research

Modeling a Schottky-barrier carbon nanotube field-effect transistor with ferromagnetic contacts

Abstract

In this study, a model of a Schottky-barrier carbon nanotube field- effect transistor (CNT-FET), with ferromagnetic contacts, has been developed. The emphasis is put on analysis of current-voltage characteristics as well as shot (and thermal) noise. The method is based on the tight-binding model and the non- equilibrium Green's function technique. The calculations show that, at room temperature, the shot noise of the CNT FET is Poissonian in the sub-threshold region, whereas in elevated gate and drain/source voltage regions the Fano factor gets strongly reduced. Moreover, transport properties strongly depend on relative magnetization orientations in the source and drain contacts. In particular, one observes quite a large tunnel magnetoresistance, whose absolute value may exceed 50%.Comment: 8 pages, 4 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020