609 research outputs found
Using Spontaneous Emission of a Qubit as a Resource for Feedback Control
Persistent control of a transmon qubit is performed by a feedback protocol
based on continuous heterodyne measurement of its fluorescence. By driving the
qubit and cavity with microwave signals whose amplitudes depend linearly on the
instantaneous values of the quadratures of the measured fluorescence field, we
show that it is possible to stabilize permanently the qubit in any targeted
state. Using a Josephson mixer as a phase-preserving amplifier, it was possible
to reach a total measurement efficiency =35%, leading to a maximum of 59%
of excitation and 44% of coherence for the stabilized states. The experiment
demonstrates multiple-input multiple-output analog Markovian feedback in the
quantum regime.Comment: Supplementary material can be found as an ancillary objec
Chemical analysis and aqueous solution properties of Charged Amphiphilic Block Copolymers PBA-b-PAA synthesized by MADIX
We have linked the structural and dynamic properties in aqueous solution of
amphiphilic charged diblock copolymers poly(butyl acrylate)-b-poly(acrylic
acid), PBA-b-PAA, synthesized by controlled radical polymerization, with the
physico-chemical characteristics of the samples. Despite product imperfections,
the samples self-assemble in melt and aqueous solutions as predicted by
monodisperse microphase separation theory. However, the PBA core are abnormally
large; the swelling of PBA cores is not due to AA (the Flory parameter
chiPBA/PAA, determined at 0.25, means strong segregation), but to h-PBA
homopolymers (content determined by Liquid Chromatography at the Point of
Exclusion and Adsorption Transition LC-PEAT). Beside the dominant population of
micelles detected by scattering experiments, capillary electrophoresis CE
analysis permitted detection of two other populations, one of h-PAA, and the
other of free PBA-b-PAA chains, that have very short PBA blocks and never
self-assemble. Despite the presence of these free unimers, the self-assembly in
solution was found out of equilibrium: the aggregation state is history
dependant and no unimer exchange between micelles occurs over months
(time-evolution SANS). The high PBA/water interfacial tension, measured at 20
mN/m, prohibits unimer exchange between micelles. PBA-b-PAA solution systems
are neither at thermal equilibrium nor completely frozen systems: internal
fractionation of individual aggregates can occur.Comment: 32 pages, 16 figures and 4 tables submitted to Journal of Interface
and Colloidal Scienc
Modeling a Schottky-barrier carbon nanotube field-effect transistor with ferromagnetic contacts
In this study, a model of a Schottky-barrier carbon nanotube field- effect
transistor (CNT-FET), with ferromagnetic contacts, has been developed. The
emphasis is put on analysis of current-voltage characteristics as well as shot
(and thermal) noise. The method is based on the tight-binding model and the
non- equilibrium Green's function technique. The calculations show that, at
room temperature, the shot noise of the CNT FET is Poissonian in the
sub-threshold region, whereas in elevated gate and drain/source voltage regions
the Fano factor gets strongly reduced. Moreover, transport properties strongly
depend on relative magnetization orientations in the source and drain contacts.
In particular, one observes quite a large tunnel magnetoresistance, whose
absolute value may exceed 50%.Comment: 8 pages, 4 figure
Manipulating the Quantum State of an Electrical Circuit
We have designed and operated a superconducting tunnel junction circuit that
behaves as a two-level atom: the ``quantronium''. An arbitrary evolution of its
quantum state can be programmed with a series of microwave pulses, and a
projective measurement of the state can be performed by a pulsed readout
sub-circuit. The measured quality factor of quantum coherence Qphi=25000 is
sufficiently high that a solid-state quantum processor based on this type of
circuit can be envisioned.Comment: 4 figures include
Simulation laser d'impacts de particules de très grande vitesse
Le laser au néodyme du GRECO I.L.M. délivrant des impulsions de l'ordre de 100 J en quelques ns, nous a permis de simuler des impacts de micrométéorites silicatées de quelques dixièmes de μg, de vitesse comprise entre 5 et 45 km/s, sur une cible d'aluminium. Les cratères produits dans la cible sont hémisphériques, et le rapport Km, de la masse éjectée sur la masse de la particule incidente simulée, varie avec la vitesse d'impact Vp selon la loi Km = 1,17 V 1,52p
Finite frequency noise of a superconductor/ferromagnet quantum point contact
We have calculated the finite-frequency current noise of a
superconductor-ferromagnet quantum point contact (SF QPC). This signal is
qualitatively affected by the spin-dependence of interfacial phase shifts
(SDIPS) acquired by electrons upon reflection on the QPC. For a weakly
transparent QPC, noise steps appear at frequencies or voltages determined
directly by the SDIPS. These steps can occur at experimentally accessible
temperatures and frequencies. Finite frequency noise is thus a promising tool
to characterize the scattering properties of a SF QPC.Comment: 5 pages, 3 figures, revised version, to appear in Phys. Rev. Let
Conserved spin and orbital phase along carbon nanotubes connected with multiple ferromagnetic contacts
We report on spin dependent transport measurements in carbon nanotubes based
multi-terminal circuits. We observe a gate-controlled spin signal in non-local
voltages and an anomalous conductance spin signal, which reveal that both the
spin and the orbital phase can be conserved along carbon nanotubes with
multiple ferromagnetic contacts. This paves the way for spintronics devices
exploiting both these quantum mechanical degrees of freedom on the same
footing.Comment: 8 pages - minor differences with published versio
Anatomical study and reanalysis of the nomenclature of the anterolateral complex of the knee focusing on the distal iliotibial band: identification and description of the condylar strap
Background: The capsulo-osseous layer, short lateral ligament, mid-third lateral capsular ligament, lateral capsular ligament and anterolateral ligament are terms that have been used interchangeably to describe what is probably the same structure. This has resulted in confusion regarding the anatomy and function of the anterolateral complex of the knee and its relation to the distal iliotibial band.
Purpose: To characterize the macroscopic anatomy of the anterolateral complex of the knee, in particular the femoral condylar attachment of the distal iliotibial band (ITB). We identified a specific and consistent anatomical structure that was not accurately described previously, connects the deep surface of the ITB to the condylar area, and is distinct from the anterolateral ligament, the capsulo-osseous layer and the Kaplan fibers.
Study Design: Descriptive laboratory study.
Methods: Sixteen fresh-frozen human cadaveric knees were used to study the anterolateral complex of the knee. Standardized dissections were performed that included a qualitative and quantitative assessment of the anatomy through both anterior (n=5) and posterior (n=11) approaches.
Results: The femoral condylar attachment of the distal ITB was not reliably identified by anterior dissection but was in all posterior dissections. A distinct anatomical structure, hereafter termed condylar strap (CS), was identified between the femur and the lateral gastrocnemius on one side and the deep surface of the ITB on the other, in all posteriorly dissected specimens. The structure had a mean thickness of 0.88 mm, and its femoral insertion was located between the distal Kaplan fibers and the epicondyle. The proximal femoral attachment of the structure had a mean width of 15.82 mm and the width of the distal insertion of the structure on the ITB was 13.27 mm. The mean length of the structure was 26.33 mm on its distal border and 21.88 mm on its proximal border. Qualitative evaluation of behavior in internal rotation revealed that this anatomical structure became tensioned and created a tenodesis effect on the ITB.
Conclusions: There is a consistent structure that attaches to the deep ITB and the femoral epicondylar area. The orientation of fibers suggest that it may have a role in anterolateral knee stability.
Clinical Relevance: This new anatomical description may help surgeons to optimize technical aspects of lateral extra-articular procedures in cases of anterolateral knee laxity
High lateral portal for sparing the infrapatellar fat-pad during ACL reconstruction
SummaryDuring arthroscopic ACL reconstruction, intra-articular visualization can be compromised by the interposition of the infrapatellar fat pad (IPFP) between the scope and the notch. In this technical note, we describe our technique of using lateral higher arthroscopic portal, starting arthroscopy with the resection of the ligamentum mucosum and performing the tibial tunnel in 40° of knee flexion to optimise the intra-articular view without IPFP debridement. This technique was performed in 112 consecutive arthroscopic ACL reconstructions and compared to that in the previous 112 cases in which a conventional method was used. The use of this technique was associated with a shorter operative time and no increase in the difficulty in performing associated meniscal procedures
Meniscal ossicle in a professional soccer player
SummaryMeniscal ossicles are an unusual finding and a rare cause for knee pain. They are often initially diagnosed as a loose body, chondrocalcinosis or meniscal calcification within the knee joint. Few cases have been reported in the literature. We present a case of a meniscal ossicle with an associated femoral cartilage lesion in a healthy 26-year-old male professional soccer player who presented with swelling and pain. The purpose of this article is to discuss the origins, radiological features, clinical symptoms and prognosis of meniscal ossicles
- …