191 research outputs found

    Optimization-based calibration of hydrodynamic drag coefficients for a semisubmersible platform using experimental data of an irregular sea state

    Get PDF
    For the simulation of the coupled dynamic response of floating offshore wind turbines, it is crucial to calibrate the hydrodynamic damping with experimental data. The aim of this work is to find a set of hydrodynamic drag coefficients for the semisubmersible platform of the Offshore Code Comparison Collaboration, Continuation, with Correlation and unCertainity (OC6) project which provides suitable results for an irregular sea state. Due to the complex interaction of several degrees of freedom (DOF), it is common to calibrate drag coefficients with the time series of decay tests. However, applying these drag coefficients for the simulation of an irregular sea state results in misprediction of the motions. By using numerical optimization, it is possible to calibrate multiple drag coefficients simultaneously and effectively, while also considering several DOF. This work considers time series of structural displacements from wave tank tests of the OC6 project and from simulations of the same load cases in OpenFAST. Results are transferred into the frequency domain and the deviation between power spectral densities of surge, pitch and heave from experiment and numerical simulation is used as an objective function to obtain the best fitting drag coefficients. This novel numerical optimization approach enables finding one set of drag coefficients for different load cases, which is a major improvement compared to decay-test-tuned drag coefficients. © Published under licence by IOP Publishing Ltd

    Adaptation to the Edge of Chaos in the Self-Adjusting Logistic Map

    Full text link
    Self-adjusting, or adaptive systems have gathered much recent interest. We present a model for self-adjusting systems which treats the control parameters of the system as slowly varying, rather than constant. The dynamics of these parameters is governed by a low-pass filtered feedback from the dynamical variables of the system. We apply this model to the logistic map and examine the behavior of the control parameter. We find that the parameter leaves the chaotic regime. We observe a high probability of finding the parameter at the boundary between periodicity and chaos. We therefore find that this system exhibits adaptation to the edge of chaos.Comment: 3 figure

    A new cavity ring-down instrument for airborne monitoring of N2O5, NO3, NO2 and O3 in the upper troposphere lower stratosphere

    Get PDF
    A new airborne instrument based on pulsed cavity ring-down spectroscopy for simultaneous detection of N2O5, NO3, NO2 and O3 in the upper troposphere lower stratosphere is being developed for global atmospheric monitoring. OCIS codes: 010.0010, 120.0120, 140.0140, 280.0280, 300.0300, 300.6260, 300.6360

    Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project

    Get PDF
    We present an overview of the background, scientific goals, and execution of the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC) project of April 2008. We then summarize airborne measurements, made in the troposphere of the Alaskan Arctic, of aerosol particle size distributions, composition, and optical properties and discuss the sources and transport of the aerosols. The aerosol data were grouped into four categories based on gas-phase composition. First, the background troposphere contained a relatively diffuse, sulfate-rich aerosol extending from the top of the sea-ice inversion layer to 7.4 km altitude. Second, a region of depleted (relative to the background) aerosol was present within the surface inversion layer over sea-ice. Third, layers of dense, organic-rich smoke from open biomass fires in southern Russia and southeastern Siberia were frequently encountered at all altitudes from the top of the inversion layer to 7.1 km. Finally, some aerosol layers were dominated by components originating from fossil fuel combustion. <br></br> Of these four categories measured during ARCPAC, the diffuse background aerosol was most similar to the average springtime aerosol properties observed at a long-term monitoring site at Barrow, Alaska. The biomass burning (BB) and fossil fuel layers were present above the sea-ice inversion layer and did not reach the sea-ice surface during the course of the ARCPAC measurements. The BB aerosol layers were highly scattering and were moderately hygroscopic. On average, the layers produced a noontime net heating of ~0.1 K day<sup>−1</sup> between 3 and 7 km and a slight cooling at the surface. The ratios of particle mass to carbon monoxide (CO) in the BB plumes, which had been transported over distances >5000 km, were comparable to the high end of literature values derived from previous measurements in wildfire smoke. These ratios suggest minimal precipitation scavenging and removal of the BB particles between the time they were emitted and the time they were observed in dense layers above the sea-ice inversion layer

    How to increase technology transfers to developing countries: a synthesis of the evidence

    Full text link
    The existing United Nations Framework Convention on Climate Change (UNFCCC) has failed to deliver the rate of low-carbon technology transfer (TT) required to curb GHG emissions in developing countries. This failure has exposed the limitations of universalism and renewed interest in bilateral approaches to TT. Gaps are identified in the UNFCCC approach to climate change TT: missing links between international institutions and the national enabling environments that encourage private investment; a non-differentiated approach for (developing) country and technology characteristics; and a lack of clear measurements of the volume and effectiveness of TTs. Evidence from econometric literature and business experience on climate change TT is reviewed, so as to address the identified pitfalls of the UNFCCC process. Strengths and weaknesses of different methodological approaches are highlighted. International policy recommendations are offered aimed at improving the level of emission reductions achieved through TT

    Superconducting spintronics

    Get PDF
    The interaction between superconducting and spin-polarized orders has recently emerged as a major research field following a series of fundamental breakthroughs in charge transport in superconductor-ferromagnet heterodevices which promise new device functionality. Traditional studies which combine spintronics and superconductivity have mainly focused on the injection of spin-polarized quasiparticles into superconducting materials. However, a complete synergy between superconducting and magnetic orders turns out to be possible through the creation of spin-triplet Cooper pairs which are generated at carefully engineered superconductor interfaces with ferromagnetic materials. Currently, there is intense activity focused on identifying materials combinations which merge superconductivity and spintronics in order to enhance device functionality and performance. The results look promising: it has been shown, for example, that superconducting order can greatly enhance central effects in spintronics such as spin injection and magnetoresistance. Here, we review the experimental and theoretical advances in this field and provide an outlook for upcoming challenges related to the new concept of superconducting spintronics.J.L. was supported by the Research Council of Norway, Grants No. 205591 and 216700. J.W.A.R. was supported by the UK Royal Society and the Leverhulme Trust through an International Network Grant (IN-2013-033).This is the accepted manuscript. The final version is available at http://www.nature.com/nphys/journal/v11/n4/full/nphys3242.html

    Grambank reveals the importance of genealogical constraints on linguistic diversity and highlights the impact of language loss

    Get PDF
    While global patterns of human genetic diversity are increasingly well characterized, the diversity of human languages remains less systematically described. Here we outline the Grambank database. With over 400,000 data points and 2,400 languages, Grambank is the largest comparative grammatical database available. The comprehensiveness of Grambank allows us to quantify the relative effects of genealogical inheritance and geographic proximity on the structural diversity of the world's languages, evaluate constraints on linguistic diversity, and identify the world's most unusual languages. An analysis of the consequences of language loss reveals that the reduction in diversity will be strikingly uneven across the major linguistic regions of the world. Without sustained efforts to document and revitalize endangered languages, our linguistic window into human history, cognition and culture will be seriously fragmented.Genealogy versus geography Constraints on grammar Unusual languages Language loss Conclusio
    • …
    corecore