research

First Principles Calculations of Shock Compressed Fluid Helium

Abstract

The properties of hot dense helium at megabar pressures were studied with two first-principles computer simulation techniques, path integral Monte Carlo and density functional molecular dynamics. The simulations predicted that the compressibility of helium is substantially increased by electronic excitations that are present in the hot fluid at thermodynamic equilibrium. A maximum compression ratio of 5.24(4)-fold the initial density was predicted for 360 GPa and 150000 K. This result distinguishes helium from deuterium, for which simulations predicted a maximum compression ratio of 4.3(1). Hugoniot curves for statically precompressed samples are also discussed.Comment: Accepted to publication in Physical Review Letter

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019