3,343 research outputs found

    Evolution of "51Peg b-like" Planets

    Get PDF
    About one-quarter of the extrasolar giant planets discovered so far have orbital distances smaller than 0.1 AU. These ``51Peg b-like'' planets can now be directly characterized, as shown by the planet transiting in front the star HD209458. We review the processes that affect their evolution. We apply our work to the case of HD209458b, whose radius has been recently measured. We argue that its radius can be reproduced only when the deep atmosphere is assumed to be unrealistically hot. When using more realistic atmospheric temperatures, an energy source appears to be missing in order to explain HD209458b's large size. The most likely source of energy available is not in the planet's spin or orbit, but in the intense radiation received from the parent star. We show that the radius of HD209458b can be reproduced if a small fraction (~1%) of the stellar flux is transformed into kinetic energy in the planetary atmosphere and subsequently converted to thermal energy by dynamical processes at pressures of tens of bars.Comment: 11 pages including 9 figures. A&A, in press. Also available at http://www.obs-nice.fr/guillot/pegasi-planets

    First Principles Calculations of Shock Compressed Fluid Helium

    Full text link
    The properties of hot dense helium at megabar pressures were studied with two first-principles computer simulation techniques, path integral Monte Carlo and density functional molecular dynamics. The simulations predicted that the compressibility of helium is substantially increased by electronic excitations that are present in the hot fluid at thermodynamic equilibrium. A maximum compression ratio of 5.24(4)-fold the initial density was predicted for 360 GPa and 150000 K. This result distinguishes helium from deuterium, for which simulations predicted a maximum compression ratio of 4.3(1). Hugoniot curves for statically precompressed samples are also discussed.Comment: Accepted to publication in Physical Review Letter

    Spatiotemporal instability of a confined capillary jet

    Full text link
    Recent experimental studies on the instability appearance of capillary jets have revealed the capabilities of linear spatiotemporal instability analysis to predict the parametrical map where steady jetting or dripping takes place. In this work, we present an extensive analytical, numerical and experimental analysis of confined capillary jets extending previous studies. We propose an extended, accurate analytic model in the limit of low Reynolds flows, and introduce a numerical scheme to predict the system response when the liquid inertia is not negligible. Theoretical predictions show a remarkable accuracy with results from the extensive experimental exploration provided.Comment: Submitted to the Physical Review E (20-March-2008

    Twisting algebras using non-commutative torsors

    Full text link
    Non-commutative torsors (equivalently, two-cocycles) for a Hopf algebra can be used to twist comodule algebras. After surveying and extending the literature on the subject, we prove a theorem that affords a presentation by generators and relations for the algebras obtained by such twisting. We give a number of examples, including new constructions of the quantum affine spaces and the quantum tori.Comment: 27 pages. Masuoka is a new coauthor. Introduction was revised. Sections 1 and 2 were thoroughly restructured. The presentation theorem in Section 3 is now put in a more general framework and has a more general formulation. Section 4 was shortened. All examples (quantum affine spaces and tori, twisting of SL(2), twisting of the enveloping algebra of sl(2)) are left unchange

    Effect of turbulence on collisions of dust particles with planetesimals in protoplanetary disks

    Get PDF
    Planetesimals in gaseous protoplanetary disks may grow by collecting dust particles. Hydrodynamical studies show that small particles generally avoid collisions with the planetesimals because they are entrained by the flow around them. This occurs when StSt, the Stokes number, defined as the ratio of the dust stopping time to the planetesimal crossing time, becomes much smaller than unity. However, these studies have been limited to the laminar case, whereas these disks are believed to be turbulent. We want to estimate the influence of gas turbulence on the dust-planetesimal collision rate and on the impact speeds. We used three-dimensional direct numerical simulations of a fixed sphere (planetesimal) facing a laminar and turbulent flow seeded with small inertial particles (dust) subject to a Stokes drag. A no-slip boundary condition on the planetesimal surface is modeled via a penalty method. We find that turbulence can significantly increase the collision rate of dust particles with planetesimals. For a high turbulence case (when the amplitude of turbulent fluctuations is similar to the headwind velocity), we find that the collision probability remains equal to the geometrical rate or even higher for St0.1St\geq 0.1, i.e., for dust sizes an order of magnitude smaller than in the laminar case. We derive expressions to calculate impact probabilities as a function of dust and planetesimal size and turbulent intensity

    Atmospheric Circulation and Tides of "51Peg b-like" Planets

    Get PDF
    We examine the properties of the atmospheres of extrasolar giant planets at orbital distances smaller than 0.1 AU from their stars. We show that these ``51Peg b-like'' planets are rapidly synchronized by tidal interactions, but that small departures from synchronous rotation can occur because of fluid-dynamical torques within these planets. Previous radiative-transfer and evolution models of such planets assume a homogeneous atmosphere. Nevertheless, we show using simple arguments that, at the photosphere, the day-night temperature difference and characteristic wind speeds may reach ~500 K and ~2 km/s, respectively. Substantial departures from chemical equilibrium are expected. The cloud coverage depends sensitively on the dynamics; clouds could exist predominantly either on the dayside or nightside, depending on the circulation regime. Radiative-transfer models that assume homogeneous conditions are therefore inadequate in describing the atmospheric properties of 51Peg b-like planets. We present preliminary three-dimensional, nonlinear simulations of the atmospheric circulation of HD209458b that indicate plausible patterns for the circulation and generally agree with our simpler estimates. Furthermore, we show that kinetic energy production in the atmosphere can lead to the deposition of substantial energy in the interior, with crucial consequences for the evolution of these planets. Future measurements of reflected and thermally-emitted radiation from these planets will help test our ideas.Comment: 14 pages, 8 figures. A&A, in press. Also available at http://www.obs-nice.fr/guillot/pegasi-planets

    Ion structure in warm dense matter: benchmarking solutions of hypernetted-chain equations by first-principle simulations

    Get PDF
    We investigate the microscopic structure of strongly coupled ions in warm dense matter using ab initio simulations and hypernetted chain (HNC) equations. We demonstrate that an approximate treatment of quantum effects by weak pseudopotentials fails to describe the highly degenerate electrons in warm dense matter correctly. However, one-component HNC calculations for the ions agree well with first-principles simulations if a linearly screened Coulomb potential is used. These HNC results can be further improved by adding a short-range repulsion that accounts for bound electrons. Examples are given for recently studied light elements, lithium and beryllium, and for aluminum where the extra short-range repulsion is essential

    Modeling Pressure-Ionization of Hydrogen in the Context of Astrophysics

    Get PDF
    The recent development of techniques for laser-driven shock compression of hydrogen has opened the door to the experimental determination of its behavior under conditions characteristic of stellar and planetary interiors. The new data probe the equation of state (EOS) of dense hydrogen in the complex regime of pressure ionization. The structure and evolution of dense astrophysical bodies depend on whether the pressure ionization of hydrogen occurs continuously or through a ``plasma phase transition'' (PPT) between a molecular state and a plasma state. For the first time, the new experiments constrain predictions for the PPT. We show here that the EOS model developed by Saumon and Chabrier can successfully account for the data, and we propose an experiment that should provide a definitive test of the predicted PPT of hydrogen. The usefulness of the chemical picture for computing astrophysical EOS and in modeling pressure ionization is discussed.Comment: 16 pages + 4 figures, to appear in High Pressure Researc

    A new model for mixing by double-diffusive convection (semi-convection): I. The conditions for layer formation

    Get PDF
    The process referred to as "semi-convection" in astrophysics and "double-diffusive convection in the diffusive regime" in Earth and planetary sciences, occurs in stellar and planetary interiors in regions which are stable according to the Ledoux criterion but unstable according to the Schwarzschild criterion. In this series of papers, we analyze the results of an extensive suite of 3D numerical simulations of the process, and ultimately propose a new 1D prescription for heat and compositional transport in this regime which can be used in stellar or planetary structure and evolution models. In a preliminary study of the phenomenon, Rosenblum et al. (2011) showed that, after saturation of the primary instability, a system can evolve in one of two possible ways: the induced turbulence either remains homogeneous, with very weak transport properties, or transitions into a thermo-compositional staircase where the transport rate is much larger (albeit still smaller than in standard convection). In this paper, we show that this dichotomous behavior is a robust property of semi-convection across a wide region of parameter space. We propose a simple semi-analytical criterion to determine whether layer formation is expected or not, and at what rate it proceeds, as a function of the background stratification and of the diffusion parameters (viscosity, thermal diffusivity and compositional diffusivity) only. The theoretical criterion matches the outcome of our numerical simulations very adequately in the numerically accessible "planetary" parameter regime, and can easily be extrapolated to the stellar parameter regime. Subsequent papers will address more specifically the question of quantifying transport in the layered case and in the non-layered case.Comment: Submitted to Ap

    Accretion and destruction of planetesimals in turbulent disks

    Full text link
    We study the conditions for collisions between planetesimals to be accretional or disruptive in turbulent disks, through analytical arguments based on fluid dynamical simulations and orbital integrations. In turbulent disks, the velocity dispersion of planetesimals is pumped up by random gravitational perturbations from density fluctuations of the disk gas. When the velocity dispersion is larger than the planetesimals' surface escape velocity, collisions between planetesimals do not result in accretion, and may even lead to their destruction. In disks with a surface density equal to that of the ``minimum mass solar nebula'' and with nominal MRI turbulence, we find that accretion proceeds only for planetesimals with sizes above 300\sim 300 km at 1AU and 1000\sim 1000 km at 5AU. We find that accretion is facilitated in disks with smaller masses. However, at 5AU and for nominal turbulence strength, km-sized planetesimals are in a highly erosive regime even for a disk mass as small as a fraction of the mass of Jupiter. The existence of giant planets implies that either turbulence was weaker than calculated by standard MRI models or some mechanism was capable of producing Ceres-mass planetesimals in very short timescales. In any case, our results show that in the presence of turbulence planetesimal accretion is most difficult in massive disks and at large orbital distances.Comment: 15 pages, 5 figures, accepted for publication in Ap
    corecore