274 research outputs found

    Imaging Single-Stranded DNA, Antigen-Antibody Reaction and Polymerized Langmuir-Blodgett Films with an Atomic Force Microscope

    Get PDF
    The combination of an (AFM) atomic force microscope together with microfabricated cantilevers that have integrated tips opens many possibilities for imaging systems of great importance in biology. We have imaged single-stranded 25mer DNA that was adsorbed on treated mica or that was covalently bound with a crosslinker to a polymerized Langmuir-Blodgett (LB) film, the top monolayer of a bilayer system. At low magnification the AFM shows cracks between solid domains, like in an image taken with a fluorescence microscope. At higher magnification, however, the AFM reveals much finer cracks and at still higher magnification it reveals rows of individual molecules in the polymerized LB film with a spacing of 0.45 nm. We have also imaged a LB film consisting of lipids in which 4% of the lipids had hapten molecules chemically bound to the lipid headgroups. Specific antibodies can then bind to these hapten molecules and be imaged with the AFM. This points to the possibility of using the AFM to monitor selective antibody binding

    Am J Blood Res

    Get PDF
    The Ikaros transcription factor is crucial for many aspects of hematopoiesis. Loss of function mutations in IKZF1, the gene encoding Ikaros, have been implicated in adult and pediatric B cell acute lymphoblastic leukemia (B-ALL). These mutations result in haploinsufficiency of the Ikaros gene in approximately half of the cases. The remaining cases contain more severe or compound mutations that lead to the generation of dominant-negative proteins or complete loss of function. All IKZF1 mutations are associated with a poor prognosis. Here we review the current genetic, clinical and mechanistic evidence for the role of Ikaros as a tumor suppressor in B-ALL

    Prenylation inhibitors stimulate both estrogen receptor α transcriptional activity through AF-1 and AF-2 and estrogen receptor β transcriptional activity

    Get PDF
    INTRODUCTION: We showed in a previous study that prenylated proteins play a role in estradiol stimulation of proliferation. However, these proteins antagonize the ability of estrogen receptor (ER) α to stimulate estrogen response element (ERE)-dependent transcriptional activity, potentially through the formation of a co-regulator complex. The present study investigates, in further detail, how prenylated proteins modulate the transcriptional activities mediated by ERα and by ERβ. METHODS: The ERE-β-globin-Luc-SV-Neo plasmid was either stably transfected into MCF-7 cells or HeLa cells (MELN cells and HELN cells, respectively) or transiently transfected into MCF-7 cells using polyethylenimine. Cells deprived of estradiol were analyzed for ERE-dependent luciferase activity 16 hours after estradiol stimulation and treatment with FTI-277 (a farnesyltransferase inhibitor) or with GGTI-298 (a geranylgeranyltransferase I inhibitor). In HELN cells, the effect of prenyltransferase inhibitors on luciferase activity was compared after transient transfection of plasmids coding either the full-length ERα, the full-length ERβ, the AF-1-deleted ERα or the AF-2-deleted ERα. The presence of ERα was then detected by immunocytochemistry in either the nuclei or the cytoplasms of MCF-7 cells. Finally, Clostridium botulinum C3 exoenzyme treatment was used to determine the involvement of Rho proteins in ERE-dependent luciferase activity. RESULTS: FTI-277 and GGTI-298 only stimulate ERE-dependent luciferase activity in stably transfected MCF-7 cells. They stimulate both ERα-mediated and ERβ-mediated ERE-dependent luciferase activity in HELN cells, in the presence of and in the absence of estradiol. The roles of both AF-1 and AF-2 are significant in this effect. Nuclear ERα is decreased in the presence of prenyltransferase inhibitors in MCF-7 cells, again in the presence of and in the absence of estradiol. By contrast, cytoplasmic ERα is mainly decreased after treatment with FTI-277, in the presence of and in the absence of estradiol. The involvement of Rho proteins in ERE-dependent luciferase activity in MELN cells is clearly established. CONCLUSIONS: Together, these results demonstrate that prenylated proteins (at least RhoA, RhoB and/or RhoC) antagonize the ability of ERα and ERβ to stimulate ERE-dependent transcriptional activity, potentially acting through both AF-1 and AF-2 transcriptional activities

    Active microrheology and simultaneous visualization of sheared phospholipid monolayers

    Get PDF
    Two-dimensional films of surface-active agents—from phospholipids and proteins to nanoparticles and colloids—stabilize fluid interfaces, which are essential to the science, technology and engineering of everyday life. The 2D nature of interfaces present unique challenges and opportunities: coupling between the 2D films and the bulk fluids complicates the measurement of surface dynamic properties, but allows the interfacial microstructure to be directly visualized during deformation. Here we present a novel technique that combines active microrheology with fluorescence microscopy to visualize fluid interfaces as they deform under applied stress, allowing structure and rheology to be correlated on the micron-scale in monolayer films. We show that even simple, single-component lipid monolayers can exhibit viscoelasticity, history dependence, a yield stress and hours-long time scales for elastic recoil and aging. Simultaneous visualization of the monolayer under stress shows that the rich dynamical response results from the cooperative dynamics and deformation of liquid-crystalline domains and their boundaries

    ADHD and Disruptive behavior scores – associations with MAO-A and 5-HTT genes and with platelet MAO-B activity in adolescents

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pharmacological and genetic studies suggest the importance of the dopaminergic, serotonergic, and noradrenergic systems in the pathogenesis of Attention Deficit Hyperactivity Disorder (ADHD) and Disruptive Behavior Disorder (DBD). We have, in a population-based sample, studied associations between dimensions of the ADHD/DBD phenotype and Monoamine Oxidase B (MAO-B) activity in platelets and polymorphisms in two serotonergic genes: the Monoamine Oxidase A Variable Number of Tandem Repeats (MAO-A VNTR) and the 5-Hydroxytryptamine Transporter gene-Linked Polymorphic Region (5-HTT LPR).</p> <p>Methods</p> <p>A population-based sample of twins, with an average age of 16 years, was assessed for ADHD/DBD with a clinical interview; Kiddie Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime Version (K-SADS-PL). Blood was drawn from 247 subjects and analyzed for platelet MAO-B activity and polymorphisms in the MAO-A and 5-HTT genes.</p> <p>Results</p> <p>We found an association in girls between low platelet MAO-B activity and symptoms of Oppositional Defiant Disorder (ODD). In girls, there was also an association between the heterozygote long/short 5-HTT LPR genotype and symptoms of conduct disorder. Furthermore the heterozygote 5-HTT LPR genotype in boys was found to be associated with symptoms of Conduct Disorder (CD). In boys, hemizygosity for the short MAO-A VNTR allele was associated with disruptive behavior.</p> <p>Conclusion</p> <p>Our study suggests that the serotonin system, in addition to the dopamine system, should be further investigated when studying genetic influences on the development of Disruptive Behavior Disorders.</p

    Detection of K-Ras mutations in tumour samples of patients with non-small cell lung cancer using PNA-mediated PCR clamping

    Get PDF
    Non-small cell lung cancers (NSCLC), in particular adenocarcinoma, are often mixed with normal cells. Therefore, low sensitivity of direct sequencing used for K-Ras mutation analysis could be inadequate in some cases. Our study focused on the possibility to increase the detection of K-Ras mutations in cases of low tumour cellularity. Besides direct sequencing, we used wild-type hybridisation probes and peptide-nucleic-acid (PNA)-mediated PCR clamping to detect mutations at codons 12 and 13, in 114 routine consecutive NSCLC frozen surgical tumours untreated by targeted drugs. The sensitivity of the analysis without or with PNA was 10 and 1% of tumour DNA, respectively. Direct sequencing revealed K-Ras mutations in 11 out of 114 tumours (10%). Using PNA-mediated PCR clamping, 10 additional cases of K-Ras mutations were detected (21 out of 114, 18%, P<0.005), among which five in samples with low tumour cellularity. In adenocarcinoma, K-Ras mutation frequency increased from 7 out of 55 (13%) by direct sequencing to 15 out of 55 (27%) by clamped-PCR (P<0.005). K-Ras mutations detected by these sensitive techniques lost its prognostic value. In conclusion, a rapid and sensitive PCR-clamping test avoiding macro or micro dissection could be proposed in routine analysis especially for NSCLC samples with low percentage of tumour cells such as bronchial biopsies or after neoadjuvant chemotherapy

    Highly specific and non-invasive imaging of Piezo1-dependent activity across scales using GenEPi

    Get PDF
    Mechanosensing is a ubiquitous process to translate external mechanical stimuli into biological responses. Piezo1 ion channels are directly gated by mechanical forces and play an essential role in cellular mechanotransduction. However, readouts of Piezo1 activity are mainly examined by invasive or indirect techniques, such as electrophysiological analyses and cytosolic calcium imaging. Here, we introduce GenEPi, a genetically-encoded fluorescent reporter for non-invasive optical monitoring of Piezo1-dependent activity. We demonstrate that GenEPi has high spatiotemporal resolution for Piezo1-dependent stimuli from the single-cell level to that of the entire organism. GenEPi reveals transient, local mechanical stimuli in the plasma membrane of single cells, resolves repetitive contraction-triggered stimulation of beating cardiomyocytes within microtissues, and allows for robust and reliable monitoring of Piezo1-dependent activity in vivo. GenEPi will enable non-invasive optical monitoring of Piezo1 activity in mechanochemical feedback loops during development, homeostatic regulation, and disease

    Global food security and food riots – an agent-based modelling approach

    Get PDF
    Due to negative consequences of climate change for agriculture and food production shocks affecting different areas of the world, the past two decades saw the conditions of global food security increasingly worsen. This has resulted in negative consequences for the world economy, partly causing international food price spikes and social upheavals. In this paper we present statistical findings along with a preliminary version of an original agent-based model called the Dawe Global Security Model that simulates the global food market and the political fragility of countries. The model simulates the effects of food insecurity on international food prices and how these, coupled with national political fragility and international food trade can, in turn, increase the probability of food riots in countries. The agents in the model are the 213 countries of the world whose characteristics reflect empirical data and the international trade of food is also simulated based on real trade partnerships and data. The model has been informed, calibrated and validated using real data and the results of these procedures are presented in the paper. To further test the model we also present the model’s forecasts for the near future in terms of food prices and incidence of food riots. The Dawe Global Security Model can be used to test scenarios on the evolution of shocks to global food production and analyse consequences for food riots. Further developments of the model can include national responses to food crises to investigate how countries can influence the spread of global food crises

    Sex differences in the Simon task help to interpret sex differences in selective attention.

    Get PDF
    In the last decade, a number of studies have reported sex differences in selective attention, but a unified explanation for these effects is still missing. This study aims to better understand these differences and put them in an evolutionary psychological context. 418 adult participants performed a computer-based Simon task, in which they responded to the direction of a left or right pointing arrow appearing left or right from a fixation point. Women were more strongly influenced by task-irrelevant spatial information than men (i.e., the Simon effect was larger in women, Cohen's d = 0.39). Further, the analysis of sex differences in behavioral adjustment to errors revealed that women slow down more than men following mistakes (d = 0.53). Based on the combined results of previous studies and the current data, it is proposed that sex differences in selective attention are caused by underlying sex differences in core abilities, such as spatial or verbal cognition
    • …
    corecore