30 research outputs found

    Hereditary leiomyomatosis and renal cell cancer presenting as metastatic kidney cancer at 18 years of age: implications for surveillance

    Get PDF
    Hereditary leiomyomatosis and renal cell cancer (HLRCC) is an autosomal dominant syndrome characterized by skin piloleiomyomas, uterine leiomyomas and papillary type 2 renal cancer caused by germline mutations in the fumarate hydratase (FH) gene. Previously, we proposed renal imaging for FH mutation carriers starting at the age of 20 years. However, recently an 18-year-old woman from a Dutch family with HLRCC presented with metastatic renal cancer. We describe the patient and family data, evaluate current evidence on renal cancer risk and surveillance in HLRCC and consider the advantages and disadvantages of starting surveillance for renal cancer in childhood. We also discuss the targeted therapies administered to our patient

    Ga-U (Gallium-Uranium)

    No full text

    Ga-U (gallium-uranium)

    No full text

    Update on hypoxia-inducible factors and hydroxylases in oxygen regulatory pathways:from physiology to therapeutics

    Get PDF
    Abstract The “Hypoxia Nantes 2016” organized its second conference dedicated to the field of hypoxia research. This conference focused on “the role of hypoxia under physiological conditions as well as in cancer” and took place in Nantes, France, in October 6–7, 2016. The main objective of this conference was to bring together a large group of scientists from different spheres of hypoxia. Recent advances were presented and discussed around different topics: genomics, physiology, musculoskeletal, stem cells, microenvironment and cancer, and oxidative stress. This review summarizes the major highlights of the meeting

    Unique risk factors for insertional mutagenesis in a mouse model of XSCID gene therapy

    No full text
    Although gene therapy can cure patients with severe combined immunodeficiency (SCID) syndromes, the clinical occurrence of T cell malignancies due to insertional mutagenesis has raised concerns about the safety of gene therapy. Several key questions have remained unanswered: (i) are there unique risk factors for X-linked SCID (XSCID) gene therapy that increase the risk of insertional mutagenesis; (ii) what other genetic lesions may contribute to transformation; and (iii) what systems can be used to test different vectors for their relative safety? To address these questions, we have developed an XSCID mouse model in which both the Arf tumor-suppressor gene and the γc gene were ablated. Gene therapy in this animal model recapitulates the high incidence of integration-dependent, T cell tumors that was seen in the clinical trial. Ligation-mediated PCR analysis showed integration sites near or within established protooncogenes (Chd9, Slamf6, Tde1, Camk2b, and Ly6e), demonstrating that T cell transformation was associated with targeting of oncogene loci; however, no integrations within the Lmo2 locus were identified. The X-SCID background in transplanted cells was required for high rate transformation and was associated with expansion of primitive hematopoietic cells that may serve tumor precursors. This model should be useful for testing safety-modified vectors and for further exploring the risk factors leading to insertional mutagenesis in gene therapy trials
    corecore