition, internal distribution and

employment of iron [32-34]. Disruption of links in the metabolic network can lead to

mislocalization of iron in specific cellular compartments or tissues (causing localized

siderosis and thus damage) and impaired redistribution of iron, generating a

“deficiency in the midst of abundance” [35-37].

Damage arising from siderosis is mostly from the potent pro-oxidant and redox-



cycling capacity of iron, making it a key player in upstream mechanisms that

precipitate cell death. Iron’s catalysis of reactive oxygen species (ROS) formation

from by-products of oxygen consumption affects neuronal functions either by directly

damaging cell components, through the Fenton reaction, or by chemically affecting

signal mediators [38-40].

The recent resumption of interest for iron in the brain pathologies can be explained

by several facts. First, iron maldistribution with iron accumulation (i.e. regional

siderosis) have been clarified with greater resolution, using a variety of imaging

techniques, as an early feature in pathologically affected brain regions from

Neurodegeneration with Brain Iron Accumulation (NBIA), Friedreich ataxia (FA),

Parkinson’s disease (PD), Alzheimer’s disease (AD) and Amyotrophic Lateral

Sclerosis (ALS). Second, accumulative data demonstrate a pivotal role of iron in the

physiopathology of cell death as exemplified by; the defective synthesis of the cluster

iron sulfer in FA, the exacerbation of dopamine oxidation in PD, and the involvement

of the canonical proteins of AD in iron metabolism (i.e. -Amyloid precursor protein,

Tau, ApoE, presenilin). Finally, therapeutic perspectives with the new concept of

conservative iron chelation have shown promising outcomes in preclinical and clinical

testing.

Despite these promising advances, the exact contribution of brain siderosis on

aetiology of these diseases remains to be fully elucidated. Moreover, while iron

accumulation with neurodegeneration has been a major focus of previous research it

is increasingly evident that iron deficits caused by maldistribution are just as

deleterious to behavioural outcome and increasingly understood to be a major

contributor to cognitive impairment in our society (e.g. the association with juvenile

obesity and iron deficiency [41]). In all these disorders, the simultaneous dearth and



surplus of regional iron within the brain pose new challenges in drug therapy, with the

need to detoxify discrete siderotic foci without affecting essential iron-dependent

functions and conversely, replenish iron-deprived regions without overloading those

already in surplus. The traditional role of iron chelation therapy has been to reduce

body iron burden of excess metal and its safe excretion in a complexed form.

However, we and others have introduced a more conservative mode of iron chelation

with a dual activity based on scavenging labile metal not considered to be

functionally required and redeploying it to cell acceptors or the physiological iron

transporter transferrin family. This “scavenging and redeployment” is a proposed

mode of action for the prototype drug deferiprone and has been found to correct

aberrant iron distribution and minimizing / prevent systemic loss of chelated metal in

a range of animal models and humans [42, 43].

2. Monogenetic Orphan diseases; Neurodegeneration with brain iron

accumulation (NBIA)

NBIA is a heterogeneous group of disorders with a prevalence of ~0.5 / 100,000 but

a highly variable age of onset, partly depending on the causative genetic abnormality.

This syndrome is clinically characterized by the variable combination of i) movement

disorders (dystonia/parkinsonism/chorea) that usually are the main manifestation of

the disease and predominate in the oro-facial and bulbar muscles, ii) pyramidal

syndrome, iii) cognitive deterioration and iv) psychiatric disturbances. Brain MRI

shows bipallidal hyperintensity on T2 and T2* (more sensitive) weighted sequences

that reflect the alteration of iron homeostasis in these areas (See Figure 1B). Other

clinical or neuroimaging abnormalities can be seen depending on the cause (see

Table 3). It is important for clinical practice to keep in mind that a time lag can be

observed between clinical manifestations and neuroimaging abnormalities; some



symptomatic patients still have a normal MRI at initial stages and conversely some

patients are asymptomatic despite bipallidal hyperintensity.

NBIA can be divided into two groups, primary disorders of iron metabolism

(neuroferritinopathy and aceruloplasminemia) and disorders in which alteration of

iron homeostasis is secondary to neuronal stress induce from another origin

(Panthotenate Kinase Associated Neurodegeneration (PKAN), PhosphoLipase A2

Group VI Associated Neurodegeneration (PLAN), Fatty Acid 2 Hydroxylase

associated Neurodegeneration (FAHN), Mitochondrial membrane Protein Associated

Neurodegeneration (MPAN), Beta-propeller Protein Associated Neurodegeneration

(BPAN), and Coenzyme A synthase Protein Associated Neurodegeneration (CoPAN)

[44]. Diagnosis is confirmed by molecular analysis of the various culprit genes.

Aceruloplasminemia leads to a dramatic reduction of the ferroxidase activity in

ceruloplasmin that prevents astrocytic iron export and the safe incorporation of iron

into extracellular transferrin. In the absence of functional ceruloplasmin, astrocytic

iron accumulation leads to neurons suffering from iron deprivation in the early stages

of the disease, and eventually promotes iron-mediated oxidation. Neuroferritinopathy

results from an alteration of iron storage by ferritin polymers with subsequent release

of free iron and iron-mediated oxidation. Interestingly, secondary alterations of iron

homeostasis are mostly linked to disorders of synthesis and the remodelling of

complex lipids. Basically, treatment is symptomatic and currently there are no

registered treatments for preventing the gradual pathological deterioration over

decades (see Figure 1B). However, the benefit of iron chelator and particularly

deferiprone has been proposed through open label trials in PKAN [45-48] despite

efficacy remaining to be determined in on going randomized clinical trials.



3. Polygenic Neurodegenerative disorders

Parkinson’s Disease (PD)

PD arises from a progressive degeneration throughout the nigrostriatal tract, most

marked in the Substantia Nigra pars compacta (SNc). Depletion of striatal dopamine,

resulting primarily from loss of SNc neurons, results in characteristic symptoms of

disrupted motor coordination and cognitive impairment in the latter stages. Similar to

NBIA, PD is characterised by iron accumulation in the basal ganglia with elevation

above normal ageing greatest in the SNc [49-55] of patients and animal models [40,

56]. Indeed, since its first anatomopathological description in 1924 [57], iron

accumulation has now become a cardinal feature of regional cellular degeneration,

as demonstrated with MRI [52, 54, 55] and ultrasound [58]. Several reasons can

explain the vulnerability of the SNc to ROS and dysregulation of a pro-oxidant such

as iron would clearly exacerbate ROS induced toxicity. Metabolism of dopamine,

through pathways in which several are iron-dependent, expose dopaminergic

neurons to high ROS productivity. When these dopamine metabolites are produced

within vesicles they are comparatively protected against oxidation, but when formed

within the cytoplasm become toxic. -Synuclein (-syn), a pathological protein

associated with PD, may be implicated in this altered dopamine metabolite location

as a reported role of -syn is in the formation of vesicles and PD induced changes to

the structure of -syn can lead to disrupted vesicle formation. Changes in

neurotoxicity within the cytoplasm may be compounded by -syn aggregating in PD

to form Lewy bodies, another hallmark of PD, which also combines with lipids, redox-

active iron and dopamine metabolites to form a site for redox cycling. The

aggregation of -syn in the presence of iron also has a positive feedback loop

whereby together they induce a defective sequestration of dopamine into vesicles,



further enhancing the oxidative metabolism of dopamine into harmful dopamine

quinones [59]. Lastly, autonomous pacemaking within the SNc is substantially higher

than other dopaminergic regions (e.g. ventral tegmental area and SN pars reticulate),

thus creating a higher level of ROS and increasing vulnerability of this region to

oxidative stress [38].

The presence of elevated labile iron in the SNc of PD patients, in particular within the

mitochondrial subcellular compartment, has been proposed to result from one or

more of the following factors [60]; increased iron influx facilitated through transferrin

receptor-2/divalent metaltransporter-1 endocytosis or the diffusion of ferric citrate

[61]; loss of intracellular homeostatic regulation involving iron, dopamine and

neuromelanin [62]; impaired iron efflux [63-65].

Given the deleterious effects of elevated iron in the SNc of PD patients, a therapeutic

strategy that reduces the levels of labile iron is likely to be neuroprotective. Chelation

as a viable therapeutic strategy requires targeting to all forms of regional siderosis,

but with the prerequisite of sparing systemic metal depletion [35, 66]. We and others

selected deferiprone (DFP) as a paradigm in the suitability of membrane permeable

chelation to confer neuroprotection through conservative iron chelation. Indeed, we

demonstrated both with PD models and patients that DFP rescued iron-overloaded

dopaminergic neurons by scavenging labile iron, especially from mitochondria, and

diminished labile iron-mediated oxidative damage so as to be neuroprotective in

animal models and improve symptoms in patients. Moreover, DFP had the capacity

to deliver chelated metal to endogenous apo-transferrin (iron unbound transferrin)

within extracellular fluid [35], and cause no systemic loss of iron even after 2 years of

treatment [43]. These promising results have provided the opportunity to now assess

this therapeutic paradigm in a larger population through a European randomised



clinical trial (www.fairpark2.eu).

Alzheimer’s Disease (AD)

Iron elevation in affected areas of AD has been well-characterised in living patients

using MRI, and in post mortem brains using multiple techniques [40]. While early

studies with high field T2-weighted MRI suggested amyloid plaques containing iron

[67], more recent developments using 7-T MRI have demonstrated iron deposition

also within activated microglia surrounding the plaque [68, 69]. Hippocampal iron

accumulation also localizes to neurofibrillary tangle-containing neurons and the

neuritic processes surrounding senile plaques in AD [70]. Genetic and biochemical

markers have identified a concerted systemic iron homeostatic dysregulation in

patients with AD [71] and colleagues have calculated the impact of iron on

longitudinal AD outcomes [72]. Using ferritin (the major iron binding protein) in CSF

as an index, high brain iron load was found to associate with poorer cognition and

brain atrophy over a 6-year period. The magnitude of CSF ferritin on these and other

AD outcomes is comparable to the Tau/A42 ratio typically considered as the best

diagnostic CSF biomarker for AD. CSF ferritin levels also formed a remarkable

association with CSF ApoE levels and subjects with APOE4 isoform have elevated

CSF ferritin compared to patients without this AD risk allele [72]. Intriguingly, iron

appears to regulate ApoE expression and secretion from brain derived cells [73].

Lastly, interactions between variants in the transferrin gene (TF) and the

hemochromatosis gene (HFE) also have been identified and replicated in multiple

cohorts for association with sporadic AD [74].

A number of additional pathologically relevant proteins associated with AD have also

been implicated with regulating cellular iron homeostasis whereby disruption in the

expression or location of these proteins exacerbates oxidative stress induced



neurotoxicity. Of particular focus has been the regulatory pathway required to

facilitate the cellular efflux of iron. Control of APP expression by iron regulatory

protein supports an interaction with iron status [75] and biological evidence has

illustrated a role of APP in neuronal iron efflux through interaction with the iron pore

ferroportin [76]. Prior to this discovery no mechanism was known for endogenous

regulation of neuronal iron export and latter studies have confirmed the requirement

of APP on the cell surface to stabilize ferroportin in its functional location [77 , 78 ,

79 , 80]. Alterations in the correct processing of APP, as with the AD-associated

familial mutation [81], or when APP trafficking to the cell surface is altered [65] leads

to neuronal iron accumulation. Subsequent studies have implicated tau in the

intracellular trafficking of APP to the cell surface, and accordingly a deficiency in this

role of tau leads to reduced APP and ferroportin on the cell surface, intraneuronal

iron accumulation and a subsequent increased sensitivity to oxidative stress [65].

Metal chelation therapy is a proposed target for AD but this has principally focused

on compounds with a greater affinity for copper and zinc. Preclinical evidence has

however indicated that iron selective chelation is neuroprotective in AD models by

reducing features of pathology and behavior associated with AD [82]. It has recently

been proposed that iron accumulation and other hallmarks of the disease in these

models may be alleviated by restoring or substituting the iron regulatory role of the

pathological proteins associated with the disease (e.g. APP and tau) [63].

Amyotrophic lateral sclerosis (ALS)

Many lines of evidence indicate that there is an iron dyshomeostasis in ALS. Indeed,

iron serves as an important cofactor for a number of enzymes involved in pivotal

biological activities altered in ALS, and the high redox active nature of iron means

that it may be a major generator of the free radicals prevalent with the disease.



Serum ferritin levels are higher in ALS patients versus healthy and disease controls

[83] and this elevation correlates with a shorter survival time in these patients [84-86].

While total iron levels remain unchanged, altered transferrin saturation in ALS

patients supports an altered iron loading [85]. Cerebrospinal fluid of ALS patients

also indicates a two-fold increase in levels of inappropriate iron ligands, representing

the proportional increase in iron redox activity and hydroxyl radical production

compared to controls [87]. Routine MRI studies have also shown hypo-intense

signalling in the motor cortex on T2-weighted images in some ALS patients [87-89].

Pathological studies using a histological stain for iron and immunostaining for ferritin

confirm this signal to originate from increased iron accumulation in cells resembling

microglia from the middle and deep layers of the motor cortex [89].

Irregularities in iron homeostatic pathways have also been observed in mouse

models of ALS that carry familial mutations in SOD1 (superoxide dismutase 1). Both

the G37R and G93A mutant models have caudal-to-rostral gradient in the spinal cord

of iron-related changes at end stage of the disease (i.e. 12 months of age), however

in the case of SOD1 (G93A) this distribution showed a reverse pattern at a younger

age [90]. The iron responsive protein changes in the cervical region parallel clinical

disease evolution. Since mitochondrial disruption is thought to play a major role in

ALS, it is worth noting that mitochondrial ferritin (a protein known to trap iron in the

mitochondria) is also markedly increased in SOD1 (G37R) mice and could implicate

the disease associated iron accumulation with neuodegeneration similar to FA [90].

Iron chelation therapy in rodent models of familial ALS are able to increase the mean

life span, spinal motor neuron survival and locomotor function in the SOD1 (G37R)

along with the decrease in iron accumulation when the lipophilic iron chelator SIH

(salicylaldehyde isonicotinoyl hydrazine) is administered [90]. More recently, VK-28



and M30 have also provided delayed onset of ALS symptoms, lifespan extension and

reduced spinal cord motor neuron loss in the SOD1 (G93A) model [91]. We can

confirm that an increase in R2* signal is present within the spinal cord, brainstem and

motor cortex of early ALS patients, which is partially corrected by deferiprone at 30

mg/kg/day (publication in preparation). While it is less clear whether iron has a

pathological involvement with other ALS-associated proteins such as TDP-43 [92],

the sporadic patient and familial ALS SOD1 model data provides a strong case for

assessing this therapeutic paradigm in a large population similar to the recent

Fairpark randomised clinical trial carried out on PD patients.

Manganese and Central Nervous System

After its absorption by inhalation or through the gastrointestinal tract, manganese

(Mn) predominantly accumulates in the liver and the brain (especially in the basal

ganglia, SN and the cortex). As with copper, the hepatobiliary system has a major

role in the manganese homeostasis. In the gut, dyshomeostasis of other metals may

have an effect on Mn absorption as an iron deficiency increases uptake. As with iron

and copper, excessive accumulation of this essential nutrient yields toxicity. This may

arise through rare mutation such as within the SLC30A10 gene (syndrome of liver

cirrhosis, polycythemia, dystonia and hypermanganesemia) or more often due to

excessive exogenous exposure that leads to manganism. Manganism has been

described in occupationally exposed workers or drug users of homemade

ephedron/methcathinone. Patients may be asymptomatic for months or years after

exposure, but progressively develop slow movements, irritability, aggressiveness,

and hallucinations. By later stage, features include extrapyramidal syndrome that is

unresponsive to L-dopa, tremor, balance disturbances with a dystonic cock-walk gait



and postural instability, facial muscle spasms and cognitive impairment [93, 94].

During the exposure period, and before phenotypic changes, blood and urine Mn

levels are high and brain MRI displays a symmetrical high T1 signal in the basal

ganglia (mostly in the GP). To date there are no effective treatments for manganism

as chelators only decrease Mn levels but don’t improve the symptoms, thus

indicating that deterioration may still occur even after Mn exposure has stopped.

Chronic liver failure may be another cause of cerebral Mn accumulation as the

hepatobiliary system fails to keep metal homeostasis. In this acquired hepatocerebral

degeneration, patients may present with parkinsonism, ataxia, tremor and cognitive

impairment without signs of toxic-metabolic hepatic encephalopathy and have an

abnormal brain MRI with bipallidal T1 hyperintensity. Neuropathologic examination

showed that pallidal manganese concentrations are sevenfold higher that controls

and fourfold higher that patients suffering from chronic liver failure but with a normal

brain MRI [95]. No clinical data exist of the efficacy of lowering Mn by diet or

chelating therapy in chronic liver failure but Trientine administration and liver a
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Figure Legends

Figure 1 Examples of brain MRI evolution over three years of chelating treatment

metal associated neurological diseases. A. Wilson’s disease: bilateral hypersignal in

Flair sequences of nuclei dentate (i.) and striatum (ii.). Normalization of brain MRI

after three years of chelation by D-Penicillamine (DPA). B. Neuroferritinopathy:

hyper- and hypo-signal in striatum in Flair sequences (i.) and T2* (ii.) sequences.

Slight worsening of the abnormal signals is observed despite three years of chelation

by deferiprone (DFP).
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Table 1 Main characteristics and treatment of poisoning by non-essential heavy metals

Heavy
metal

Mode of
intoxication

Major sites of
accumulation

General
presentation

Neurologic
presentation

Diagnosis tests Treatment

Aluminum
(Al)
[96, 97]

Occupational
exposure
(inhalation of
fumes)

Hemodialysis
IV boiled methadone

CNS
Bones
Liver
Kidneys

Bone pain
Osteomalacia
Aplastic bone

disease
Anaemia

Encephalopathy
Seizures
Myoclonus
Tremor
Ataxia
Personality changes

Blood Aluminum
level

Reduce or remove the
source of exposure

Chelation by
Deferoxamine
/Desferrioxamine,
deferasirox

Cadmium
(Cd)
[97, 98]

Chronic Inhalation of
fumes or dust
(silver jewellery
industry)

CNS
PNS
Kidneys
Bones

Renal tubular
damage

Osteomalacia

Neuropsychiatric
manifestations

Polyneuropathy

24-hour urinary
Cadmium test

Reduce or remove the
source of exposure.

Discuss chelation by
Oral DMSA and/or iv
DTPA

Lead
(Pb)
[97, 99]

Occupational
exposure
(inhalation)

Diet/ ingestion

CNS
PNS
Liver
Kidneys
Bone marrow
Bone

Digestive signs
(abdominal
pain, nausea,
constipation)

Nephropathy
Anaemia

Headaches
Sleep disturbances
Attention deficit
Memory disturbances
Neuropathy

Blood Lead level Reduce or remove the
source of exposure

Discuss chelation by
DMSA

Mercury
(Hg)
[97, 100]

Dental amalgam.
Fish consumption

(tuna, shark,
swordfish)

Gastrointestinal
tract

CNS
PNS
Kidneys

Gingivitis
Stomatitis
Hypersalivation
Metallic taste
Nephropathy
Fatigue

Neuropathy
Irritability
Tremor
Sleep disturbances
Memory and

concentration deficit

Blood and urine
Mercury levels

Reduce or remove the
source of exposure

Discuss chelation by
DMPS

CNS: Central Nervous System; PNS: Peripheral nervous system; DMSA : dimercaptosuccinic acid ; DTPA : Diethylenetriaminepentaacetic
acid ; DMPS : dimercaptopropane sulfonate



Table 2: Clinical, biochemical, molecular features and treatment options in very rare copper transport disorders.

Disease Genetic
transmission

Molecular
defects

Age at
diagnosis

Neurological
features

Other features Biochemical
findings

Treatment
options

Prognosis

Occipital
horn
syndrome
(Elher Danlos
syndrome
type 9)

X-linked
recessive

ATP7A
gene

Childhood Absent or mild
dysautonomia

Muscle weakness

Occipital exostose,
Bladder diverticula,

Inguinal hernias,
Skin laxity,
Hyperelasticity

Serum copper &
ceruloplasmin
normal or low

Copper
replacement
discussed

Long-term
natural
history not
known

ATP7A-
related
distal motor
neuropathy

X-linked
recessive

ATP7A
gene

Adult Atrophy and
weakness of distal
muscles in hands
and feet,

Foot deformities

- Serum copper &
ceruloplasmin
normal

Copper
replacement
discussed

Long-term
natural
history not
known

MEDNIK
syndrome

Autosomal
recessive

AP1S1
gene

First year
of live

Mental retardation
Deafness
Neuropathy

Enteropathy
Ichthyosis
Keratodermia

Serum copper &
ceruloplasmin
low

Hepatic copper
accumulation

Zinc therapy Poor

Huppke-
Brendl
syndrome

Autosomal
recessive

SLC33A1
gene

First year
of live

Developmental delay,
Cerebellar

hypoplasia,
Hearing loss,
Cerebellar hypoplasia

and hypomyelination
in brain MRI

Congenital
cataracts

Serum copper &
ceruloplasmin
low

None
available at
present

Poor



Table 3: Clinical, biochemical, molecular features and treatment options in very rare Neurodegeneration with Brain Iron
Accumulation (NBIA) disorders.

Disease Genetic
transmission

Frequency Age at
diagnosis

Neurological
features

MRI
characteristics

Neuropathological
findings

Treatment options

Pantothenate kinase-
associated
neurodegeneration
(PKAN) (NBIA1)

PANK2 +++ Juvenile to
young
adulthood

Dystonia
Spasticity
Parkinsonism
Retinopathy

Hypo- with central
hyper-intensity
of the GP –
‘Eye of the
Tiger’

Neuronal loss in GP
Reduced myelin
Normal SN
Widespread gliosis in GP

Baclofen (dystonia)
Anti-cholinergic
Anti-convulsives

(seizures)
Benzodiazepines

(muscle-relaxation)
Iron chelation discussed

PLA2G6-associated
neurodegeneration
(PLAN) (NBIA2)

PLA2G6 ++ Juvenile to
young
adulthood

Hypotonia
Spasticity
Dystonia
Parkinsonism
Optical atrophy

Hypo-intensity of
the GP

Cerebellar
atrophy

Cerebellar, Cortical, GP
and Brainstem atrophy

Levodopa/carbidopa
(parkinsonism)

Baclofen (dystonia)
Anti-convulsives

(seizures)
Benzodiazepines

(muscle-relaxation)
Iron chelation discussed

Neuroferritinopathy
(NBIA3)

FTL + Adult Dystonia
Spasticity
Parkinsonism

Hypo- and –
hyper-intensity
of basal
ganglia, in
particular the
GP and SN

Atrophy mostly in
Putamen and
Cerebellum but also SN

Some gliosis

Same as PLAN

Mitochondrial
membrane-associated
neurodegeneration
(MPAN) (NBIA4)

C19orf12 ++ Juvenile to
young
adulthood

Dystonia
Spasticity
Parkinsonism
Optical atrophy

Hypo- and hyper-
intensity of the
GP

Hypo- intensity of
the SN.

Streaking of MML

Neuronal loss in GP
Reduced myelin
SN and GP atrophy
Widespread gliosis

Same as PLAN



COASY protein-
associated
neurodegeneration
(CoPAN)

COASY + Childhood Dystonia
Spasticity
Dysarthria
Parkinsonism
Optical atrophy

Hypo- with central
hyper-intensity
of the GP

Neuronal loss in GP
Reduced myelin
Widespread GP gliosis
(Similar to PKAN)

Same as PLAN

FA2H-associated
neurodegeneration
(FAHN)

FA2H + Juvenile to
young
adulthood

Dystonia
Ataxia
Spasticity

Hypo-intensity of
the GP

Cerebellar and
cortical atrophy

White matter lesions and
demyelination

Brainstem atrophy

Same as PLAN

Aceruloplasminaemia CP + Adult Dystonia
Dyskinesia
Cerebellar ataxia
Cognitive

impairment

Hyper-intensity of
striatum,
thalamus and
dentate

Severe neuronal atrophy
in Putamen and Dentate
Nucleus.

Atrophy in GP, SN, Cortex
& Cerebellum (Purkinje)

Widespread gliosis

Same as PLAN
CP supplementation

discussed

-propeller-associated
neurodegeneration
(BPAN)

WDR45 ++ Childhood Parkinsonism
Dystonia
Cognitive

impairment

Hypo-intensity of
the GP/SN with
central hyper-
intense line

Cerebral and
Cerebellar
atrophy

Neuronal loss in SN & GP
Cerebellar atrophy in

Purkinje and granular
layers

Cortical atrophy
Gliosis in Putamen and

Thalamus

Same as PLAN

GP: globus pallidus; SN: Substantia nigra; MML: Medial medullary lamina




