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Abstract. We present a novel and efficient algorithm for solving the
most reliable subgraph problem with multiple query nodes on undirected
random graphs. Reliable subgraphs are useful for summarizing connec-
tivity between given query nodes. Formally, we are given a graph G =
(V, E), a set of query (or terminal) nodes Q ⊂ V , and a positive inte-
ger B. The objective is to find a subgraph H ⊂ G containing Q, such that
H has at most B edges, and the probability that H is connected is max-
imized. Previous algorithms for the problem are either computationally
demanding, or restricted to only two query nodes. Our algorithm ex-
tends a previous algorithm to handle k query nodes, where 2 ≤ k ≤ |V |.
We demonstrate experimentally the usefulness of reliable k-terminal sub-
graphs, and the accuracy, efficiency and scalability of the proposed algo-
rithm on real graphs derived from public biological databases.

1 Introduction

Graphs and networks are powerful means of representing information in various
domains such as biology, sociology, and communications. However, large graphs
are difficult to understand and use by humans. Given that the user is interested
in some particular nodes and their connectivity, a large fraction of the original
graph is often irrelevant. Subgraph extraction addresses this problem.

As an example application, consider Biomine, a biological graph consisting
roughly of a million nodes and eight million edges [10]. One form of a query to
Biomine is to specify a small number of query nodes, such as a gene and a disease,
and extract a small subgraph that maximally connects the gene to the disease.
A subgraph of few dozens of nodes typically already gives a good picture of the
connectivity—not only the best paths, but a subgraph describing the network
that connects the given nodes. At the same time, almost all of the millions of
edges and nodes are irrelevant to how the gene is related to the disease.

In the most reliable subgraph problem [3], the user gives query nodes (also
called terminals) and a budget, and the task is to extract a subgraph maximally
relevant with respect to the given query nodes, but with a size within the given
budget. The problem is defined for simple (Bernoulli) random graphs, where
edge weights are interpreted as probabilities of the edges, and where a natural
definition for “relevance” is network reliability (see Section 2).
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In this paper, we propose a novel, efficient algorithm for extracting a reliable
subgraph given an arbitrary number of query nodes. Previous work on the most
reliable subgraph problem suffers either from a limitation to exactly two query
nodes, or from computational complexity. Our work builds on a recent, efficient
method for two query nodes, called Path Covering [5].

2 The Most Reliable k-terminal Subgraph Problem

We define the problem of finding the most reliable k-terminal subgraph, loosely
following conventions and notations from previous work [4]. Let G = (V, E) be
an undirected graph where V is the set of nodes and E the set of edges. G is
a Bernoulli random graph where each edge e has an associated probability pe.
The interpretation is that edge e ∈ E exists with probability pe, and conversely
e does not exist, or is not true with probability 1− pe. Given edge probabilities,
the states of edges are mutually independent. Nodes are static.

Given a set Q ⊂ V of nodes, or terminals, the network reliability R(G, Q)
of G is defined as the probability that Q is connected, i.e., that any node in
Q can be reached from any other node in Q [1]. In the most reliable subgraph

problem we are looking for a subgraph H ⊂ G connecting the terminals in Q,
such that H has at most B edges and a maximal reliability with respect to the
terminals, i.e., find H∗ = argmaxH⊂G,||H||≤B R(H, Q). Although the problem
can be defined for directed graphs as well [3], we focus on undirected graphs in
this paper. This problem, like reliability problems in general [12], is inherently
difficult: efficient solutions are available only for restricted classes of graphs, but
cases on general graphs are most likely intractable [3].

We now introduce some additional notation used in the later sections.
Given a graph G, V (G) is the node set of G and E(G) the edge set of G.

Given a set of edges S ⊂ E, we say S induces a graph G(S) = (V ′, S), where V ′

consists of the endpoints of the edges in S.
The union between two graphs G1 = (V1, E1) and G2 = (V2, E2) is a new

graph H = G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2). Other set operations for graphs are
defined analogously. For notational convenience, we treat paths, trees and edges
as (induced) graphs when there is no risk of confusion. This makes it notationally
easy, e.g., to add a path P to a graph G by writing simply G ∪ P instead
of G ∪ G(P ), or to denote the edges of a tree T as E(T ) instead of E(G(T )).

Finally, a path with endpoints u and v is said to be a u–v-path.

Related Work The most reliable subgraph problem was introduced recently [3],
but algorithms were given only for the two-terminal case. We are aware of two
previous solutions for the general case. One, proposed by Kroese et al., is based
on the cross-entropy method [7]. De Raedt et al. give other solution to the general
case in the setting of theory compression for ProbLog [9, 8]. Unfortunately, these
methods do not scale well to large databases, where input graphs may have
hundreds or thousands of edges. Other closely related work includes connection
subgraphs [2], center-piece subgraphs [11], and proximity graphs [6].
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Recently, a novel Monte-Carlo sampling based algorithm Path Covering (PC)
has been proposed for the two-terminal case [5]. The method proposed in this
paper is based on the ideas of PC, so we briefly review its principles. The al-
gorithm has two phases: a path sampling phase and a subgraph construction
phase. In the path sampling phase, the goal is to identify a small set C of paths
that have high probabilities and are relatively independent of each other. This
is achieved by approximately maximizing the probability that at least one path
P ∈ C is true. We denote this probability by Pr(C) = Pr(

∨
P∈C P ).

In the subgraph construction phase, PC chooses a set of solution paths S ⊂ C
such that the probability Pr(S) = Pr(

∨
P∈S P ) is maximized and ||G(S)|| ≤ B,

where ||G|| denotes the number of edges in G. PC does not maximize R(G(S))
directly, but works on its lower bound Pr(S) instead. Concisely put, PC gen-
erates S iteratively by choosing at each iteration the path P ∗ which gives the
maximal per-edge increase to the (estimated) probability Pr(S), that is

P ∗ = arg max
P∈C\S

Pr(S ∪ P ) − Pr(S)

|E(P ) \ E(H)|
, (1)

where H = G(S) is the result subgraph being constructed. At each iteration,
paths that become included into H are removed from C. To satisfy the budget
constraint, paths P ∈ C for which ||H ||+ |E(P ) \E(H)| > B are also removed.
The algorithm stops when ||H || = B or C \S = ∅, and returns the subgraph H .

3 Algorithms

We propose a novel, efficient algorithm for the problem of extracting a reliable
k-terminal subgraph from an undirected graph. The proposed algorithm is a
generalization of the Path Covering (PC) method [5] (see Section 2 for a brief
overview) to more than two query nodes. The basic principles remain the same:
the two phases, use of Monte Carlo simulations, as well as many subtle details.
However, whereas PC uses paths connecting the two given query nodes as its
building blocks (set C) in the subgraph construction phase, here we consider
spanning trees connecting the k query nodes, with 2 ≤ k ≤ |V |. Similarly, set S
in the objective function (1) consists of spanning trees instead of paths as in PC.

In the first phase, the algorithm extracts a set of trees from the original
graph G. Each of the trees connects the given k query nodes; by construction,
they are spanning trees having the query nodes as leaves. In the second phase,
these trees are used as building blocks to construct the result of the algorithm
just like PC uses paths as its building blocks. We focus on the novel aspects
of the proposed algorithm, the ones that allow solving the k-terminal problem.
For brevity, we omit technical details shared with Path Covering and described
in depth elsewhere [5]. We begin by presenting the general aspects of the new
algorithm and then proceed to more detailed description.

Input and output data. The first phase of the algorithm (Algorithm 1)
takes a random graph G and a set Q ⊂ V of query nodes as its input. The
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algorithm outputs a set C of trees such that each tree connects all the query
nodes. We call these trees candidate trees. C is used as an input in the second
phase of the algorithm (Algorithm 2).

Producing candidate trees. At the first iteration, (|Q|2 − |Q|)/2 new
candidate trees are generated (Lines 2–3). Each tree connects one pair of query
nodes and each query node pair is connected by one tree. Later, as the algorithm
proceeds, new trees are added one by one; each of the later trees is also initially
formed as a path between two query nodes. During the algorithm, individual
trees are created and grown iteratively. In each iteration, either a branch is
added to an existing incomplete tree (a tree that does not yet connect all query
nodes) so that a new query node is connected to the tree, or a new initial tree
is generated. At the end of the algorithm we output only complete trees (trees
that connect all query nodes).

Edge sampling. The algorithm is stochastic. At each iteration it randomly
decides, according to the probabilities pe, which edges exist and which do not
(Line 5). Only edges that are included in at least one candidate tree are decided.
All other edges are considered to exist. The next step is to determine if any of
the previous candidate trees exist in the current graph realization (Line 9). If one
does not exist a new candidate tree is generated (Lines 14–15). If a previously
discovered tree exists, the first such tree is taken into examination (Line 10). If
the tree is complete, the algorithm proceeds directly to the next iteration. Oth-
erwise the tree is extended (Lines 17–21) before continuing to the next iteration.

Tree construction. A new tree is formed by the best path connecting two
query nodes (Line 15). A previously established incomplete tree is extended by
connecting a new query node to it with the best path between some node in
the tree and the new query node (Lines 18–20). The probabilities of all edges
in the tree are set to 1 prior to the search of the best path (Line 17), while
the probabilities of other edges remain the same. As a result the new branch
is formed by the best path between the new query node and the tree. Edges
that do not exist at the iteration are not used. All edge weights are set to their
original values before proceeding to the next iteration (Line 21).

Choosing query nodes. When a new tree is formed, the algorithm decides
randomly which two query nodes are included in the initial tree. Later on when
an incomplete tree is extended, the algorithm again randomly selects the new
query node to connect to the tree. This is to avoid unnecessary complexity: in
our experiments this solution produced better results and shorter running times
than selecting the node to be added based on its distance from the tree (results
not shown).

Discovering strong trees. The collection C of candidate trees is organized
as a queue, i.e., the oldest candidate trees are always considered first. This
drives the algorithm to complete some trees first (the oldest ones) rather than
extending them in random order and not necessarily up to a completion. On the
other hand, the stochasticity of the algorithm favors strong trees: they are more
likely to be true at any given iteration and thus more likely to be extended. The
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algorithm also has a tendency to avoid similar trees: when two (partial) trees
are true at the same time, only the oldest one is potentially extended.

Algorithm 1 Sample trees

Input: Random graph G, set Q ⊂ V of query nodes, number of trees to be generated
Output: Collection C of trees connecting all query nodes
1: C ← ∅
2: for each node pair vi, vj ∈ Q, vi 6= vj do

3: Add the best vi–vj-path from G to C

4: repeat

5: Decide each e ∈ E(C) by flipping a coin biased by the probability of e

6: Let ES contain the successful edges and EF contain the failed edges
7: TS ← ∅
8: for i = 1 to |C| do

9: if E(Ci) ⊂ ES then

10: if Q ⊂ V (Ci) then

11: continue at line 5
12: TS ← Ci

13: continue at line 17
14: Randomly select u and v ∈ Q, u 6= v

15: Add the best u–v-path from G− EF to C

16: continue at line 5
17: Set the probability of e to 1 for all e ∈ E(TS)
18: Randomly select u ∈ Q ∩ V (TS) and v ∈ Q \ V (TS)
19: PS ← the best u–v-path from G− EF

20: Add all e ∈ E(PS) to E(TS) and all v ∈ V (PS) to V (TS)
21: Reset edge weights for all e ∈ E(TS)
22: until the stopping condition is satisfied
23: return C (after removing all incomplete trees)

Stopping condition. We use the number |C| of complete trees generated
as the stopping condition for the first phase. The number of iterations would be
another alternative (see Section 4). Using the number of trees seems a better
choice than using the number of iterations, since the minimum number of iter-
ations needed to produce a single complete tree increases when the number of
query nodes increase.

4 Experiments

We have implemented and experimentally evaluated the proposed algorithm on
random graphs derived from public biological databases. In this section, we ex-
amine the usefulness of k-terminal subgraphs: do they maintain the k-terminal
reliability of input graphs, and what is the amount of random variance in the
results? We demonstrate the efficiency and scalability of our algorithm for large
input graphs. Finding a suitable stopping criterion for Algorithm 1 is difficult;
we also address this issue. Finally, we compare the algorithm against a baseline
method based on enumerating the best paths between the query nodes.
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Algorithm 2 Select trees

Input: Random graph G, collection C of trees, budget B ∈ N

Output: Subgraph H ⊂ G with at most B edges
1: S ← ∅
2: while ||G(S)|| ≤ B and C \ S 6= ∅ do

3: Find T = arg maxT∈C\S
Pr(S∪T )−Pr(S)
|E(T )\E(G(S))|

4: S ← S ∪ T

5: for all T ∈ C do {remove useless trees}
6: if T ⊂ G(S) or ||G(S)||+ |E(T ) \ E(G(S))| > B then

7: C ← C \ {T}
8: return H = G(S)

4.1 Test set-up

Test data and query nodes We use Biomine database [10] as our data source.
Biomine is a large index of various interlinked public biological databases, such
as EntrezGene, UniProt, InterPro, GO, and STRING. Biomine offers a uniform
view to these databases by representing their contents as a large, heterogeneous
biological graph. Nodes in this graph represent biological entities (records) in the
original databases, and edges represent their annotated relationships. Edges have
weights, interpreted as probabilities [10]. We evaluated the proposed method
using six source graphs of varying sizes (Table 1) and a set of up to ten query
nodes. They were obtained as follows.

Name of G = (V, E) 400 500 700 1000 2000 5000

Number of edges, |E| = ||G|| 395 499 717 1046 2019 4998
Number of nodes, |V | 153 189 260 336 579 1536
Reliability of G with |Q| = 4 0.46 0.46 0.50 0.56 0.59 0.60

Table 1. Sizes of source graphs used in the experiments

First, the largest subgraph, consisting of approximately 5000 edges and 1500
nodes, was retrieved from the Biomine database using Crawler, a subgraph re-
trieval component proprietary to Biomine. For this initial retrieval, we used eight
randomly selected query nodes.

Second, a set of ten query nodes to be used in the experiments was de-
fined by randomly picking nodes from the subgraph of 5000 edges. The query
node identifiers are EntrezGene:348, EntrezGene:29244, EntrezGene:6376, En-
trezGene:4137, UniProt:P51149, UniProt:Q91ZX7, EntrezGene:14810, UniProt:
P49769, EntrezGene:11810, and UniProt:P98156.

Third, smaller subgraphs were retrieved with Crawler by a sequence of sub-
graph retrievals, always extracting the next smaller subgraph from the previous
subgraph, using the ten query nodes given above.

We also used two additional source graphs when evaluating the scalability of
the algorithm to large source graphs. The smaller one consisted of 51,448 edges
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and 15,862 nodes. The size of the larger graph was 130,761 edges and 66,990
nodes. The smaller graph was a subgraph of the larger one and all other source
graphs used in the experiments were subgraphs of both.

Biomine Crawler The subgraph retrieval component of the Biomine system,
“Crawler”, was used to extract the source graphs, and it will also be used below in
a comparative experiment to assess the effectiveness of the proposed algorithm.
Crawler is currently undocumented. Given a source graph, a set of query nodes,
and a node budget, it works roughly as follows. It first finds a large set of best
paths between all pairs of query nodes. It then picks those paths sequentially
between the node pairs, until the subgraph induced by the chosen paths reaches
the specified number of nodes. The method is somewhat similar to the BPI
algorithm [4], but works for multiple query nodes. Even though the Crawler
works with random graphs, it does not try to optimize the k-terminal reliability.

Stopping condition We used the number of complete candidate trees generated
as the stopping condition for Algorithm 1. Another obvious alternative would be
the number of iterations. Neither condition is perfect: for instance, the number
of query nodes has a strong effect on the number of trees needed to find a good
subgraph. On the other hand, the number of query nodes has also a strong
effect on the number of iterations needed to produce a sufficient amount of
trees. A single fixed number of candidate paths is a suitable stopping condition
for the two-terminal case [5] but it is problematic in the k-terminal case where
the building blocks are trees consisting of multiple branches. For the current
experiments, we believe a fixed number of candidate trees gives a fair impression
of the performance of the method.

Parameters The experiments have been performed using the following parame-
ter values; the default values we have used throughout the experiments, unless
otherwise indicated, are given in boldface.

– Size of source graph G (Table 1): ||G|| = 400, 500, 700, 1000, 2000, 5000
– Number of query nodes: |Q| = 1, 2, 3, 4, . . ., 10
– Size of extracted subgraph: ||H || = 10, 20, 30, . . ., 60, . . ., 100, 150, 200
– Number of complete trees (stopping condition of Algorithm 1): |C| = 10, 20,

30, . . ., 100, 150, 200

To control random variation, the values reported below are averages over 10
independent runs.

4.2 Results

Let us first take a look at how well the method manages to extract a reliable
subgraph (Fig. 1). For three to four query nodes (|Q|), a subgraph of only 20–30
edges manages to capture 80% of the reliability of the source graph of 500 edges.
For a large number of query nodes, the problem seems much more challenging.
It seems obvious, that larger subgraphs are needed for a larger number of query
nodes, if the reliability should be preserved.
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Fig. 1. Relative reliability of a subgraph
as a function of its size, for various num-
bers of query nodes.

The number |C| of candidate trees
produced in the first phase of the al-
gorithm has an effect on the relia-
bility of the extracted subgraph, but
we discovered that sampling a rela-
tively small number of trees is enough
to produce good subgraphs (approxi-
mately 50 trees for four query nodes;
results not shown). An experimental
analysis of the running time indicates
that the method scales linearly with
respect to the number of candidate
trees generated

The scalability of the new algo-
rithm to large source graphs (Fig. 2,
left) is clearly superior to previous methods (see Section 1). Source graphs of
thousands of edges are handled within a second or two. Scalability is close to
linear, which is expected: the running time of the algorithm is dominated by
Monte-Carlo simulation, whose complexity grows linearly with respect to the
input graph size and the number of iterations. Running times for the two ad-
ditional large source graphs (51,448 edges and 130,761 edges) are not shown in
the figure, but the average running times over ten independent runs are approx-
imately 16 (standard deviation 0.57) and 53 seconds (standard deviation 2.8),
respectively. Limiting the length of tree branches might shorten running times
in some cases.
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Fig. 2. Running time and reliability as functions of the size of the input graph.

The right panel of Fig. 2 indicates the original reliability of the growing
source graph, as well as the reliability of the extracted subgraph (of a fixed
size of 60 edges). The relative difference in reliability is less than 20% in all
cases, emphasizing the ability of the algorithm to preserve strong connectivity
between the query nodes. These results suggest that the algorithm is competitive
for interactive visualization.
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Fig. 3. Comparison with Crawler using
4 query nodes.

Finally, we compare the new algo-
rithm to the Biomine Crawler (Fig. 3),
as it is the only available method for
comparison on this scale. The com-
parison is not completely fair, as the
Crawler does not aim to optimize the
k-terminal reliability, but the general
goal of extracting a subgraph connect-
ing the query nodes is the same. In
the experiments, the proposed algo-
rithm produces significantly more re-
liable subgraphs, especially when the
extracted subgraphs are small. Both
methods converge towards the relia-
bility of the source graph. However, where the new method reaches 80% of the
original reliability with only 30 edges, the Crawler needs 60 edges for the same.

5 Conclusions

We gave an efficient algorithm for solving the most reliable subgraph extraction
problem for more than two query nodes. This is a significant improvement over
state-of-the-art that could efficiently only handle exactly two query nodes.

Experimental results with real biological data indicate that the problem and
the proposed method have some very useful properties. First, reliable k-terminal
subgraphs of fairly small sizes seem to capture essential connectivity well. Sec-
ond, the proposed method extracts a reliable subgraph in a matter of seconds,
even from a source graph of thousands of edges; the time complexity seems to
be linear with respect to the size of the original graph.

There are many possible variants of the approaches described in this paper
that could be explored to find better solutions. For instance, how to choose
which partial tree to expand and how to expand it, or how to efficiently use
partial trees also in the second phase? Another interesting approach could be
using (approximated) Steiner trees as spanning trees.

Future experiments include systematic tests to find out robust sets of pa-
rameters that perform reliably over wide range of input graphs and query nodes,
and more extensive comparisons with related methods. Possible extension of the
proposed algorithm for directed variant of the problem is an open question.
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