173 research outputs found
On the effects of solenoidal and compressive turbulence in prestellar cores
We present the results of an ensemble of SPH simulations that follow the
evolution of prestellar cores for . All the cores have the same
mass, and start with the same radius, density profile, thermal and turbulent
energy. Our purpose is to explore the consequences of varying the fraction of
turbulent energy, , that is solenoidal, as opposed to
compressive; specifically we consider
. For each value of
, we follow ten different realisations of the turbulent
velocity field, in order also to have a measure of the stochastic variance
blurring any systematic trends. With low filament
fragmentation dominates and delivers relatively high mass stars. Conversely,
with high values of disc fragmentation dominates
and delivers relatively low mass stars. There are no discernible systematic
trends in the multiplicity statistics obtained with different
.Comment: 9 pages. Accepted by MNRA
Discs in misaligned binary systems
We perform SPH simulations to study precession and changes in alignment
between the circumprimary disc and the binary orbit in misaligned binary
systems. We find that the precession process can be described by the rigid-disc
approximation, where the disc is considered as a rigid body interacting with
the binary companion only gravitationally. Precession also causes change in
alignment between the rotational axis of the disc and the spin axis of the
primary star. This type of alignment is of great important for explaining the
origin of spin-orbit misaligned planetary systems. However, we find that the
rigid-disc approximation fails to describe changes in alignment between the
disc and the binary orbit. This is because the alignment process is a
consequence of interactions that involve the fluidity of the disc, such as the
tidal interaction and the encounter interaction. Furthermore, simulation
results show that there are not only alignment processes, which bring the
components towards alignment, but also anti-alignment processes, which tend to
misalign the components. The alignment process dominates in systems with
misalignment angle near 90 degrees, while the anti-alignment process dominates
in systems with the misalignment angle near 0 or 180 degrees. This means that
highly misaligned systems will become more aligned but slightly misaligned
systems will become more misaligned.Comment: 15 pages, 16 figures, 1 table, accepted for publication in MNRA
Filamentary fragmentation in a turbulent medium
We present the results of smoothed particle hydrodynamic simulations
investigating the evolution and fragmentation of filaments that are accreting
from a turbulent medium. We show that the presence of turbulence, and the
resulting inhomogeneities in the accretion flow, play a significant role in the
fragmentation process. Filaments which experience a weakly turbulent accretion
flow fragment in a two-tier hierarchical fashion, similar to the fragmentation
pattern seen in the Orion Integral Shaped Filament. Increasing the energy in
the turbulent velocity field results in more sub-structure within the
filaments, and one sees a shift from gravity-dominated fragmentation to
turbulence-dominated fragmentation. The sub-structure formed in the filaments
is elongated and roughly parallel to the longitudinal axis of the filament,
similar to the fibres seen in observations of Taurus, and suggests that the
fray and fragment scenario is a possible mechanism for the production of
fibres. We show that the formation of these fibre-like structures is linked to
the vorticity of the velocity field inside the filament and the filament's
accretion from an inhomogeneous medium. Moreover, we find that accretion is
able to drive and sustain roughly sonic levels of turbulence inside the
filaments, but is not able to prevent radial collapse once the filaments become
supercritical. However, the supercritical filaments which contain fibre-like
structures do not collapse radially, suggesting that fibrous filaments may not
necessarily become radially unstable once they reach the critical line-density.Comment: (Accepted for publication in MNRAS
Star Formation triggered by cloud-cloud collisions
We present the results of SPH simulations in which two clouds, each having
mass and radius
, collide head-on at relative velocities of
. There is a clear trend with increasing . At low
, star formation starts later, and the shock-compressed
layer breaks up into an array of predominantly radial filaments; stars condense
out of these filaments and fall, together with residual gas, towards the centre
of the layer, to form a single large- cluster, which then evolves by
competitive accretion, producing one or two very massive protostars and a
diaspora of ejected (mainly low-mass) protostars; the pattern of filaments is
reminiscent of the hub and spokes systems identified recently by observers. At
high , star formation occurs sooner and the
shock-compressed layer breaks up into a network of filaments; the pattern of
filaments here is more like a spider's web, with several small- clusters
forming independently of one another, in cores at the intersections of
filaments, and since each core only spawns a small number of protostars, there
are fewer ejections of protostars. As the relative velocity is increased, the
{\it mean} protostellar mass increases, but the {\it maximum} protostellar mass
and the width of the mass function both decrease. We use a Minimal Spanning
Tree to analyse the spatial distributions of protostars formed at different
relative velocities.Comment: 10 pages, 11 figure
The importance of episodic accretion for low-mass star formation
A star acquires much of its mass by accreting material from a disc. Accretion
is probably not continuous but episodic. We have developed a method to include
the effects of episodic accretion in simulations of star formation. Episodic
accretion results in bursts of radiative feedback, during which a protostar is
very luminous, and its surrounding disc is heated and stabilised. These bursts
typically last only a few hundred years. In contrast, the lulls between bursts
may last a few thousand years; during these lulls the luminosity of the
protostar is very low, and its disc cools and fragments. Thus, episodic
accretion enables the formation of low-mass stars, brown dwarfs and
planetary-mass objects by disc fragmentation. If episodic accretion is a common
phenomenon among young protostars, then the frequency and duration of accretion
bursts may be critical in determining the low-mass end of the stellar initial
mass function.Comment: To appear in the Astrophysical Journal. Press release available at:
http://www.astro.cf.ac.uk/pub/Dimitrios.Stamatellos/News/News.html Full
resolution paper available at http://stacks.iop.org/0004-637X/730/3
Smoothed Particle Hydrodynamics simulations of expanding HII regions. I. Numerical methods and tests
We describe a new algorithm for including the dynamical effects of ionizing
radiation in SPH simulations, and we present several examples of how the
algorithm can be applied to problems in star formation. We use the HEALPix
software to tessellate the sky and to solve the equation of ionization
equilibrium along a ray towards each of the resulting tesserae. We exploit the
hierarchical nature of HEALPix to make the algorithm adaptive, so that fine
angular resolution is invoked only where it is needed, and the computational
cost is kept low. We present simulations of (i) the spherically symmetric
expansion of an HII region inside a uniform-density, non--self-gravitating
cloud; (ii) the spherically symmetric expansion of an HII region inside a
uniform-density, self-gravitating cloud; (iii) the expansion of an off-centre
HII region inside a uniform-density, non--self-gravitating cloud, resulting in
rocket acceleration and dispersal of the cloud; and (iv) radiatively driven
compression and ablation of a core overrun by an HII region. The new algorithm
provides the means to explore and evaluate the role of ionizing radiation in
regulating the efficiency and statistics of star formation.Comment: 12 pages, 16 figures, simulation movies available at
http://galaxy.ig.cas.cz/~richard/HIIregion
GANDALF - Graphical Astrophysics code for N-body Dynamics And Lagrangian Fluids
GANDALF is a new hydrodynamics and N-body dynamics code designed for investigating planet formation, star formation and star cluster problems. GANDALF is written in C++, parallelised with both OpenMP and MPI and contains a python library for analysis and visualisation. The code has been written with a fully object-oriented approach to easily allow user-defined implementations of physics modules or other algorithms. The code currently contains implementations of Smoothed Particle Hydrodynamics, Meshless Finite-Volume and collisional N-body schemes, but can easily be adapted to include additional particle schemes. We present in this paper the details of its implementation, results from the test suite, serial and parallel performance results and discuss the planned future development. The code is freely available as an open source project on the code-hosting website github at https://github.com/gandalfcode/gandalf and is available under the GPLv2 license.This research was supported by the DFG cluster of excellence "Origin and Structure of the Universe", DFG Projects 841797-4, 841798-2 (DAH, GPR), the DISCSIM project, grant agreement 341137 funded by the European Research Council under ERC-2013-ADG (GPR, RAB). Some development of the code and simulations have been carried out on the computing facilities of the Computational centre for Particle and Astrophysics (C2PAP) and on the DiRAC Data Analytic system at the University of Cambridge, operated by the University of Cambridge High Performance Computing Service on behalf of the STFC DiRAC HPC Facility (www.dirac.ac.uk); the equipment was funded by BIS National E-infrastructure capital grant (ST/K001590/1), STFC capital grants ST/H008861/1 and ST/H00887X/1, and STFC DiRAC Operations grant ST/K00333X/1
- …