
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Effect of turbulence on collisions of dust particles with planetesimals in
protoplanetary disks

Homann, H.; Guillot, T.; Bec, J.; Ormel, C.W.; Ida, S.; Tanga, P.
DOI
10.1051/0004-6361/201527344
Publication date
2016
Document Version
Final published version
Published in
Astronomy & Astrophysics

Link to publication

Citation for published version (APA):
Homann, H., Guillot, T., Bec, J., Ormel, C. W., Ida, S., & Tanga, P. (2016). Effect of
turbulence on collisions of dust particles with planetesimals in protoplanetary disks.
Astronomy & Astrophysics, 589, [A129]. https://doi.org/10.1051/0004-6361/201527344

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:26 Jul 2022

https://doi.org/10.1051/0004-6361/201527344
https://dare.uva.nl/personal/pure/en/publications/effect-of-turbulence-on-collisions-of-dust-particles-with-planetesimals-in-protoplanetary-disks(b8d85906-dc82-4943-8a64-4aad18acb374).html
https://doi.org/10.1051/0004-6361/201527344


A&A 589, A129 (2016)
DOI: 10.1051/0004-6361/201527344
c© ESO 2016

Astronomy
&

Astrophysics

Effect of turbulence on collisions of dust particles
with planetesimals in protoplanetary disks

H. Homann1, T. Guillot1, J. Bec1, C. W. Ormel2, S. Ida3,4, and P. Tanga1

1 Laboratoire J.-L. Lagrange, Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, 06304 Nice, France
e-mail: holger.homann@oca.eu

2 Anton Pannekoek Institute for Astronomy, University of Amsterdam, 1012 WX Amsterdam, The Netherlands
3 Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 152-8551 Tokyo, Japan
4 Earth-Life Science Institute, Tokyo Institute of Technology, 152-8550 Tokyo, Japan

Received 11 September 2015 / Accepted 29 January 2016

ABSTRACT

Context. Planetesimals in gaseous protoplanetary disks may grow by collecting dust particles. Hydrodynamical studies show that
small particles generally avoid collisions with the planetesimals because they are entrained by the flow around them. This occurs
when St, the Stokes number, defined as the ratio of the dust stopping time to the planetesimal crossing time, becomes much smaller
than unity. However, these studies have been limited to the laminar case, whereas these disks are believed to be turbulent.
Aims. We want to estimate the influence of gas turbulence on the dust-planetesimal collision rate and on the impact speeds.
Methods. We used three-dimensional direct numerical simulations of a fixed sphere (planetesimal) facing a laminar and turbulent
flow seeded with small inertial particles (dust) subject to a Stokes drag. A no-slip boundary condition on the planetesimal surface is
modeled via a penalty method.
Results. We find that turbulence can significantly increase the collision rate of dust particles with planetesimals. For a high turbulence
case (when the amplitude of turbulent fluctuations is similar to the headwind velocity), we find that the collision probability remains
equal to the geometrical rate or even higher for St & 0.1, i.e., for dust sizes an order of magnitude smaller than in the laminar case.
We derive expressions to calculate impact probabilities as a function of dust and planetesimal size and turbulent intensity.

Key words. planets and satellites: formation – planet-disk interactions – turbulence – accretion, accretion disks – hydrodynamics –
methods: numerical

1. Introduction

Conventional models for planet formation involve the hierarchi-
cal growth by accretion of “planetesimals”. Such building blocks
undergo collisions and gravitational binding to eventually reach
planetary sizes (see, e.g., Safronov 1972; Hayashi et al. 1985).
Still several serious uncertainties remain in the processes leading
from sub-µm dust grains, which follow the sub-Keplerian gas,
to km-sized planetesimals that are massive enough to move on
Keplerian orbits. One of them is known as the “meter-size bar-
rier”. Meter-sized bodies experience a strong drag force, which
causes rapid orbital decay due to angular momentum loss. The
timescale of this decay is less than 100 yr at 1 AU (see, e.g.,
Weidenschilling 1984; Nakagawa et al. 1986), which is shorter
by several orders of magnitude than the observationally inferred
disk lifetime (several million years). Consequently, the planet-
forming material are lost from the disk.

One scenario for overcoming the meter-size barrier is by
the combined effect of streaming instabilities and pebble accre-
tion. Because of growth to mm/cm-sized particles and settling,
dust concentrates in the midplane and may become unstable
to streaming instabilities (Youdin & Goodman 2005; Johansen
et al. 2007, 2011). This forms relatively large planetesimals.
After that, these large planetesimals can sweep up surround-
ing grains and migrating pebbles (Ormel & Klahr 2010; Ormel
& Kobayashi 2012; Lambrechts & Johansen 2012). Because

the orbital decay of the pebbles is also fast, a large number
of pebbles are supplied from outer disk regions on relatively
short timescales, resulting in rapid planet growth. This scenario
utilizes the too rapid migration problem, rather than avoids it.
The pebble accretion model is actively discussed for the forma-
tion of the solar system (Morbidelli et al. 2015) and of close-
in super-Earth systems in exoplanetary systems (Chatterjee &
Tan 2014, 2015). However, the details of the accretion of
grains and pebbles by (large) planetesimals have not been fully
clarified.

Guillot et al. (2014) proposed detaile expressions for the ac-
cretion rates of dust grains in a protoplanetary gaseous disk for
a wide range of dust and planetesimal sizes. They point out that,
when using the numerical results by Sekiya & Takeda (2003),
the accretion probability drops off by several orders of mag-
nitude at relatively small dust grains (within what they refer
to as the “hydrodynamical regime”). This strong depletion can
be easily explained by qualitative physical arguments. The mo-
tion of small grains is strongly coupled to the gas flow. Since
they follow gas streamlines they may avoid (head-on) collisions
with the planetesimal. However, the numerical simulations by
Sekiya & Takeda (2003) assume laminar flow, while it is known
that the disk gas is most likely to be turbulent. Observationally
inferred accretion rate in T-Tauri disks is far higher than
that caused by molecular viscosity. Consequently, protoplane-
tary disks are expected to be turbulent, with a turbulent eddy
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viscosity νt much higher than the molecular kinematic viscosity.
Turbulence should affect the reduction in the dust accretion prob-
ability in hydrodynamical regime. Recently, Mitra et al. (2013)
studied the influence of turbulence on the dust impact velocity by
means of two-dimensional direct numerical simulations. They
found a velocity distribution with exponential tails and argued
that most of the dust collides with a speed comparable to that of
the head wind.

The purpose of this paper is to propose expressions for
dust accretion probabilities on planetesimals in turbulent gas,
based on three-dimensional direct hydrodynamical simulations.
Gravity effects are omitted in this study and are left for a future
work. We follow the approach introduced by Homann & Bec
(2015) and consider an idealized situation in which the plan-
etesimal is assumed to be spherical with a smooth surface. The
gas is modeled as a purely hydrodynamical and incompressible
fluid so that other possible modes originating from either the
magneto-rotational instability (MRI) or compressibility are not
taken into account. Additionally, we neglect any shear, disregard
gravitational effects, and do not allow for rotation of the plan-
etesimal. The aim of this work is twofold: first, it shall provide
a detailed study of collisions between small inertial grains and a
large spherical object and, secondly, it shall determine its conse-
quences on the accretion of dust by planetesimals in the context
of planet formation.

It is worth mentioning that our results, involving the hy-
drodynamical interactions and the collisions between a large
spherical inclusion and small particles with inertia, have impor-
tant applications in contexts that go beyond planet formation.
In atmospheric physics, this problem is known as “inertial im-
paction” and is relevant for estimating rates in rain formation
or wet deposition of aerosols where a falling water drop scav-
enges smaller cloud droplets or solid pollutants. Studies of such
problems often rely on collision efficiencies and, again, mainly
formulas from laminar flow conditions are used (Berthet et al.
2010). A popular formula is that of Slinn (1974), who proposed
a fit of the collision efficiency for the inertial impaction regime.
Later, he included molecular diffusion and extended his formula
to smaller projectiles (Slinn 1976, 1983). Inertial impaction is
also important for the design and improvement of industrial fil-
ters. Haugen & Kragset (2010) studied the impact of particles
on a cylinder in a two-dimensional laminar inflow. Later, Hydle
Rivedal et al. (2011) investigated the case of a turbulent inflow
and found that turbulent fluctuations yield up to ten times more
collisions than a corresponding laminar inflow.

The paper is organized as follows. In Sect. 2, we explain the
disk model and notations. In Sect. 3, we describe the numerical
method that we use in our approach. In Sect. 4, we present the
results of our hydrodynamical simulations. In particular, we pro-
pose an expression for the accretion probability in laminar and
turbulent flows as a function of both the Stokes number, which
compares dust inertia to the perturbation of the gas motion due
to the planetesimal, and the turbulent intensity of the surround-
ing gas flow. Section 5 is devoted to astrophysical discussions
on the obtained results. Section 6 contains a summary and some
concluding remarks.

2. Protoplanetary disk turbulence model
and notations

2.1. Disk model

We consider a minimum mass solar nebula (MMSN) model
(Weidenschilling 1977b; Hayashi 1981), where the surface

density and temperature of the gas in the disk are given in terms
of power laws:

Σgas = Σ1

( r
au

)−3/2
, (1)

Tgas = T1

( r
au

)−1/2
· (2)

Σ1 and T1 are the values at 1 au, for which we choose Σ1 =
1700 g cm−2 and T1 = 270 K. (A list of symbols and their
definitions used in this paper is summarized in Appendix A.)
Assuming the disk is vertically isothermal, with the isothermal
sound speed cs =

√
kBTgas/µ ∝ r−1/4 and a mean molecular

weight of µ = 2.34mH , the density reads

ρ(r, z) =
Σgas(r)

H
√

2π
exp

[
−

1
2

( z
H

)2
]
, (3)

where H = cs/ΩK is the disk scale height and ΩK ≡
√

GM?/r3

the orbital (Keplerian) frequency at distance r from the star. It
follows that H/r ∝ r1/4, so that the disk is flared.

Due to the density and temperature gradients, the disk is
slightly supported by pressure. The amount of pressure support
∆g = (dP/dr)/ρ compared to the solar gravity is often expressed
in terms of a parameter η defined as

η ≡ −
∆g

2g?
= −

P
2ρΩ2

K r2

d log P
d log r

=
1
2

(
cs

vK

)2

∇logP

=
1
2

h2 ∇logP ≈ 1.63 h2, (4)

where we introduced the pressure logarithmic gradient ∇logP ≡
−d(log P)/d(log r), the Keplerian velocity vK ≡ ΩK r, and the
disk aspect ratio h ≡ cs/vK = H/r. The numbers are obtained
from an MMSN disk with the above power law profiles for den-
sity and temperature. It follows that the motion of the disk is less
than Keplerian (Weidenschilling 1977a); the gas flows at a speed
equal to (1−η) vK. Also, the headwind that is faced by a big body
(a.k.a. planetesimal), which moves at a Keplerian speed through
the sub-Keplerian rotating gas, then reads

Uc = η vK = 52 m s−1 (5)

which, for an MMSN disk is independent of the distance r to the
star.

2.2. Turbulence model

The gas has a mean-free path of `mfp = µ/(
√

2σmol ρ) where
σmol ≈ 2× 10−15 cm2 (Chapman & Cowling 1970) is the molec-
ular cross section. The kinematic molecular viscosity of the gas
is νmol = (1/2) vth `mfp where vth =

√
8/π cs is the mean molecu-

lar thermal speed.
However, for these parameters the resulting diffusion

timescales ∼r2/νmol are too long to explain, for example, the
measured accretion rate in T-Tauri disks. Consequently, proto-
planetary disks are expected to be mildly turbulent, but still sub-
sonic, with a turbulent eddy viscosity νt assumed to be much
larger than the molecular kinematic viscosity. An often used
parameterization is the alpha-viscosity model of Shakura &
Sunyaev (1973):

νt ≈ α cs H. (6)
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The dimensionless constant α is a disk-dependent parameter. Its
value may range from a minimum of α ≈ 10−5, when the turbu-
lence originates from the Kelvin-Helmholtz instability of a dust
layer at the mid-plane, to perhaps α ≈ 0.1 for the most vio-
lent disks with a strong magneto-rotational instability (the MRI;
Balbus & Hawley 1991). Generally, the saturation level of the
MRI turbulence depends on the magnitude of the magnetic field
that threads the disks, the level of ionization, and the amount of
dust (Turner et al. 2014). Consequently, a variety of α-values can
be expected (Ormel & Okuzumi 2013). But even for a weak level
of turbulence – meaning, α � 1 – the Reynolds number of the
flow, Re = νt/νmol, is very large by virtue of the very low den-
sities that characterize astrophysical environments. Indeed, for a
MMSN density profile:

Re = 2α
H
`mfp

≈ 2.4 × 1012 α
( r
1 au

)−3/2
· (7)

For such expected large values of the Reynolds number, one
can reasonably assume that the gas flow is in a developed
three-dimensional turbulent regime which can be described us-
ing Kolmogorov (1941) phenomenology. The kinetic energy is
injected at a large (integral) scale L by a hydro- or magneto-
hydrodynamical instability. In both cases the injection mecha-
nism is associated to the sub-Keplerian shear. The associated
shear rate sets the typical turbulent large-eddy turnover time
to tL ∝ Ω−1

K (Cuzzi et al. 2001). The eddy viscosity then
reads νt = L2/tL = L2 ΩK leading, together with Eq. (6), to
L = α1/2 H and vL ≡ L/tL = α1/2 cs. Note that the assump-
tions of incompressibility (vL � cs) and three-dimensionality
(L � H) of the turbulent flow in the disk are both fulfilled as
long as α � 1. According to Kolmogorov (1941) phenomenol-
ogy, the kinetic energy cascades downscale with a constant rate
εKol = v2

L/tL = α c2
s ΩK until it reaches the smallest active scales,

the Kolmogorov scale `Kol below which it is dissipated by molec-
ular viscosity. The typical velocity v` of eddies whose size `
lies in the inertial range `Kol � ` � L reads v` ' (εKol `)1/3.
The Kolmogorov length is defined as the scale where the scale-
dependent Reynolds number Re(`) ≡ v` `/νmol is unity, so that
`Kol = ν3/4

mol/ε
1/4
Kol and the associated timescale tKol = ν1/2

mol/ε
1/2
Kol.

The integral Reynolds number Re = νt/νmol gives the extension
of the inertial range: L/`Kol = Re3/4 and tL/tKol = Re1/2.

2.3. Dimensionless quantities

Let us now turn back to our original problem, that is the
aerodynamic interactions between the disk gas flow and a
solid planetesimal of size Rp, diameter d = 2Rp. There are
three dimensionless quantities characterizing the system: (the
numerical values below are those obtained for an MMSN disk)

– the planetesimal Reynolds number

Rep ≡
dUc

νmol
=
∇logP h
√

8/π

(
d
`mfp

)
≈ 2.7 × 104

(
d

km

) ( r
1 au

)−2.5
,

(8)

which corresponds to the strength of inertia with respect to
molecular viscous forces for the gas flow surrounding the
planetesimal and characterizes how turbulent is its wake.

– the turbulent intensity

I ≡
vL

Uc
=

α1/2 cs

(1/2) h2∇PvK
=

√
4α1/2

h∇logP
≈ 20α1/2

( r
1 au

)−1/4
,

10−1 100 101 102

Disk radius [AU]

10−2

10−1

100

101

102

103

104

Rep

d/lKol

I

Fig. 1. Turbulent disk parameters: planetesimal Reynolds number Rep
(black), dimensionless turbulent intensity I (red), and planetesimal to
Kolmogorov scale d/`Kol (blue) for a MMSN disk model, disk turbulent
parameters α = 10−4 (dashed) and α = 10−2 (solid) and planetesimal
diameter d = 1 km. The blue and black line thus scale up and down with
the planetesimal size. The shaded regions are covered by the numerical
experiments (see Table 1).

(9)

which measures how strong the turbulent velocity fluctua-
tions are compared to the speed of the planetesimal slip.

– the ratio between the planetesimal size and the Kolmogorov
scale

δKol ≡
d
`Kol

=
d

α1/2H
Re3/4 = 23/4α1/4

(
d
H

) (
H
`mfp

)3/4

≈ 400α1/4
(

d
km

) ( r
1 au

)−19/8
(10)

which measures the range of turbulent eddies that might in-
terfere with the planetesimal perturbation of the gas flow. It
is indeed known that the flow perturbation occurs on scales
of the order of d, so that all turbulent eddies of sizes between
`Kol and d can potentially modify the gas flow around the
spherical planetesimal.

Figure 1 shows the dependence of the various parameters with
the orbital distance for two values of α compared to the assump-
tions used for the numerical calculations. We can see that Rep
decreases with increasing orbital distance (kinematic viscosity
goes up). Similarly, d/`Kol decreases because `Kol increases (tur-
bulent scales are getting larger). The turbulent intensity is not a
very strong function of disk radius, but it depends quite strongly
on the turbulence parameter α.

In the laminar case, Rep = 400 corresponds to a 1 km plan-
etesimal located at ∼5 au in the MMSN disk, or e.g. to a 10 km
planetesimal at ∼12 au.

For the turbulent case, ideally we should find parameters for
which all three lines match with parameters of the numerical
experiments. However, because of the ∼106 mismatch between
the Reynolds number in the disk and the maximum one that can
be attained by present-day numerical simulations, this is not yet
possible. We come back to this issue when applying the results
of numerical models to real disk conditions.
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3. Numerical model

3.1. Gas flow

We focus on the collision rate of a stream of dust particles with
one spherical planetesimal. To study this situation we perform
3D direct numerical simulations (DNS) of a hydrodynamic flow
around a spherical object with a no-slip boundary conditions at
its surface. The overall method consists in a combination of a
standard pseudo-Fourier-spectral solver with a penalty method
that is explained in this section.

We integrate the incompressible Navier-Stokes equations

∂tu = −u · ∇u −
1
ρg
∇p + νmol∇

2u + f , ∇ · u = 0, (11)

for the gas velocity u, where ρg is the gas density, νmol its kine-
matic molecular viscosity and f a force. The latter maintains a
uniform inflow speed and an eventually ambient turbulent flow.
Its form is described later. The pseudo-Fourier-spectral approach
consists in computing spatial derivatives in Fourier-space and
convolutions arising from the non-linear terms in real space. A
Fast-Fourier transform is used to switch between the two spaces.
We use the P3DFFT library (see Pekurovsky 2012) that is very
efficient on massive parallel computers.

The Navier–Stokes equation is integrated in the reference
frame of the planetesimal. The spatial average of the velocity
field is thus fixed and given by the planetesimal speed Uc relative
to the gas. Equation (11) is associated with a no-slip boundary
condition at the surface of the planetesimal, which is assimilated
to a spherical object at rest whose diameter is denoted by d and
its center by XS. We thus have

u(x, t) = 0 for |x − XS| = d/2. (12)

Numerically, this no-slip condition is enforced by an immersed
boundary technique (IBM). The latter technique was first used
to simulate the blood in flow in the context of a human heart
by Peskin (1972). Today, a variety of different approaches exists
(Mittal & Iaccarino 2005). Generally speaking, IBM consists in
solving fluid equations in domains with complex boundary con-
ditions such as moving heart valves on Cartesian grids. As such
boundaries are generally not grid conform, their effect on the
flow has to be modeled. For our problem of a spherical obstacle
at rest, the idea consists in defining the velocity field in the full
domain enforcing a vanishing velocity in the entire object, that
is for all x such that |x − XS| ≤ d/2. The Navier-Stokes Eq. (11)
then has to be modified by introducing in its right-hand side a
penalty force fb(x, t), which acts as a Lagrange multiplier asso-
ciated to the constraint defined by the boundary condition (12).
The full problem (11)−(12) can then be rewritten as

∂tu = L(u) + fb, ∇ · u = 0, (13)

where L(u) denotes the right hand side of (11). In order to com-
pute fb we make use of a direct forcing method introduced by
Fadlun et al. (2000) where we directly impose the planetesi-
mal velocity to the grid using the technique of a pressure pre-
dictor and an improved modeling of the spherical inclusion.
Benchmarks (see Homann et al. 2013) of this method for a fixed
sphere show good agreement with existing data. This method has
also been used for the study of moving neutrally buoyant par-
ticles in homogeneous isotropic turbulence in Homann & Bec
(2010) and Cisse et al. (2013). A similar IBM has been used by
Uhlmann (2005) together with a second order finite-difference
Navier-Stokes solver to simulate turbulent suspensions involv-
ing many particles.

3.2. Dust particles

Dust particles are modeled by spherical inertial particles with a
radius a much smaller than the smallest scales of the flow, so that
they can be approximated by point particles. Further, we assume
that these particles move sufficiently slow with respect to the
gas and that their mass density ρp is much higher than the gas
density ρg. With these assumptions the dominant hydrodynamic
force exerted by the gas is a drag force, which is proportional to
the velocity difference between the particle and the gas flow (see
Maxey & Riley 1983; Gatignol 1983)

Ẍ =
1
ts

[
u(X, t)− Ẋ

]
(14)

where the dots stand for time derivatives. ts is called the response
(or stopping) time and is a measure of particle inertia. It is the
relaxation time of the particle velocity to that of the gas (see
Guillot et al. 2014, for a description of how the particle size re-
lates to the stopping time). Finally, we also assume that the par-
ticles are sufficiently diluted to neglect any interaction among
them and any back-reaction on the flow.

Usually, particle inertia is quantified in terms of the Stokes
number St = ts / tc defined by non-dimensionalizing their re-
sponse time by a characteristic time scale tc of the carrier flow.
The present problem involves different relevant time scales.
Td = d/Uc, the time it takes a dust particle to pass the plan-
etesimal, tL, the turbulent large-eddy turn-over time and tKol, the
turbulent dissipation time scale. If not otherwise specified, we
use tc = Td as this time scale rules the collision efficiency in
the laminar regime: particles with small St are closely coupled
to the flow and are swept around the obstacle. Large St particles
preferentially collide with it1.

In studies concerned with the small-scale dynamics of iner-
tial particles one usually uses tc = tKol (Bec et al. 2006) and we
denote the associated Stokes number StKol.

3.3. Simulation setup

We performed simulations of a planetesimal moving through a
uniform and different turbulent flows. The physical situation is
illustrated in Fig. 2 where the planetesimal, together with dust
particles are shown in a small slice. These are snapshots taken
from our three-dimensional simulations. The planetesimal expe-
riences a headwind speed Uc from the right that is advecting the
dust particles. The upper panel is taken from a simulation with a
uniform inflow while the two others include turbulence with two
different intensities. Dust particles that have collided with the
planetesimal are missing downstream, resulting in an empty re-
gion behind the planetesimal that is clearly visible for the lami-
nar flow, but much less for the turbulent cases.

These figures show important differences between laminar
and turbulent gas flows. The spatial distribution of the dust as
well as its local velocity strongly depend on the carrier flow
type. Note that while St = 0.8 for all cases shown in Fig. 2,
StKol = 1.25 for I = 0.29 and StKol = 9.8 for I = 1.18 so that the
clustering properties of the particles change from one value of I
to the other.

The runs involving a turbulent flow are set up in the follow-
ing way (see Table 2 for parameters and definitions). An initially

1 Note that in the context of astrophysical disks, a different Stokes
number is often defined from τ = tsΩK. The definition of St that is
used here is denoted by τf in e.g., Sekiya & Takeda (2003) and Guillot
et al. (2014).
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Fig. 2. Instantaneous streamlines of the
gas flow (entering from the right with
a speed Uc) around a planetesimal with
Rep = 400 and dust particles (St = 0.8)
for I = 0 (laminar, δKol = 0), I = 0.29
(moderately turbulent, δKol = 25), and
I = 1.18 (strongly turbulent, , δKol = 70)
from top to bottom.

smooth large scale flow is integrated according to (11) without
any forcing f . Once a turbulent flow has developed (after ap-
prox. 1−2 tL) the velocity field is forced by keeping constant the
energy content of the two lowest wave number shells (1 ≤ k ≤ 2)
in Fourier space. This leads to a statistically stationary turbu-
lent flow to which the planetesimal is added. For this, the root-
mean-square value vL of the velocity fluctuations is normalized
to the values given in Table 2 for each simulation. A mean ve-
locity of Uc in one direction is imposed by keeping constant the
zero Fourier mode of the corresponding component of the ve-
locity. The planetesimal is modeled via the mentioned immersed
boundary method. The integration is continued until a statisti-
cally stationary state is reached again. At this point, inertial par-
ticles are seeded at a constant rate into the flow in a plane suffi-
ciently far from the planetesimal so that they have enough time
(>ts) to relax to the flow. During the simulation we remove and
record all the particles that are touching the spherical planetesi-
mal or reaching the end of the computational domain. On aver-
age the domain is filled with approximately ten million particles.

The laminar flow simulations (see Table 1 for parameters
and definitions) start with a uniform flow (Uc = 1) in which
the planetesimal is placed. Disturbances produced by its wake
are removed at the end of the computational domain via another
application of the penalty method, so that they are not re-injected
upstream the planetesimal by the periodic boundary conditions.
The dust particles are introduced into the flow once a (statisti-
cally) stationary state is reached.

The time integration of (11) uses a Runge-Kutta scheme of
third order. The grid resolution is chosen in order to resolve all
small scales of the problem: those of the spherical planetesimal
boundary layer, all turbulent scales in its wake and the smallest
scales of the possibly turbulent ambient flow.

All physical flow parameters are determined by three di-
mensionless parameters: the Reynolds number of the planetes-
imal Rep = Uc d/νmol, the Reynolds number of the gas Re =
vL L/νmol, L being the integral scale of the ambient turbulent
flow, and the turbulent large-scale intensity I = vL/Uc. The lat-
ter measuring the strength of the large-scale turbulent fluctua-
tions compared to the mean flow velocity. In the laminar case
(Re = 0, I = 0), we varied the planetesimal Reynolds number
Rep from 100 to 1000. We analyze the effect of turbulent fluctua-
tions for one specific choice of the planetesimal Reynolds num-
ber, namely Rep = 400 (turbulent wake) and vary I from 0.14
to 1.18. The corresponding flow Reynolds numbers Re (listed in
Table 2) are a consequence of our particular choice of the ex-
ternal force. Freezing the energy content of the lowest shells in
spectral space does not allow for changing L but only vL that
enters in the definitions of both I and Re.

The particle dynamics is characterized by the Stokes number
St. In all simulations we consider streams of heavy dust particles
with response times ts in between 0.04 and 81.92, corresponding
to Stokes numbers St in the range 0.05 ≤ St ≤ 63. The main
parameters of all simulations are summarized in Tables 2 and 1.

4. Results

4.1. Laminar settings

In a uniform gas flow all dust particles have the same velocity
far from the planetesimal. This physical situation is fully deter-
mined by the Reynolds number of the planetesimal Rep and the
Stokes number St of the dust particles. A typical flow pattern is
illustrated in the upper panel of Fig. 2 where a planetesimal flies
through a stream of dust particles while creating a moderately
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Table 1. Parameters of the turbulence simulations.

Rep Re Uc vL εKol νmol d `Kol tKol L tL Nx × Ny × Nz Np

400 200 1 0.14 9.2 × 10−4 0.002 0.8 0.054 1.46 2.92 21.0 256 × 256 × 2048 ≈107

400 450 1 0.29 7.7 × 10−3 0.002 0.8 0.032 0.51 3.04 10.6 256 × 256 × 2048 ≈107

400 600 1 0.39 1.95 × 10−2 0.002 0.8 0.025 0.32 3.09 7.9 256 × 256 × 2048 ≈107

400 900 1 0.60 6.9 × 10−2 0.002 0.8 0.018 0.17 3.10 5.2 256 × 256 × 2048 ≈107

400 3000 1 1.18 4.8 × 10−1 0.002 0.8 0.0114 0.065 3.40 2.9 256 × 256 × 2048 ≈107

Notes. Rep = Uc d/νmol: planetesimal Reynolds number; Re = vLL/νmol: outer gas flow Reynolds number; vL: root-mean-square velocity; εKol: mean
kinetic energy dissipation rate; νmol: kinematic viscosity; d: planetesimal diameter; `Kol = (ν3

mol/εKol)1/4: Kolmogorov dissipation length scale;
tKol = (νmol/εKol)1/2: Kolmogorov time scale; L = v3

L/εKol: integral scale; tL = L/vL: large-eddy turnover time; N3: number of collocation points.

Table 2. Parameters of the laminar simulations.

Rep d νmol Nx × Ny × Nz

100 0.8 2 × 10−3 256 × 256 × 2048
400 0.8 2 × 10−3 256 × 256 × 2048

1000 0.65 6.5 × 10−4 512 × 512 × 4096

Notes. Rep = Uc d/νmol: planetesimal Reynolds number; d: planetesi-
mal diameter; νmol: kinematic viscosity; Nx × Ny × Nz: number of col-
location points; the following parameters apply to all the three simula-
tions: lengths of the computational domain lx × ly × lz = 2π × 2π × 16π;
inflow speed Uc = 1; number of small particles Np ≈ 107.

Fig. 3. Projected frontal view of the average probability density of im-
paction on the planetesimal for dust particles with St = 0.2. White:
many collisions; black: no collisions.

turbulent wake. If an approaching dust particle collides with the
planetesimal or not is only determined by its Stokes number and
impact parameter. Without the hydrodynamic flow that deflects
dust around the obstacle it would just be the impact parameter
ruling the collision rate so that the hydrodynamic forces reduce
the collision rate below that of the geometric cross section.

The colliding dust particles preferentially hit the planetesi-
mal on the axis of symmetry with a decreasing probability to
its edge. Small inertial particles only touch the planetesimal in
a central region leaving eventually an outer non-collisional ring
(see Fig. 3). But this region already disappears for Stokes num-
bers around unity, so that dust collisions fill the complete front
of the spherical planetesimal. In the limit of infinite St the distri-
bution becomes uniform. Rear collisions virtually never happen
(see Fig. 4) in a laminar flow that is because inertia prevents
those particles that moved around the planetesimal from getting

Fig. 4. Probability density function of the stream-wise position z at
which colliding particles impact the planetesimal. The center of the
planetesimal is located at z = 0 and separates its front (negative z)
from its back (positive z). The “ballistic” curve refers to straight dust
trajectories that do not feel any hydrodynamic forces.

into the recirculation region of the wake. The few records ob-
served might be numerical noise.

A central quantity of the accretion problem is the collision
efficiency (or collision rate) E(St) that is the ratio between the
actual collision rate and that expected for free-streaming parti-
cles that do not feel any hydrodynamic force from the gas flow.
The latter rate is obtained from the geometrical cross-section of
the planetesimal and reads nd Uc π d2/4, where nd designates the
number density of dust particles. We use the following notation:
E0 denotes the uniform gas flow case that we are going to ana-
lyze in this section and EI denotes the turbulent case parameter-
ized by the turbulent intensity I that is discussed in the following
section. The efficiency E0 is a monotonously increasing function
of the dust particle Stokes number St that asymptotically reaches
unity for particles with very large inertia (see Fig. 5). The higher
is Rep the more probable are collisions, especially at small St. In
this low inertia limit, E0 sharply drops for all Rep. The reason for
this is the well established existence of a critical Stokes number
Stc below which no collisions occur at all (Taylor 1940).

Indeed, in the case of an inviscid Euler flow (zero viscosity,
Rep = ∞) it can be shown that E0 drops to zero for small but
finite StEuler

c = 1/24 (Ingham et al. 1990). The viscous bound-
ary layer of a finite Rep planetesimal that shrinks as ∼1/

√
Rep

reduces the collision probability and increases Stc. For the lim-
iting case of a Stokes flow Michael & Norey (1970) computed
numerically a critical Stokes number of 0.605.
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Fig. 5. Collision efficiency as a function of the dust particle Stokes
number obtained from direct numerical simulations with uniform in-
flows (symbols). The lines correspond to the fitting formula (15) pro-
posed by Slinn (1983).

Slinn (1974, 1976, 1983) proposed a fitting function of the
collision rate of the form

ESlinn
0 (St,Rep) =

(
St − StSlinn

c

St − StSlinn
c + 2/3

)3/2

StSlinn
c (Rep) =

0.6 + (1/24) log(1 + Rep/2)
1 + log(1 + Rep/2) ·

(15)

StSlinn
c is thus a critical number below which the (extremely low)

collision probability is determined by different physical mecha-
nisms. These expressions appear to have been fitted empirically
to both experimental and numerical data with uncertainties of
order 0.1 on the determination of E0(St) (see Slinn 1974).

It is useful to look in more detail at the small and large St
efficiencies separately. In Fig. 6 the collision efficiency is shown
as a function of St − Stc and not simply as a function of St. We
hence focus on the behavior of the collision probability when ap-
proaching the critical Stokes number. Stc is chosen in such a way
that all curves fall on top of each other so that differences for dif-
ferent Reynolds numbers disappear. Our estimated Stc are close
to that of Slinn (15) (see inset of Fig. 6). The case of large but
finite values of Rep has also been addressed by Phillips & Kaye
(1999), using matched asymptotics together with numerical sim-
ulations of the particle dynamics inside the obstacle boundary
layer. They found critical Stokes numbers slightly larger than
those of Slinn (15), so that our value are in between these two
predictions.

E0 increases linearly at small St − Stc (see Fig. 6), that is
in contradiction to Slinn’s formula (15) that predicts E0 ∼ (St −
Stc)3/2. To incorporate this small-Stokes behavior we propose the
fitting function

E0(St,Rep) =
St − Stc

St − Stc + 2/3

Stc(Rep) =
0.6 + (1/24) log(1 + Rep/6)

1 + log(1 + Rep/6)

(16)

which is in excellent agreement with our data. Here we mention
(as already remarked by Slinn) that an exponential fit of the form
exp(−a/St) also works quite well for not too small St but this
form does evidently not conform to a critical Stokes number.

We also note that Slinn (1974) had also proposed a similar
fit (linear instead of with a 3/2 exponent), but opted for Eq. (15)
which showed a marginal improvement to the experimental and

10−3

10−2

10−1

100

0.001 0.01 0.1 1 10 100

E
0
(S

t)

St− Stc

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

10 100 1000 10000

S
t c

Rep

Rep = 100
Rep = 400

Rep = 1000
Slinn (1983)

�t

exp �t

Slinn (1983)

�t

Fig. 6. Collision efficiency as a function of St − Stc, where Stc is the
critical Stokes number below which no collision happen. fit = (St −
Stc)/(St−Stc +2/3) (Eq. (16)). The solid line indicates a linear increase.
Inset: Critical Stokes number as a function of the planetesimal Reynolds
number. fit = StSlinn

c (Rep/3).
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Fig. 7. Collision efficiency deficit 1 − E0(St) as a function of St for dif-
ferent planetesimal Reynolds numbers and the various fitting formula,
as labeled.

numerical data available at the time. The uncertainties that we
obtain here are much smaller and allow to discriminate against
the fit from Eq. (15).

To study the large-Stokes number behavior in details it is
useful to analyze 1−E0(St) that measures how the free-streaming
particle limit is recovered as a function of St. All curves for dif-
ferent Rep (see Fig. 7) fall on the top of each other and reveal a
St−1 behavior at large St. Again, we observe slight deviations to
Slinn’s fitting formula, while our proposed expression (16) fairly
matches the data.

4.2. Turbulent settings

One can expect that turbulent velocity fluctuations of the gas,
resulting in dust velocity fluctuations, alter the collision statistics
of dust and planetesimals. An analysis of these changes is the
subject of this section.

The turbulent accretion problem involves more parameters
than the laminar problem presented in the previous section. It is
determined by four dimensionless parameters. The planetesimal
and dust properties are of course still described by the Reynolds
number Rep and the dust Stokes number St, but turbulence adds
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Fig. 8. Collision efficiencies for several turbulent intensities I = vL/Uc
and Rep = 400. The I = 0 curve is the same as in Fig. 5. Solid lines:
fits of the function EI(St) = exp(−a(I)/St) (1 + b(I) St/(1 + St2)) with:
a = 0.49, b = −0.095 for I = 0.14; a = 0.38, b = −0.04 for I = 0.29;
a = 0.21, b = 0.31 for I = 0.60; a = 0.085, b = 1.08 for I = 1.18.

two additional dimensionless parameters specifying the ambient
turbulent flow. They are the gas Reynolds number Re = vL L/νmol
and the turbulent intensity I = vL/Uc that compares the ampli-
tude of turbulent fluctuations with the mean velocity of the gas.

In this work, we explicitly vary St and the turbulent inten-
sity I and fix the planetesimal Reynolds number to Rep = 400
(weakly turbulent wake) in order to limit computational costs.
The gas Reynolds number Re is implicitly varied as it is cou-
pled to I due to our specific forcing scheme that prescribes L to
approximately half of the domain size.

The physical situation for two different turbulent intensities
is illustrated in the mid and bottom panel of Fig. 2. Dust parti-
cles are in these cases advected by a chaotic and irregular flow
possessing coherent structures, i.e. structures eventually persist-
ing for a long time. This has two important implications: first,
the velocity of dust is fluctuating spatially and temporally (see
Figs. 2b and c) and in turn (as we study in details below) mod-
ifies the collision statistics. Second, from studies of hydrody-
namic turbulence it is known that inertial particles tend to escape
from coherent rotating regions of the flow and tend to cluster in
straining regions (Squires & Eaton 1991). These agglomerations
are called preferential concentrations Shaw (2003), Balachandar
& Eaton (2010). However, we expect that these concentrations
play a negligible role for the present study in which we are con-
cerned with averaged accretion quantities such as the collision
efficiency. The reason is that the temporally averaged dust con-
centration in the ambient flow is approximately the same as in
the laminar case (not shown) so that particle density fluctuations
average out.

4.2.1. Collision efficiency

Turbulent fluctuations significantly increase the collision prob-
ability. Figure 8 shows the collision efficiency EI for various I.
One observes that higher is the turbulent intensity I, more colli-
sions happen. This increase is the strongest at small St and dis-
appears asymptotically at large St. As is discussed later, the col-
lision efficiency around St ≈ 1 remarkably exceeds unity.

For the smallest Stokes numbers and the largest turbulent
intensity we observe more than one hundred times more colli-
sions than in the reference laminar flow. This relative increase
∆E(St, I) = EI/E0 − 1 of the turbulent efficiency compared with

Fig. 9. Relative increase of the collision efficiency for several turbulent
intensities as a function of the distance from the critical Stokes number
of the laminar case.

Fig. 10. Dependence of the fitting parameter a and b on the turbulent
intensity I, for Rep = 400. fa = 0.65 exp(−1.8 I) is fitting function for
the parameter a, f l

b = 1.4 (I − 0.4) (for I > 0.4) is a linear fit for the
parameter b. Both fits and the corresponding error bars were obtained
by a standard least square method.

the laminar one is shown in Fig. 9. It is represented as a function
of St−Stc that is the distance from the critical Stokes number Stc
as ∆E diverges when St → Stc. The large values of ∆E at small
St decreases as a power law with an exponent close to −1. The
dependence of ∆E on I is nearly quadratic. Indeed, the differ-
ent curves almost fall on the top of each other when normalized
by I1.7 as can be seen from the inset of Fig. 9.

Turbulent collision efficiencies (compare Fig. 8) are well fit-
ted by the function

EI(St) = exp(−a(I)/St) (1 + b(I) St/
(
1 + St2)

)
(17)

containing two parameters a and b. The dependence of these
parameters on the turbulent intensity is shown in Fig. 10 to-
gether with simple fitting formulas. The parameter a is decreas-
ing roughly exponentially as a function of I. b is close to zero for
small intensities and strongly increasing starting from I ≈ 0.4.

In the small Stokes number limit, the turbulent collision ef-
ficiency displays a clear exponential falloff (see Fig. 11) indicat-
ing that the critical Stokes number disappears when turbulence
influences the dust motion. Additionally, curves for different I
fall approximately on top of each other once shown as a func-
tion of StL = ts vL/L. It is thus a turbulent time scale, namely the
large-eddy turn-over time, that replaces the advection time d/Uc
relevant for the laminar problem.
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Fig. 11. Logarithm of collision efficiencies showing the exponential
character at small StL = ts vL/L. Inset: probability density function
(PDF) of stream-wise velocity gradient normalized to standard devia-
tion within the boundary layer.

There are different ways in which turbulence enhances the
collision probability. Fluctuations of the headwind speed mix
collision efficiencies for different I and St and allow for colli-
sions of dust particles beyond the critical Stokes number Stc. In
turbulent gas flows, the dust heads onto the planetesimal with a
fluctuating velocity. The probability distribution of the headwind
is given by the one-point turbulent velocity distribution that is
known to be close to a Gaussian. For the present problem, its
standard deviation is given by the turbulent intensity I. These
headwind variations lead to a fluctuating planetesimal Reynolds
number and to fluctuating dust Stokes numbers. Especially close
to the laminar value Stc this results in higher collision probabil-
ities and an absence of a critical Stokes number. Another con-
sequence of a variable headwind are fluctuations of the stream-
wise velocity gradient σ in the upstream boundary layer of the
planetesimal. They modify the local Stokes number that can be
defined by St = ts σ. The probability for a collision of a dust par-
ticle with stopping time ts is then P(St > Stc) = P(σ > Stc/ts),
and thus relates to the probability of observing a large veloc-
ity gradient at the particle surface. The probability density func-
tion (PDF) of σ shown in the inset of Fig. 11. The tails are
close to exponential, although we cannot rule out stretched ex-
ponential tails as observed in homogeneous isotropic turbulence.
Exponential tails mean P(σ > Stc/ts) ∼ exp(−C Stc/ts) which
is consistent with the formally observed exponential fall off of
EI(St) at small values of St.

Another mechanism to increase the collision probability re-
lates to turbulent diffusion. This enhances the mobility of dust
and increases its flux onto the planetesimal. As a simplified
gedankenexperiment one can think of a sphere moving in a sinu-
soidal velocity field representing the large-scale turbulent fluc-
tuations. Let us assume (in the reference frame of the sphere)
a velocity of the form u = Ucex + I sin(2π/tL, t) ey. The vol-
ume swept by the sphere is evidently larger in the turbulent case
(I > 0) than in the laminar (I = 0). According to inertia, dust par-
ticles are more or less coupled to the gas which makes the swept
volume additionally depending on St. Small St particles stick to
the gas trajectories so their swept volumes equal. This effect can
explain the observation of collision efficiencies exceeding unity
in turbulent flows. For large St, particles move ballistically so
that they only sweep through the laminar (I = 0) volume.

We conclude this section with a study of the spatial distri-
bution of dust impacts on the surface of a planetesimal in a

Fig. 12. Probability of collisions as a function of the stream-wise posi-
tion for I = 0.29 (top) and I = 0.6 (bottom).

turbulent disk. In Fig. 4 we saw that dust collisions preferen-
tially happen close to the stagnation point of the flow in a qui-
escent disk. This is still true when turbulent fluctuation agitate
the dust (see Fig. 12). But the added randomness leads to a ho-
mogenization of the impact position. The larger is I the more the
collisions fill the entire planetesimal surface. And especially for
small St particles, backward collision become frequent.

4.2.2. Impact velocity

The relative velocity of dust and a planetesimal at impact is cru-
cial for the dust accretion problem as it determines, together
with the angle of impact, the outcome of a collision. Low col-
lision speeds lead to sticking of dust on the target surface, while
high speeds lead to bouncing, fragmentation with mass transfer
or erosion (e.g., Blum & Wurm 2008; Windmark et al. 2012).

In laminar disks the mean impact speed of small-size dust
(with a stopping time smaller than the orbital period) is a
monotonously increasing function of inertia (Weidenschilling
1977a). Dust particles with inertia close to the critical Stokes
number only slightly touch the planetesimal surface while large
St particles collide with the full headwind speed. Dust particles
in turbulent disks experience gas velocity fluctuations and in
turn drag variations. They follow preferentially turbulent struc-
tures with characteristic time-scales that equal their response
time. This coupling of inertial particles is known to create non-
trivial phenomena such as the mentioned small-scale preferential
concentrations that are the most effective for StKol = ts/tKol ≈

0.6 particles (Reade & Collins 2000; Bec et al. 2006).
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Fig. 13. Mean dust velocity at impact on the planetesimal surface for
Re = 400.

Fig. 14. Standard deviation of the impact speed for Re = 400 and several
turbulent intensities.

We observe such a eddy-dust coupling also for the collision
velocity vc (the norm of the dust velocity vector at impact) of
dust particles with a planetesimal (see Fig. 13). Asymptotically,
small-St dust (small in the sense of particles with a small colli-
sion efficiency) still only mildly touches the surface, while large-
St dust collides with the speed of the headwind. However, at in-
termediate values of St, turbulent velocity fluctuations lead to
an increase of the collision speed that even exceeds the head-
wind speed. For the highest turbulent intensity that is studied
here (I = 1.18), the average impact speed is approximately 75%
higher than the mean headwind speed. We remark that once
particle inertia is measured in terms of the characteristic time
scale of turbulent structures of size d (planetesimal diameter)
td = tL (d/L)2/3 (td = 4.4, 2.1, 1.1 for I = 0.29, 0.6, 1.18) all
maxima of the curves (located at St ≈ 3.2, 1.6, 0.8) in Fig. 13
align at St = ts/td ≈ 0.6. Turbulent eddies of the size of the
planetesimal are thus responsible for this increase of the impact
velocity.

To estimate the broadness of the velocity distributions we
measured in Fig. 14 their standard deviation. Here, the St ≈ 1
peak is even more important than for the mean impact speed.
For a St = 0.4 dust particle in a I = 1.18 headwind, the velocity
distribution is up to six times broader than in a non-turbulent
disk.

The impact speed has, besides its average value and stan-
dard deviation, a probability distribution that varies with both I
and St. It reveals that high-impact speeds of the order of several
times the headwind speed are quite probable. For a fixed value of
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Fig. 15. Probability density function of the impact velocity normal to
the planetesimal surface for St = 0.8 and several turbulent intensities
as labeled. The bold lines correspond to measurements from numerical
simulations, while the thin lines refer to the non-central chi-squared
prediction (see text).
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Fig. 16. Probability density function of the surface normal impact ve-
locity for I = 0.29 and several Stokes numbers as labeled. As in Fig. 15,
the bold lines correspond to numerical simulations and the thin lines re-
fer to the non-central chi-squared prediction.

St the distribution becomes monotonously broader with increas-
ing I (see Fig. 15). The numerical data is there compared to the
non-central chi-squared distribution that would be obtained if vc
were the norm of a three-dimensional random Gaussian vector
with prescribed mean and variance. Up to statistical accuracy, it
seems from Fig. 15 that such an approach gives a rather good
description of actual fluctuations of the impact velocity. This ap-
proximation is however valid only if the Stokes number St is
sufficiently large. Figure 16 indeed represents the same distribu-
tions for a fixed value of I at varying St. One observes devia-
tions from the chi-squared prediction in both tails at the smallest
value of the Stokes number. It seems nevertheless that the distri-
bution still belongs to the same family and can be approximated
by a chi-squared distribution with a smaller number of degrees
of freedom. Everything happens as at small St, the dust velocity
fluctuations with respect to the planetesimal were constrained in
a space with dimension less than three.

The outcome of a collision also depends on the angle of im-
pact. Figure 17 shows the average collision angle ∠̄ with respect
to the surface normal direction n. Small St dust preferentially
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Fig. 17. Average angle of impact ∠̄(u, n) with respect to the surface nor-
mal direction n in degrees.

touches the planetesimal with an mean impact angle close to
90◦. High inertia dust heads straight onto the planetesimal and
experiences an average impact angle of 45◦. Turbulent fluctua-
tions randomize the impact angle and favor this way to the same
mean angle of ∠̄(u, n) = 45◦.

5. Astrophysical application

5.1. Linear cross section

We apply these results to realistic disk conditions. In order to
study filtering of dust by planetesimals, Guillot et al. (2014) had
applied the results of numerical simulations by Sekiya & Takeda
(2003) for a laminar disk and a fixed planetesimal Reynolds
number Rep = 50. Our simulations in the laminar case cover
a range of Rep from 100 to 1000. As seen in Fig. 1 and Eq. (8),
this corresponds to planetesimals with diameters between 4 m
and 40 m at 1 au and between 1 km and 12 km at 10 au. Since
the outcome of the simulations is only weakly dependent on Rep
(the critical Stokes number is a function of log(1 + Rep/2) – see
Eq. (16)), we expect to be able to extrapolate the results outside
this range.

In most cases however, turbulence is expected to be impor-
tant. Our simulations in the turbulent case have been calculated
for various intensities of the turbulence I, but a fixed planetes-
imal Reynolds number Rep = 400. However, when turbulence
becomes important, we expect the results to become very weakly
dependent on Rep. This is for two reasons: First as seen in Fig. 2,
for values of I approaching unity, the flow around planetesimals
is perturbed very significantly and becomes controlled by the
turbulence of the disk instead of by the planetesimal properties.
Second, turbulence perturbs the boundary layer around the plan-
etesimal independently of its properties to offer new possibilities
for dust particles to impact.

But for small planetesimals and/or low turbulent intensity,
the planetesimal size can become smaller than the Kolmogorov
scale, i.e., the minimum scale for turbulent eddies. In that case,
the planetesimals experience a headwind of variable intensity
and direction. It is expected that, in the limit of d/`Kol � 1, the
situation becomes similar to the laminar case, but with a head-
wind that is increased by

√
1 + I2. We write

fhydro =


[
E0(St∗,Rep)

]1/2
if δKol = d/`Kol < 1

[EI(St)]1/2 otherwise
(18)

where fhydro is the collision efficiency as defined by Guillot et al.
(2014), St∗ = St

√
1 + I2. and E0 and EI the fitting formula (16)
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Fig. 18. Value of the factor fhydro (see Eq. (18)) indicative of a reduction
of the linear cross section of planetesimals resulting from hydrodynam-
ical effects as a function of dust particle size, for a planetesimal of 1 km
radius in an MMSN disk, at an orbital distance of 7.1 au (plain) and
1 au (dashed) and for various levels of turbulence (as labeled). The re-
sults are compared to the one obtained by Guillot et al. (2014) which is
independent of turbulence amplitude. For the 7.1 au case (which corre-
sponds to Rep = 400 as in the previous hydrodynamical calculations),
the lines corresponding to α = 10−4 and 10−6 are hidden behind the
laminar case (see text).

and (17) . With this definition, 2Rp fhydro is the planetesimal lin-
ear collisional cross section and πR2

p f 2
hydro its surface collisional

cross section. Thus, for a planetesimal smaller than the smallest
turbulent eddy, the flow is considered laminar, but we account
with the use of St∗ for a flow velocity that is slightly higher on
average. On the other hand, when the planetesimal is larger than
the Kolmogorov scale, we use the results of the simulations in
the turbulent case directly.

Figure 18 illustrates how the factor fhydro varies as a function
of particle size in an MMSN disk for a 1 km-radius planetesimal
either at 7.1 au or at 1 au. The first case corresponds to a planetes-
imal Reynolds number Rep = 400 equal to the one used in the
hydrodynamical simulations with turbulence. The second case
corresponds to a much higher Reynolds number Rep = 5.4× 104

outside the range of our simulations.
In all cases, particles which are larger than a critical value

(i.e., with a Stokes number higher than unity) are accreted with
a cross-section approximately equal to the geometric one (i.e.,
fhydro ≈ 1). In laminar disks or when turbulence is small, the
cross section drops for small particles such that St < 1. If turbu-
lence is large enough, this drop occurs at even smaller sizes, with
an offset that corresponds to one to two orders of magnitude for
the case with α = 10−2.

The comparison of the laminar Rep = 400 cases shows a
relatively good agreement between our work and the previous
results of Guillot et al. (2014) who used results from Sekiya &
Takeda (2003) for a fixed planetesimal Reynolds number of 50.
When turbulence is added, it is worth noticing that while the case
with α = 10−2 stands out and allows much smaller particles to
collide, the cases with α = 10−4 and 10−6 are almost indistin-
guishable from the laminar case. This is a direct consequence
from the fact that δKol < 1 for these: the smallest turbulent cell
is expected to be larger than the planetesimal size which implies
that we switch to the laminar case in Eq. (18). Our approach is
thus discontinuous in α, but resolving this issue would require
dedicated simulations beyond the scope of the present work.

A129, page 11 of 15

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201527344&pdf_id=17
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201527344&pdf_id=18


A&A 589, A129 (2016)

At high Reynolds number (i.e., the 1 au case in Fig. 18), the
Kolmogorov parameter δKol is generally high which implies a
nearly continuous behavior from high to low values of α. A small
issue seen for low values of the viscosity and dust sizes corre-
sponding to Stokes number close to unity is that the value of
fhydro for a disk with low turbulence (e.g., α = 10−6) can become
smaller than the laminar value, which according to our simula-
tions is unlikely. Clearly, this is a consequence of the fact that
our expressions have been derived for a relatively low planetes-
imal Reynolds number and are applied very far from that value.
Again, dedicated simulations would be needed, but may be out
of reach with present-day computing power.

5.2. Collision probabilities in disks

We now examine the consequences for collisions of dust grains
with planetesimals with the same approach as Guillot et al.
(2014). In protoplanetary disks, collisions between drifting dust
particles and planetesimals occur with a probability P3D that is a
function of the planetesimal cross section, the scale height of the
dust disk hd and of the drift velocity of the dust particles. The lat-
ter depends on orbital distance r, orbital (Keplerian) frequency
Ω and stopping time ts. In the limit that gravitational effects and
gas drift may be neglected and for circular orbits, this probability
can be shown to write (Guillot et al. 2014):

P3D =
1

2
√
π

R2
p f 2

hydro

Hdr

√
1 +

1
4tsΩ

, (19)

where fhydro accounts for hydrodynamical effects discussed pre-
viously (the purely geometrical limit is recovered for fhydro = 1).

In reality, gravity becomes important both for median to
large planetesimals (kilometer size and more) and for large
grains (above meter size) and seriously complicates the pic-
ture. Several interaction regimes may be defined as follows (see
Ormel & Klahr 2010; Guillot et al. 2014):

– The geometric regime, corresponds to the most simple case
in which drag, hydrodynamical and gravity effects may be
neglected.

– We define the hydrodynamical regime as an extension of this
regime at small dust sizes when we must account for the de-
flection of dust grains around planetesimals.

– The Safronov regime corresponds to the case when large
“dust” (effectively, boulders) which are very weakly affected
by gas drag migrate inward so slowly that they feel a grav-
itational focusing by the planetesimal which increases the
collision probability.

– In the three-body regime, the gravity fields of the planetesi-
mal and that of the central star must be taken into account.

– The settling regime corresponds to the case when gravita-
tional acceleration from the planetesimal and gas drag on the
dust particles lead to an enhanced capture probability.

Accounting for the complexity of the problem we thus calculate
the collision probability between dust and planetesimals, P3D,
from Eq. (43) of Guillot et al. (2014), assuming monodisperse
size distributions2, but including fhydro from Eq. (18). In doing

2 In doing so, we correct for the fact that in Guillot et al. (2014), the
3D collision probability in the hydro mode was overestimated because it
neglected the reduction in the vertical cross section, i.e., P3D ∝ fhydroR2

p

had been assumed instead of P3D ∝ f 2
hydroR2

p. Because this affected the
hydro mode with an already very low collision probability this had neg-
ligible effect on the qualitative results.
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Fig. 19. Contours of the collision probability P3D obtained at 1 au
in an MMSN disk with α = 10−2 as a function of dust size and
planetesimal size. The colored areas (labeled “geometric”, “hydro”,
“Safronov”, “three-body” and “settling”) correspond to different inter-
action regimes. The top panel shows the results obtained using the same
approach as Guillot et al. (2014) but corrected for a factor fhydro (see
text and compare with their Fig. 16). The bottom panel corresponds to
results with the new prescriptions for the hydro model. For an easier
comparison, the dashed red line marks the location of the hydro regime
(corresponding to fhydro < 0.9) in the Guillot et al. (2014) study.

so, we also adopt an important modification stemming from the
work of Johansen et al. (2015) and Visser & Ormel (2016):
Instead of limiting the extent of the settling regime to when the
capture radius is larger than the physical size of the planetesimal
as in Guillot et al. (2014), we instead look for solutions of the
settling regime equations outside of this range and adopt for the
collision probability the maximum of the probabilities obtained
in the settling and geometric+hydro regimes. This is important
in regions where fhydro is extremely low but gravity and gas drag
can still affect the trajectories of the dust particles.

Figure 19 shows how P3D varies with dust and planetesimal
size for a fixed orbital distance of 1 au. We focus on planetesi-
mals smaller than 100 km and down to 10 m with the caveat that
for planetesimals smaller than about 1 km, gas drag should be
included. The top panel shows the previous results from Guillot
et al. (2014), which correspond to the case of a laminar flow and
no extension of the settling regime. The bottom panel shows the
results for a turbulent flow with full account for gravity effects
even for low-planetesimal sizes.

The comparison between the top and bottom panels of
Fig. 19 shows that even a weak planetesimal gravity effectively
limits the decrease of the collision probabilities in the extended
settling regime for dust smaller than ∼100 µm and planetesimals
between one and 100 km. The inclusion of turbulence effects
also shifts the hydrodynamic regime to smaller dust sizes. The
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Fig. 20. Regions in which the collection of dust grains becomes very
inefficient (defined as a collision cross section lower than 1% of the
geometric one – see text) as a function of orbital distance and plan-
etesimal radius for various dust sizes (labeled) and for two values of
the turbulence: α = 10−2 (top panel) and α = 10−4 (bottom panel).
Large particles are collected relatively efficiently everywhere except in
the innermost regions of the disk where the gas density is assumed to
be high. Small particles are inefficiently collected everywhere except at
the largest orbital distances, at least in the case of a disk characterized
by the MMSN gas density distribution.

shift is about one order of magnitude for all planetesimal sizes
considered when comparing the results for α = 10−2 to those
for a laminar disk. Particles of 0.1 mm can hence be accreted
relatively efficiently by planetesimals for all the sizes consid-
ered. However, smaller particles still end in the hydrodynamical
regime with a strongly reduced collision efficiency. For exam-
ple micron-sized dust particles are very inefficiently captured by
planetesimals larger than a few kilometers in size.

5.3. The inefficient capture of small dust grains

We now turn to the examination of how (in)efficiently individual
small dust grains may have been collected by planetesimals as a
function of their sizes and orbital distance. A full model would
require studying the size distribution of dust and planetesimals
and is beyond the scope of the present paper. However, we can
identify the parameter space for which this collection of dust
is inefficient by identifying when the collision cross section be-
comes smaller than 1% of the geometrical one (i.e., correspond-
ing to fhydro < 0.1 in the limit when gravity effects are not im-
portant). Because the drop in collision probability in the hydro
region of Fig. 19 is quite abrupt, we expect that if dust is in-
deed collected individually by planetesimals, this process should
leave its imprint on the size distribution of individual grains in
meteorites.

Figure 20 identifies these regions as a function of orbital dis-
tance and planetesimal size, either in the case of a high turbu-
lence level (top panel) or a low turbulence level (bottom panel).
In both cases, the collection of very small particles (nanome-
ter sizes) is found to be very inefficient, at least inside of 10 au.
Dust particles of progressively larger sizes can be collected up to
shorter orbital distances, but the efficiency then strongly depends
on the turbulence level.

For 1 mm particles (corresponding to a typical size of chon-
drules), we do not see in Fig. 20 a region of strongly inefficient
collection when turbulence is high (α = 10−2), but for α = 10−4,
these particles avoid collisions with planetesimals between about
0.3 and 30 km within a fraction of an au. One-micron particles
are collected inefficiently inside a region extending from about
0.1 to 3 au depending on planetesimal size for α = 10−2, but this
region extends from 0.8 to 6 au for α = 10−4. Smaller particles
can collide with planetesimals only at larger orbital distances,
when the gas density has decreased and the stopping time in-
creased for a given particle size.

A larger turbulence level can therefore allow collisions of
small-size particles which would otherwise be avoided due to the
hydrodynamical flow around the planetesimals. However, this is
also balanced by the fact that higher turbulence means a thicker
dust subdisk which lowers the collision probability (see Guillot
et al. 2014). Due to the form of Eq. (18), the effect of turbulence
becomes weaker at large orbital distances, when the size of the
smallest turbulent eddies becomes larger than the planetesimals.
This thus explains why the contour lines for very small dust par-
ticles are identical for the α = 10−2 and α = 10−4 cases.

The change in behavior of the contour plots for α = 10−2,
dust sizes between 1 µm and 1 mm and orbital distances from
0.05 to 0.3 au is due to a change in drag behavior for these parti-
cles: at short orbital distances, the gas density is so high that they
are in the Stokes regimes and they switch to an Epstein drag be-
yond about 1 au.

For the planetesimal sizes considered, particles smaller than
about 10 nm have a collision probability that is independent of
alpha. This is because collisions can occur only in the outer disk
where δKol < 1, i.e., the smallest Kolmogorov scale is still larger
than the planetesimals considered.

Small particles such as the presolar grains present in me-
teorites, which can have sizes of only a few nanometers (e.g.,
Clayton & Nittler 2004) must have either collided with planetes-
imals far out in the disk or be incorporated into larger grains
which would have themselves collided with planetesimals (e.g.,
Ormel et al. 2008). For some of the presolar grains, given their
very low abundance, it remains possible that they were incorpo-
rated directly in planetesimals, although this would have to be
quantified. In any case, this should have occurred without lead-
ing to any melting or dissociation of these grains which kept
their identity throughout.

6. Conclusions

We have derived the accretion probability of small particles by a
planetesimal in a turbulent gas. In order to do so, we performed
high-resolution hydrodynamical simulations of the flow around
a spherical planetesimal of diameter d moving with a velocity
Uc, assuming incompressibility. We studied both the case of a
laminar flow and that of a turbulent one, the intensity of the tur-
bulence being related to the turbulent viscosity of the disk. Dust
particles of variable size were implemented in the flow to deter-
mine collision rates.
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For laminar flows, we confirm that small particles with a
Stokes number St < 1 (corresponding to stopping times shorter
than the time to cross the planetesimal) see a significant drop
in their collision rate with the planetesimal. For turbulent flows
however, this drop occurs for sizes that can be significantly
smaller, i.e., turbulence helps accreting dust particles with sizes
up to one to two order of magnitudes smaller than for laminar
disks.

We thus derived collision probabilities both in the laminar
case (Eq. (16)) and in the turbulent case (Eq. (17)). These ex-
pressions, even if limited to limited to Rep = 400, can be used
for a wide range of situations. We propose an approximate recipe
to use either the laminar case if the planetesimal size is smaller
than the Kolmogorov scale and the turbulent case otherwise
(Eq. (18)).

When applied to real disks, our new expressions shift the
boundary with the hydro regime – where accretion rates are
greatly suppressed – to smaller sizes. For example, for α = 10−2,
the upper limit dust size in the hydrodynamical regime is de-
creased by a factor 100 and even sub-µm size particles collide ef-
ficiently with one-kilometer planetesimals. They also show that
the accretion of extremely small particles is difficult and gen-
erally requires to be done by small planetesimals (less than km
size) at large orbital distances (beyond 1 au) and/or late in time,
when the disk has become less massive. We believe that these
results are important to interpret, among other things, the pres-
ence and characteristics of presolar grains in meteorites since
these vary in size from several microns down to only a few
nanometers.

In order to apply our results to protoplanetary disks, we
had to approximate the effect of gravity, often by extrapola-
tions far from the regime in which numerical experiments were
conducted. Future efforts will be directed towards including the
gravitational force directly in our hydrodynamical simulations.
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Appendix A: Definition of symbols

We summarize here the symbols used in this paper and their definitions.
Table A.1. Symbols used in this article.

Symbol Description Equation
Uc average headwind velocity
I turbulent intensity vL/Uc

Rep planetesimal Reynolds number Uc d/νmol
Re outer gas flow Reynolds number vLL/νmol

vL root-mean-square velocity of the gas flow
√

2/3Ek
u gas velocity
Ek kinetic energy of the gas flow 1

2

∫
|u|2

εKol mean kinetic energy dissipation rate 1
2

∫
|∇ × u|2

νmol kinematic viscosity
d planetesimal diameter
Rp planetesimal radius d/2
`Kol Kolmogorov length scale (ν3

mol/εKol)1/4

tKol Kolmogorov time scale (νmol/εKol)1/2

L integral scale v3
L/εKol

tL integral time scale L/vL
ts response or stopping time of dust
S t Stokes number ts/tc
S tc critical Stokes number
vc dust collision speed
α disk turbulence parameter νt/(cs H)
νt disk turbulent viscosity αcs H

Σgas disk surface density Σ1

(
r

au

)−3/2

Tgas gas temperature T1

(
r

au

)−1/2

cs speed of sound
√

kBTgas/µ
r orbital distance in the disk
z vertical height in the disk
H disk scale height cs/ΩK
Hd disk scale height for the dust
ΩK orbital (Keplerian) frequency

√
GM?/r3

M? stellar mass
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