This paper develops a general method for constructing entanglement-assisted
quantum low-density parity-check (LDPC) codes, which is based on combinatorial
design theory. Explicit constructions are given for entanglement-assisted
quantum error-correcting codes (EAQECCs) with many desirable properties. These
properties include the requirement of only one initial entanglement bit, high
error correction performance, high rates, and low decoding complexity. The
proposed method produces infinitely many new codes with a wide variety of
parameters and entanglement requirements. Our framework encompasses various
codes including the previously known entanglement-assisted quantum LDPC codes
having the best error correction performance and many new codes with better
block error rates in simulations over the depolarizing channel. We also
determine important parameters of several well-known classes of quantum and
classical LDPC codes for previously unsettled cases.Comment: 20 pages, 5 figures. Final version appearing in Physical Review