358 research outputs found
Minimal Obstructions for Partial Representations of Interval Graphs
Interval graphs are intersection graphs of closed intervals. A generalization
of recognition called partial representation extension was introduced recently.
The input gives an interval graph with a partial representation specifying some
pre-drawn intervals. We ask whether the remaining intervals can be added to
create an extending representation. Two linear-time algorithms are known for
solving this problem.
In this paper, we characterize the minimal obstructions which make partial
representations non-extendible. This generalizes Lekkerkerker and Boland's
characterization of the minimal forbidden induced subgraphs of interval graphs.
Each minimal obstruction consists of a forbidden induced subgraph together with
at most four pre-drawn intervals. A Helly-type result follows: A partial
representation is extendible if and only if every quadruple of pre-drawn
intervals is extendible by itself. Our characterization leads to a linear-time
certifying algorithm for partial representation extension
Orthogonal Arrays of Strength Three from Regular 3-Wise Balanced Designs
The construction given in Kreher, J Combin Des 4 (1996) 67 is extended to obtain new infinite families of orthogonal arrays of strength 3. Regular 3-wise balanced designs play a central role in this construction
Solution to the Mean King's problem with mutually unbiased bases for arbitrary levels
The Mean King's problem with mutually unbiased bases is reconsidered for
arbitrary d-level systems. Hayashi, Horibe and Hashimoto [Phys. Rev. A 71,
052331 (2005)] related the problem to the existence of a maximal set of d-1
mutually orthogonal Latin squares, in their restricted setting that allows only
measurements of projection-valued measures. However, we then cannot find a
solution to the problem when e.g., d=6 or d=10. In contrast to their result, we
show that the King's problem always has a solution for arbitrary levels if we
also allow positive operator-valued measures. In constructing the solution, we
use orthogonal arrays in combinatorial design theory.Comment: REVTeX4, 4 page
Entanglement-assisted quantum low-density parity-check codes
This paper develops a general method for constructing entanglement-assisted
quantum low-density parity-check (LDPC) codes, which is based on combinatorial
design theory. Explicit constructions are given for entanglement-assisted
quantum error-correcting codes (EAQECCs) with many desirable properties. These
properties include the requirement of only one initial entanglement bit, high
error correction performance, high rates, and low decoding complexity. The
proposed method produces infinitely many new codes with a wide variety of
parameters and entanglement requirements. Our framework encompasses various
codes including the previously known entanglement-assisted quantum LDPC codes
having the best error correction performance and many new codes with better
block error rates in simulations over the depolarizing channel. We also
determine important parameters of several well-known classes of quantum and
classical LDPC codes for previously unsettled cases.Comment: 20 pages, 5 figures. Final version appearing in Physical Review
Partial Covering Arrays: Algorithms and Asymptotics
A covering array is an array with entries
in , for which every subarray contains each
-tuple of among its rows. Covering arrays find
application in interaction testing, including software and hardware testing,
advanced materials development, and biological systems. A central question is
to determine or bound , the minimum number of rows of
a . The well known bound
is not too far from being
asymptotically optimal. Sensible relaxations of the covering requirement arise
when (1) the set need only be contained among the rows
of at least of the subarrays and (2) the
rows of every subarray need only contain a (large) subset of . In this paper, using probabilistic methods, significant
improvements on the covering array upper bound are established for both
relaxations, and for the conjunction of the two. In each case, a randomized
algorithm constructs such arrays in expected polynomial time
Community-linked maternal death review (CLMDR) to measure and prevent maternal mortality: a pilot study in rural Malawi.
In Malawi, maternal mortality remains high. Existing maternal death reviews fail to adequately review most deaths, or capture those that occur outside the health system. We assessed the value of community involvement to improve capture and response to community maternal deaths
What is the probability of connecting two points ?
The two-terminal reliability, known as the pair connectedness or connectivity
function in percolation theory, may actually be expressed as a product of
transfer matrices in which the probability of operation of each link and site
is exactly taken into account. When link and site probabilities are and
, it obeys an asymptotic power-law behavior, for which the scaling factor
is the transfer matrix's eigenvalue of largest modulus. The location of the
complex zeros of the two-terminal reliability polynomial exhibits structural
transitions as .Comment: a few critical polynomials are at the end of the .tex source fil
Coarse-grained entanglement classification through orthogonal arrays
Classification of entanglement in multipartite quantum systems is an open
problem solved so far only for bipartite systems and for systems composed of
three and four qubits. We propose here a coarse-grained classification of
entanglement in systems consisting of subsystems with an arbitrary number
of internal levels each, based on properties of orthogonal arrays with
columns. In particular, we investigate in detail a subset of highly entangled
pure states which contains all states defining maximum distance separable
codes. To illustrate the methods presented, we analyze systems of four and five
qubits, as well as heterogeneous tripartite systems consisting of two qubits
and one qutrit or one qubit and two qutrits.Comment: 38 pages, 1 figur
Surface Screening Charge and Effective Charge
The charge on an atom at a metallic surface in an electric field is defined
as the field-derivative of the force on the atom, and this is consistent with
definitions of effective charge and screening charge. This charge can be found
from the shift in the potential outside the surface when the atoms are moved.
This is used to study forces and screening on surface atoms of Ag(001)
c -- Xe as a function of external field. It is found that at low
positive (outward) fields, the Xe with a negative effective charge of -0.093
is pushed into the surface. At a field of 2.3 V \AA the charge
changes sign, and for fields greater than 4.1 V \AA the Xe experiences
an outward force. Field desorption and the Eigler switch are discussed in terms
of these results.Comment: 4 pages, 1 figure, RevTex (accepted by PRL
- …
