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Abstract Paediatric multiple sclerosis (MS) represents

less than 5 % of the MS population, but patients with

paediatric-onset disease reach permanent disability at a

younger age than adult-onset patients. Accurate diagnosis

at presentation and optimal long-term treatment are vital

to mitigate ongoing neuroinflammation and irreversible

neurodegeneration. However, it may be difficult to early

differentiate paediatric MS from acute disseminated en-

cephalomyelitis (ADEM) and neuromyelitis optica spec-

trum disorders (NMOSD), as they often have atypical

presentation that differs from that of adult-onset MS.

The purpose of this review is to summarize the updated

views on diagnostic criteria, imaging, histopathology and

treatment choices.
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Introduction

What is Multiple Sclerosis?

Multiple sclerosis (MS) is an idiopathic inflammatory disorder

characterized by demyelination and degeneration of the cen-

tral nervous system (CNS) [1]. The pathogenesis is complex

and not fully understood [2], but it is an autoimmune disease

with contribution from genetic [3–5] and environmental fac-

tors such as infections, smoking and blood vitamin D levels

[6–8].

MS is a chronic debilitating disease with disease onset typ-

ically in young adulthood, but in a minor proportion of pa-

tients, it starts in childhood. There are many functional do-

mains of living, which can be impaired in a lengthy disease

course, and a substantial proportion of adult MS patients are

economically deprived as a result of unemployment [9].

Clinical Course of Multiple Sclerosis

The heterogeneous clinical course of MS is broadly classified

into three patterns: relapsing-remitting (RRMS), secondary

progressive (SPMS) and primary progressive MS (PPMS).

After the first attack suggestive of MS (clinically isolated syn-

drome (CIS)), more than 85 % of adult-onset patients experi-

ence a relapsing-remitting course; 10 % have a primary pro-

gressive onset with gradual worsening of function [10]. In

contrast to a heterogeneous clinical presentation of clinical

subtypes in adult MS, more than 98 % of paediatric-onset

MS patients have a RRMS course [11–14]. In general, approx-

imately two thirds of RRMS patients eventually evolve within

two decades to SPMS [15•], which is characterized by a pro-

gressive worsening of disability with fewer relapses. The time
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to the transition to SPMS from the first symptom was shown

to be associated with age of onset. Among RRMS patients

whose first symptom was at age 20 years or younger, it was

longer (25.8 years) than those with first symptom at 21 to

30 years (20.2) or at more than 30 years old (15.3) [16].

However, age at conversion to SPMS in patients with

paediatric-onset course was 10 years younger than in those

with adult-onset course (41 vs. 52 years old) [11].

Impact ofMultiple Sclerosis on Patients with Young-Onset

Disease

A paediatric-onset course has been defined in various studies

as having the first acquired CNS inflammatory demyelinating

syndrome at age of less than 16 or 18 years. Some studies also

include those with onset before 20 years. Paediatric-onset MS

represents approximately 2 to 5 % of MS patients [11–13, 17,

18]. The acquired CNS inflammatory demyelinating syn-

dromes comprise optic neuritis, transverse myelitis,

monofocal or multifocal CIS; acute disseminated encephalo-

myelitis (ADEM); or neuromyelitis optica spectrum disorders

(NMOSD). The incidence of acquired CNS inflammatory de-

myelination in the paediatric population is about 0.6 to 1.66

per 100,000 person-years [19–23]. About 32 to 50 % of chil-

dren and adolescents with the first acquired demyelinating

syndrome evolve to MS within 5 years [8, 20, 24–27]. The

impact of MS on those affected young patients is enormous

with multiple adverse medical and psychosocial outcomes.

The common short-term medical problems include seizures,

fatigue, depression, and impairment in mobility, hand func-

tion, and cognition. The proportion of children who need to

repeat the grade in school after the first attack can be as high as

50 % in MS patients, especially those who had their disease

onset after 11 years old [28]. The overall prognosis of

childhood-onset MS tends to be worse than adult-onset MS.

Generally, paediatric patients have a median time of 20 years

to fixed disability and their median age at transition to SPMS

is 10 years younger than in patients with adult-onset disease

[11]. Of those with a disease onset before 20 years of age,

there is a 1.55-fold risk of becoming bedbound from onset

of progression compared to those with onset age larger than

30 years [15•].

The Onset of Puberty Relevant to Paediatric Multiple

Sclerosis

The exact causative factors for paediatric MS are unknown.

There is no significant gender difference in the occurrence of

MS before the age of puberty; however, female sex is a well-

recognized risk factor afterwards [29]. The earlier onset of

menarche was associated with a higher risk of MS in women

in a Canadian population-based study [30]. In addition, for

patients whose onset was at or before menarche, incidence

of relapse was significantly higher during the peri-menarche

period than the post-menarche period [31]. Furthermore, obe-

sity was also associated with an increased risk for MS in

female teenagers but not in boys [32].

Difficulties in Diagnosing Multiple Sclerosis in Paediatric

Populations

The clinical course of early-onset MS differs from that of

adult-onset MS in many ways, and diagnosis is more chal-

lenging. Two diseases mimicking CIS or MS are ADEM

and NMOSD. The differentiation of MS from ADEM and

NMOSD is important for both treatment decision and progno-

sis prediction. Although longitudinally extensive myelitis is a

key diagnostic feature of NMOSD, paediatric patients with

MS and ADEM can also have a spinal cord lesion extending

longer than three continuous vertebral segments. NMOSD can

mimic MS or ADEM since many paediatric patients with

NMOSD have large demarcated cerebral lesions [33, 34].

Up to about 30 % of adults and children with NMOSD have

been reported to have oligoclonal bands (OCBs) in the cere-

brospinal fluid (CSF) [35], which may complicate early clin-

ical distinction of NMOSD from CIS.

Differentiating MS from MS mimics is of treatment and

prognostic importance. Up to 30 % of ADEM patients even-

tually receive a diagnosis of MS after relapses and need a

long-term disease-modifying treatment, while the others have

a monophasic course. Exacerbation of the disease may occur

if a patient with relapsing NMOSD is treated with some

disease-modifying therapies for MS, such as fingolimod

[36], natalizumab [37, 38] or interferon-β [39, 40].

Figure 1 shows the features that distinguish between CIS,

NMOSD, ADEM and MS.

Diagnostic Consensus

An unambiguous early diagnosis is key to effective disease

treatment. The updated diagnostic consensus for CIS, MS,

ADEM and NMOSD led by International Pediatric Multiple

Sclerosis Study Group [41•] is summarized in Table 1. There

is no single clinical or paraclinical method than can ascertain a

diagnosis of the aforementioned inflammatory demyelinating

diseases, and there has to be no better explanation.

CIS, as defined in the adult MS population, refers to optic

neuritis, brain stem syndrome, spinal cord syndrome or an

isolated cerebral hemisphere syndrome [46, 47], and if the

2010 McDonald MRI criteria [45] are fulfilled with evidence

of dissemination in time and in space, the diagnosis of MS can

be made before the second clinical attack [46]. The 2010

McDonald MRI criteria [45] for MS can be applied in those

onset at 12 years of age or older [41•]. The criteria were tested

among patients with incident demyelination aged from 12 and

up to 16 years [48] with a 76 % of positive predictive value
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[48], which is similar to the adult population (79%)[46], while

this value was lower (32 %) in those aged 11 years and

younger [48].

The Role of MRI

Before the advent of magnetic resonance imaging (MRI), the

diagnosis of demyelinating diseases was primarily based on

clinical presentation, physical examination, laboratory tests of

both blood and CSF and electrophysiology. However, many

other diseases, such as brain tumour, maymanifest similarly to

demyelinating lesions and therefore cause diagnostic uncer-

tainty. MRI helps to exclude the other differential diagnoses

without the need to resort to invasive procedures by providing

topographic and pathological information about lesions. In

addition, the evolution of the lesions, which can be clinically

silent, becomes detectable. Furthermore, MRI can be used to

monitor the suspected CNS areas before a lesion forms.

The role of MRI in the management of demyelinating dis-

eases is becoming more and more important. MRI is an essen-

tial modality for the diagnosis of demyelinating diseases. It is

also particularly useful in clinical trials. In addition, this tech-

nique provides a reliable prediction for disease outcome.

Furthermore, there is a trend for increasing integration of

MRI into MS treatment decisions [49].

The 2010 McDonald criteria suggest an MRI scan for the

diagnosis of MS [45], which could also aid early diagnosis of

MS for teenagers aged 12 years and older [48]. After the first

attack (CIS or ADEM), patients having MRI evidence of new

T2 lesions or gadolinium-enhancing lesions separated by a

period of at least 30 days fulfil the MS diagnostic consensus.

However, for those aged younger than 12 years, a minimum of

two clinical events are mandatory to confirm the MS diagno-

sis. The first event can be CIS followed by another ADEM

separated by more than 30 days or ADEM followed by a non-

ADEM event separated by at least 3 months with a MRI dem-

onstrating new lesions [41•]. It is important to note that

NMOSD should be excluded, especially in an Asian popula-

tion, when classifying patients using MRI criteria for MS.

Brain MRI is highly sensitive to white matter lesions. The

MRI in MS (MAGNIMS) consensus recommended mandato-

ry sequences for brain MRI includes (1) axial proton density

and/or T2-fluid-attenuated inversion recovery (FLAIR)/T2-

weighted, (2) sagittal two-dimensional (2D) or 3D T2-

FLAIR and (3) 2D or 3D contrast-enhanced T1-weighted

[50••]. Although axial diffusion-weighted imaging is optional,

it potentially enables differentiation of an acute MS lesion (a

lesion with gadolinium enhancement and increased diffusivi-

ty) from an acute ischaemic lesion (restricted diffusion) [51].

Spinal MRI is not recommended routinely in a patient without

relevant spinal cord symptoms. However, it has value in in-

creasing the sensitivity of MS diagnosis by detecting silent

lesions [52] and also increases the specificity by excluding

mimics [50••].

Contrast agent administration is commonly used to aid the

diagnosis of MS, and it is most sensitive to active lesions

characterized by blood-brain barrier breakdown. Active le-

sions are a common end point of treatment outcomes. There

is some concern regarding patients who receive repeated gad-

olinium in serial MRI in a young population. A recent study

Fig. 1 Key features to differentiate paediatric multiple sclerosis (MS), clinically isolated syndrome (CIS), acute disseminated encephalomyelitis (ADEM)

and neuromyelitis optica spectrum disorders (NMOSD)
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Table 1 Diagnostic consensus for multiple sclerosis (MS), acute disseminated encephalomyelitis (ADEM) and neuromyelitis optica spectrum

disorders (NMOSD)

Classification MS [42••] ADEM [41•] NMOSD [43••]

1. CIS

Active

Not active

2. RRMS

Active

Not active

3. SPMS

Active with progression

Active without progression

Not active with progression

Not active without progression

4. PPMS

Active with progression

Active without progression

Not active with progression

Not active without progression (stable disease)

1. Monophasic

2. Multiphasic

1. NMOSD with AQP4

2. NMOSD without AQP4 or

unknown AQP4-IgG Status

CIS:

All are required [41•]

• The first clinical presentation of a

disease that shows characteristics of

inflammatory demyelination that

could be MS but has yet to fulfil

criteria of dissemination in time [44]

• Absence of a prior clinical history of

CNS demyelinating disease (e.g.

absence of past ON, TM,

hemispheric or brain-stem syn-

dromes)

• No encephalopathy that cannot be

explained by fever

• The baseline MRI does not meet the

diagnostic criteria for MS

Definition of active and

progression:

Activity is determined by

• Clinical relapses in the absence of

fever or infarction

And/or

• MRI activity (contrast-enhancing

lesions; new or unequivocally

enlarging T2 lesions assessed at

least annually);

• If assessments are not available,

activity is Bindeterminate^

Progression is measured by clinical

evaluation, assessed at least

annually. If assessments are not

available, activity and

progression are indeterminate.

Monophasic:

All are required [41•]

• A first polyfocal

clinical CNS

event with

presumed

inflammatory

demyelinating

cause

• Encephalopathy

that cannot be

explained by

fever

•No new clinical and

MRI findings

emerge

≥3 months after

the onset

• Brain MRI is

abnormal during

the acute phase

(<3 month)

• Typical brain MRI

findings:

• Diffuse, poorly

demarcated, >1–

2-cm lesions

involving mainly

the cerebral white

matter

• BRare^ T1

hypointense

lesions in the

white matter

• Deep grey matter

lesions can be

present

Multiphasic

Two events

consistent with

ADEM attacks

separated by

≥3 months

NMOSD with AQP4

[43••]

1. At least one core

clinical characteristic

2. Positive test for AQP4-

IgG using best avail-

able detection method

(cell-based assay

strongly recommend-

ed)

3. Exclusion of alternative

diagnoses

NMOSDwithout AQP4 or unknownAQP4-

IgG status [43••]

1. At least two core clinical characteristics

resulting from one or more clinical attacks

and satisfying all of the following

requirements:

(a) At least one of the following: ON, acute

myelitis with LETM or APS

(b) Dissemination in space (>2 different core

characteristics)

(c) MRI requirements, if applicable (see below)

2. Negative test(s) for AQP4-IgG or testing

unavailable

3. Exclusion of alternative diagnoses

RRMS: [41•]

Two clinical events, the first event can be CIS followed by another non-

encephalopathic attack separated by more than 30 days or ADEM

followed by a non-encephalopathic event separated by at least 3 months

with clinical or MRI demonstrated dissemination in space.

Age ≥12 years: 2010 McDonald MRI criteria [45] can be applied

Dissemination in space

Asymptomatic T2 lesion or gadolinium-enhanced lesions in each of two or

more characteristic locations:

• Periventricular

• Juxtacortical

• Infratentorium

• Spinal cord

Dissemination is time

One of the following criteria

(1) New T2 and/or gadolinium-enhancing lesion(s) on follow-up MRI, irre-

spective of the timing of the baseline scan

(2) Simultaneous presence of asymptomatic gadolinium-enhancing and non-

enhancing lesions at any time

PPMS (very rare in paediatric population): [45]

1 year of disease progression (retrospectively or prospectively determined)

plus 2 of 3 of the following (1) Dissemination is space in the brain

- Presence of one or more T2 lesions in at least one area characteristic of

MS (excluding the spinal cord)

• Periventricular

• Juxtacortical

• Infratentorium

(2) Dissemination in space in the spinal cord - Presence of two or more T2

lesions in the spinal cord

(3) Presence of CSF OCBs and elevated IgG index

Core clinical

characteristics

Most common:

1. Optic neuritis (ON)

2. Acute myelitis (TM)

3. Area postrema

syndrome (APS):

episode of otherwise

unexplained hiccups

or nausea and

vomiting

Less common:

4. Acute brain stem

syndrome

5. Symptomatic narcolepsy

or acute diencephalic

clinical syndrome with

NMOSD-typical dien-

cephalic MRI lesions

6. Symptomatic cerebral

syndrome with

NMOSD-typical brain

lesions

Supporting MRI for NMOSD without AQP4

1. Acute optic neuritis: brain MRI normal or

demonstrating only non-specific white matter

lesions; OR optic nerve MRI with T2-

hyperintense lesion or T1-weighted gadolin-

ium-enhancing lesion extending over >1/2

optic nerve length or involving optic chiasm

2. Acute myelitis: spinal cord MRI showing

attack-associated lesion extending >3 contig-

uous segments (LETM); OR >3 contiguous

segments of focal cord atrophy in patients

with prior history of acute myelitis

3. Area postrema syndrome: dorsal medulla/

area postrema MRI lesion

4. Acute brain stem syndrome: peri-ependymal

brain stem lesions

AQP4 aquaporin-4, APS area postrema syndrome, CIS clinically isolated syndrome, CNS central nervous system, CSF cerebrospinal fluid, IgG

immunoglobulin G, LETM longitudinally extensive transverse myelitis lesions,MSmultiple sclerosis,NMOSD neuromyelitis optica spectrum disorders,

RRMS relapsing-remitting multiple sclerosis,OCBs oligoclonal bands,ON optic neuritis,PPMS primary progressive multiple sclerosis, SPMS secondary

progressive multiple sclerosis, TM transeverse myelitis
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revealed measurable gadolinium amounts in all autopsied

brain samples, with higher concentration in the dentate nucle-

us and globus pallidus in five subjects exposed to two doses of

gadolinium-based contrast agents compared to five unexposed

subjects [53]. None of the examined adult subjects that re-

ceived contrasts had a severely comprised renal function.

The MRI biomarkers to predict MS conversion in paediat-

ric patients with any kind of CNS inflammatory demyelinat-

ing diseases are important. Verhey et al. prospectively ana-

lyzed 332 Canadian paediatric patients aged younger than

16 years old [54]. The presence of at least one Bblack hole^

(a persistent hypointensity for more than 3 months on T1-

wighted imaging) and at least one periventricular lesion

(Dawson’s finger) was found to be sensitive to predict MS

in paediatric patients with any kind of CNS inflammatory

demyelinating diseases [54]. Presence of both parameters

had a higher risk of MS conversion (hazard ratio [HR] 34.2)

than presence of either one or more black holes (HR 20.6) or

one or more Dawson’s fingers (HR 3.3) [54].

Histopathology

A substantial body of literature describes the histopathology

of white matter lesions in MS since the 1980s. Most studies

described both paediatric-onset and adult-onset MS as show-

ing histopathologic heterogeneity [55–59].

Although inflammatory demyelination is practically uni-

versal in the pathology of MS, four pathological patterns have

been described [57]. Briefly, patterns I and II show typical

confluent perivenous demyelinating plaques with T cell-

mediated or T cell plus antibody-mediated processes, respec-

tively. Patterns III and IV show features of oligodendrocyte

dystrophy or extensive loss, respectively, in addition to lym-

phocytic infiltration [57]. These findings not only were nearly

exclusively based on autopsy (more than 82 % lesions) and

biopsy (18% lesions) material from adult MS patients but also

included a very small proportion of paediatric MS patients.

Despite the heterogeneity of lesions between patients, there

seems to be a homogenous pattern in the same patient [57].

Metz et al. examined tissue sampled from different time points

in 22 MS patients, and 21 of them showed the persistence of

the original immunopathological patterns [59].

Comparing white matter lesions sampled for clinical diag-

nosis or autopsy between 19 paediatric and 12 adult MS

[60••], an increased extent of acute axonal damage was noted

in the paediatric group. The extent of acute axonal damage

was positively correlated with a higher Expanded Disability

Status Scale (EDSS; range, 0 to 10; higher scores indicate

more severe disability and 10 indicates death) at the time of

tissue sampling or autopsy. In addition, there were more le-

sions with a diameter more than 2 cm in early active demye-

linating stages and more axonal damage in those with disease

onset before 11 years old [60••].

Cortical lesions inMS have been described in adult patients

but are rare in paediatric patients (66 vs 8 %) [61]. In adults,

the cortical lesions are different fromwhite matter lesions with

a lack of inflammatory cell infiltration. The classification is

based on the location of the lesions: subpial, intracortical and

mixed white matter and grey matter (leukocortical) [62, 63].

Oligoclonal Bands

The presence of intrathecal synthesis of antibodies (OCBs) is

relevant to the diagnosis and prognosis in children with the

first CNS inflammatory demyelinating disease. In a recent

retrospective observational study of 357 children presenting

with isolated optic neuritis, approximately 42 % had OCBs at

disease presentation [64••]. Among these patients, 117/145

(81 %) patients who eventually converted to MS had positive

CSF OCBs at presentation, whereas only 32/212 (15 %) pa-

tients who did not convert to MS had OCBs. In addition, the

presence of OCBs in children might relate to patient age at

onset. Studies showed that there was a higher frequency of

CSF OCBs among paediatric MS with disease onset at

11 years and older (68 %) than those with a younger-onset

age (43 %; odds ratio 2.6 with a 95 % confidence interval 0.8

and 8.8) [65]. Although the presence of OCBs was less fre-

quent in MS patients diagnosed before puberty, after serial

lumbar punctures, many of these patients eventually had pos-

itive OCBs in CSF [60••, 65, 66]. The presence of OCBs in

children with the first CNS inflammatory demyelination is a

predictor for a later relapse and MS diagnosis. However, the

presence OCBs in CSF did not seem to be a good predictor in

Asian paediatric patients [24, 67].

The positive rate of OCBs at the first attack varies in dif-

ferent paediatric population ranging from 44 to 83 % among

those converted to MS [24, 64••, 67–69]. The difference is

probably due to the timing of lumbar puncture in respect to

disease onset, different laboratory techniques and the genetic

background. The large cohort of genetic studies usually in-

cluded paediatric-onset patients for disease course analyses.

A recent large multinational genome-wide association study

(GWAS) in 6950 adult MS patients (multiple countries of UK,

Europe, USA and Australia; age range 2 to 72 years old)

confirmed that genetic factors underlie the positivity of

OCBs in CSF with the major histocompatibility complex

and immunoglobulin heavy chain region being the most im-

portant area of interest. Thus, it appears that the frequency and

diagnostic value of OCBs show no major differences between

the paediatric- and adult-onset MS populations.

Serological Tests

Diagnostic uncertainty often exists in paediatric patients.

For instance, paediatric MS patients can have longitudi-

nally extensive transverse myelitis, which alone does not

Curr Neurol Neurosci Rep (2016) 16: 68 Page 5 of 12 68



exclude MS [70••]. Serological biomarkers are clinically

useful for differentiating difficult cases and for disease

course prediction. On the one hand, a negative result for

autoantibodies against aquaporin-4 (AQP4) increases the

confidence of MS diagnosis [71, 72]. On the other hand,

testing for autoantibodies against myelin oligodendrocyte

glycoprotein (MOG) potentially facilitates decision-

making for long-term treatment [73, 74].

Autoantibodies to Aquaporin-4

Autoantibodies against AQP4 are specific for NMOSD, and a

positive result of these antibodies in the serum or CSF is

helpful to confirmNMOSD [75]. A growing body of literature

confirmed the high specificity of autoantibodies to AQP4 for

NMOSD diagnosis (85–100 %), although the sensitivity of

various assays is moderate (33–91 %) [71, 72]. However,

unavailability of immunoassays for AQP4 in many clinical

settings hinders its timely usage in urgent clinical practices.

The clinicians should be also aware of the false-positive re-

sults using enzyme-linked immunosorbent assay (ELISA) for

sera and a need for confirmation with live cell-based assay

[72, 76].

Autoantibodies to Myelin Oligodendrocyte Glycoprotein

The presence of serum antibodies to MOG was shown to be

more frequent in patients with a non-MS course, especially in

adults [77, 78]. Approximately a quarter of paediatric patients

with MS and ADEM are positive for anti-MOG antibodies,

which is relatively rare in adult MS [73, 79]. The titres of

autoantibodies to MOG in paediatric MS patients are usually

low and transient if serial serology tests were performed [80].

Less than half of AQP4-seronegative NMOSD patients have

positive serum anti-MOG antibodies [81]. NMOSD patients

with positive anti-MOG antibodies tend to involve younger

adults with a usually monophasic, steroid-dependent clinical

course [43••, 82]. MOG autoantibodies are not disease-

specific since they can also be observed in a proportion of

patients with epilepsy and also in healthy controls [43••].

However, the presence of MOG antibodies in the sera can

potentially guide treatment in patients with demyelinating dis-

ease. For instance, anti-MOG-seropositive optic neuritis has

been noticed to be steroid-sensitive and also steroid-

dependent [83, 84].

Recent research suggests that the presence of antibodies to

MOG in paediatric patients with the first acute CNS inflam-

matory demyelination is less likely to be MS and may need

longer duration of steroid maintenance treatment after pulse

therapy to prevent early relapses. However, there is no stan-

dardized or commercialized assay available and antibodies to

MOG have not been tested in large populations of paediatric

patients.

Cognition in Paediatric Multiple Sclerosis

Most paediatric MS patients experience a recovery of func-

tional deficit, such as problems with gait, vision, bladder and

bowel function, within 12 months from the first attack [70••].

Nevertheless, the cognitive impairment may remain.

Cognitive impairment was shown to affect 31 % of paediatric

patients and the school activities and achievements in 28 %,

within 2 years after disease onset [84]. At 5-year follow-up,

half of patients showed cognitive deterioration, and cognitive

deficit in visual-spatial learning and in expressive language

was observed in 38 % of 48 patients studied [85].

Treatment: Implications and Options

The treatment scheme of paediatric MS includes the acute

management and long-term prevention for relapses.

Although there has been a lack of randomized controlled trials

in paediatric patients, many immunomodulatory and immuno-

suppressive agents have been used [85]. Corticosteroids are

the most commonly used agents for acute disabling relapses;

the most commonly used is intravenous methylprednisolone

(30 mg/kg/day) for 3 to 5 days with or without oral steroid

tapering according to clinical disability persistence. For per-

sistent life-threatening conditions such as respiratory compro-

mise, plasma exchange (5 to 7 cycles in 2 weeks) has been

shown to prevent fatal outcomes and decreased the disability

severity [86]. Alternative managements including intravenous

immunoglobulin G (IVIG) [87] or cyclophosphamide [88]

have been reported.

Immunomodulators are classified into first and second line

with different regulatory approvals between countries, al-

though there is no evidence to support the optimal order

[89]. The first-line disease-modifying therapies (DMTs) for

paediatric MS include interferon (IFN)-1 beta and glatiramer

acetate (GA) [87, 88, 90, 91]. Whereas IFN was more com-

monly prescribed than GA, both agents result in a 24–40 %

reduction in disability progression in paediatric and adult

RRMS and their long-term side effects were similar between

paediatric and adult MS [87]. The clinical efficacy is not dif-

ferent between IFN and GA, but IFN reduces the MRI lesion

burden more than GA [92].

The long-term safety of the first-line DMTs is good, as no

secondary malignancy or progressive mult i focal

leukoencephalopathy (PML) has been reported in paediatric

or adult users. The adverse effects to interferon-beta 1b in

paediatric MS patients were similar to adults, with flu-like

symptoms in one third of patients, abnormal liver function

profile in one fourth and injection site reaction in one fifth

[87, 91]. Similar adverse events were reported in about 30 %

of GA paediatric users [87]. However, poor tolerability of

first-line DMTs was reported to occur in about one in eight

paediatric users [90]. Approximately 30 % of all paediatric
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patients treated with first-line DMTs were non-responders,

with more than one clinical relapse per year or MRI changes

while on therapy [90].

It is usually reasonable to switch to a second-line DMT

when there is breakthrough disease activity, such as disease

relapse or new MRI T2 lesions. The common choices for

paediatric patients include intravenous natalizumab and oral

fingolimod.

Natalizumab

Natalizumab is a humanized recombinant monoclonal an-

tibody against the α4-integrin, which diminishes leuko-

cyte migration across the blood-brain barrier from the pe-

ripheral blood into the CNS [93]. Natalizumab was shown

to reduce annual relapse rate by 68 %, reduced cerebral

MRI disease activity and sustained EDSS progression at

2 years among adult RRMS patients [94, 95]. It has also

been shown to be potentially effective in paediatric pa-

tients. Kornek et al. reported 20 paediatric RRMS patients

who had reduced annual relapse rates and new T2 lesions

after natalizumab administration [96]. However, they also

found relapse activity within 6 months in six of eight

patients after discontinuation of natalizumab therapy

[96]. Ghezzi et al. also confirmed the efficacy in regis-

tered Italian paediatric patients receiving natalizumab and

showed that no evidence of disease activity (NEDA) oc-

curred in 58 % of cases compared to the pre-treatment

status [97] and side effects were mild and tolerable [98].

The risk of progressive multifocal leukoencephalopathy

(PML) has been studied in adult RRMS patients, and the risk

factors include prolonged use of natalizumab (>2 years), prior

immunosuppressive treatment and the presence of antibodies to

the John Cunningham virus (JCV) [99, 100]. The seropreva-

lence of JCV in German children and adolescents with MS or

other neurological conditions was shown to be around 30 %,

which was about half of the seropositivity in adults [101, 102].

A higher anti-JCV antibody titre may predict higher risk of

PML [99], and therefore, serial follow-up of viral titres or

watching for seroconversion from seronegative subjects can

preclude the high-risk patients. In addition, Huppke et al. stud-

ied the prevalence of anti-JCVantibodies in German paediatric

MS patients and found at least twice as high as that reported in

studies of non-MS children [103]. The risk of malignancy is not

very high among adult natalizumab users (about <0.1 %, 7/24

cases with malignancies were breast cancer) [104] whereas

careful surveillance is warranted in paediatric users who were

in transition to young adulthood.

Fingolimod

Fingolimod is the first approved oral DMT for MS patients,

which has been shown to be moderately effective [105]. Its

mechanism is to prevent the egress of lymphocytes from

lymph nodes via binding to the receptor for sphingosine-1-

phosphate (S1P) on lymphocytes [106]. The short-term side

effects in 17 Brazilian paediatric RRMS patients were similar

to those in adult patients: asymptomatic bradycardia, genital

herpes and isolated infection of the upper respiratory tract or

urinary tract [107, 108]. Although the long-term experience in

paediatric MS is still limited, rebound inflammatory effects on

cerebral lesions in a 19-year-old childhood-onset patient indi-

cate the need of a cautious withdrawal at a slower pace, if

discontinuation of fingolimod is necessary [109].

Newer Oral Disease-Modifying Therapies

Teriflunomide was the second oral disease-modifying

agent approved for adult MS [110]. Its primary mecha-

nism is hypothesized to relate to inhibition of the prolif-

eration of stimulated T or B lymphocytes [111]. Dimethyl

fumarate (DMF, also called BG-12) is the latest oral

disease-modifying agent in adults since 2013 [112]. The

mechanism by which DMF exerts its therapeutic effect in

MS is unknown, but it may affect the metabolism and

signalling of immune cells. The safety and efficacy of

these two agents have not yet been evaluated in paediatric

MS patients.

Conclusions

The formal diagnosis of MS should always take into consid-

eration the clinical, imaging and serology or, if necessary,

histopathology findings. In addition, no better explanation

for the neurological syndrome should be present. When there

is diagnostic uncertainty, serum antibodies against aquaporin-

4 or MOG may be helpful in diagnosis (by ruling out the

alternative diagnosis of NMOSD) and treatment. Optimal

long-term DMT treatment in paediatric MS has not been well

established, but there is experience of first-line treatment with

IFN and GA and these are safe. There is also emerging expe-

rience with second-line DMT such as natalizumab and

fingolimod; however, close monitoring for severe adverse

events including PML and malignancy is warranted.
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