782 research outputs found
Supersolid phase with cold polar molecules on a triangular lattice
We study a system of heteronuclear molecules on a triangular lattice and
analyze the potential of this system for the experimental realization of a
supersolid phase. The ground state phase diagram contains superfluid, solid and
supersolid phases. At finite temperatures and strong interactions there is an
additional emulsion region, in contrast to similar models with short-range
interactions. We derive the maximal critical temperature and the
corresponding entropy for supersolidity and find feasible
experimental conditions for its realization.Comment: 4 pages, 4 figure
Ultracold Dipolar Gases in Optical Lattices
This tutorial is a theoretical work, in which we study the physics of
ultra-cold dipolar bosonic gases in optical lattices. Such gases consist of
bosonic atoms or molecules that interact via dipolar forces, and that are
cooled below the quantum degeneracy temperature, typically in the nK range.
When such a degenerate quantum gas is loaded into an optical lattice produced
by standing waves of laser light, new kinds of physical phenomena occur. These
systems realize then extended Hubbard-type models, and can be brought to a
strongly correlated regime. The physical properties of such gases, dominated by
the long-range, anisotropic dipole-dipole interactions, are discussed using the
mean-field approximations, and exact Quantum Monte Carlo techniques (the Worm
algorithm).Comment: 56 pages, 26 figure
Novel Mechanism of Supersolid of Ultracold Polar Molecules in Optical Lattices
We study the checkerboard supersolid of the hard-core Bose-Hubbard model with
the dipole-dipole interaction. This supersolid is different from all other
supersolids found in lattice models in the sense that superflow paths through
which interstitials or vacancies can hop freely are absent in the crystal. By
focusing on repulsive interactions between interstitials, we reveal that the
long-range tail of the dipole-dipole interaction have the role of increasing
the energy cost of domain wall formations. This effect produces the supersolid
by the second-order hopping process of defects. We also perform exact quantum
Monte Carlo simulations and observe a novel double peak structure in the
momentum distribution of bosons, which is a clear evidence for supersolid. This
can be measured by the time-of-flight experiment in optical lattice systems
Effect of Doublon-Holon Binding on Mott transition---Variational Monte Carlo Study of Two-Dimensional Bose Hubbard Models
To understand the mechanism of Mott transitions in case of no magnetic
influence, superfluid-insulator (Mott) transitions in the S=0 Bose Hubbard
model at unit filling are studied on the square and triangular lattices, using
a variational Monte Carlo method. In trial many-body wave functions, we
introduce various types of attractive correlation factors between a
doubly-occupied site (doublon, D) and an empty site (holon, H), which play a
central role for Mott transitions, in addition to the onsite repulsive
(Gutzwiller) factor. By optimizing distance-dependent parameters, we study
various properties of this type of wave functions. With a hint from the Mott
transition arising in a completely D-H bound state, we propose an improved
picture of Mott transitions, by introducing two characteristic length scales,
the D-H binding length and the minimum D-D exclusion length
. Generally, a Mott transition occurs when becomes
comparable to . In the conductive (superfluid) state, domains of
D-H pairs overlap with each other (); thereby D and
H can propagate independently as density carriers by successively exchanging
the partners. In contrast, intersite repulsive Jastrow (D-D and H-H) factors
have little importance for the Mott transition.Comment: 16 pages, 22 figures, submitted to J. Phys. Soc. Jp
Dipolar Bose-Einstein condensate soliton on a two-dimensional optical lattice
Using a three-dimensional mean-field model we study one-dimensional dipolar
Bose-Einstein condensate (BEC) solitons on a weak two-dimensional (2D) square
and triangular optical lattice (OL) potentials placed perpendicular to the
polarization direction. The stabilization against collapse and expansion of
these solitons for a fixed dipolar interaction and a fixed number of atoms is
possible for short-range atomic interaction lying between two critical limits.
The solitons collapse below the lower limit and escapes to infinity above the
upper limit. One can also stabilize identical tiny BEC solitons arranged on the
2D square OL sites forming a stable 2D array of interacting droplets when the
OL sites are filled with a filling factor of 1/2 or less. Such an array is
unstable when the filling factor is made more than 1/2 by occupying two
adjacent sites of OL. These stable 2D arrays of dipolar superfluid BEC solitons
are quite similar to the recently studied dipolar Mott insulator states on 2D
lattice in the Bose-Hubbard model by Capogrosso-Sansone et al. [B.
Capogrosso-Sansone, C. Trefzger, M. Lewenstein, P. Zoller, G. Pupillo, Phys.
Rev. Lett. 104 (2010) 125301].Comment: 8 pages, 5 figures and 2 table
Effects of Long-Range Correlations on Nonmagnetic Mott Transitions in Hubbard model on Square Lattice
The mechanism of Mott transition in the Hubbard model on the square lattice
is studied without explicit introduction of magnetic and superconducting
correlations, using a variational Monte Carlo method. In the trial wave
functions, we consider various types of binding factors between a
doubly-occupied site (doublon, D) and an empty site (holon, H), like a
long-range type as well as a conventional nearest-neighbor type, and add
independent long-range D-D (H-H) factors. It is found that a wide choice of D-H
binding factor leads to Mott transitions at critical values near the band
width. We renew the D-H binding picture of Mott transitions by introducing two
characteristic length scales, the D-H binding length l_{DH} and the minimum D-D
distance l_{DD}, which we appropriately estimate. A Mott transition takes place
at l_{DH}=l_{DD}. In the metallic regime (l_{DH}>l_{DD}), the domains of D-H
pairs overlap with one another, thereby doublons and holons can move
independently by exchanging the partners one after another. In contrast, the
D-D factors give only a minor contribution to the Mott transition.Comment: 13 pages, 18 figures, submitted to J. Phys. Soc. Jp
Revision of the 15N(p,{\gamma})16O reaction rate and oxygen abundance in H-burning zones
The NO cycle takes place in the deepest layer of a H-burning core or shell,
when the temperature exceeds T {\simeq} 30 {\cdot} 106 K. The O depletion
observed in some globular cluster giant stars, always associated with a Na
enhancement, may be due to either a deep mixing during the RGB (red giant
branch) phase of the star or to the pollution of the primordial gas by an early
population of massive AGB (asymptotic giant branch) stars, whose chemical
composition was modified by the hot bottom burning. In both cases, the NO cycle
is responsible for the O depletion. The activation of this cycle depends on the
rate of the 15N(p,{\gamma})16O reaction. A precise evaluation of this reaction
rate at temperatures as low as experienced in H-burning zones in stellar
interiors is mandatory to understand the observed O abundances. We present a
new measurement of the 15N(p,{\gamma})16O reaction performed at LUNA covering
for the first time the center of mass energy range 70-370 keV, which
corresponds to stellar temperatures between 65 {\cdot} 106 K and 780 {\cdot}106
K. This range includes the 15N(p,{\gamma})16O Gamow-peak energy of explosive
H-burning taking place in the external layer of a nova and the one of the hot
bottom burning (HBB) nucleosynthesis occurring in massive AGB stars. With the
present data, we are also able to confirm the result of the previous R-matrix
extrapolation. In particular, in the temperature range of astrophysical
interest, the new rate is about a factor of 2 smaller than reported in the
widely adopted compilation of reaction rates (NACRE or CF88) and the
uncertainty is now reduced down to the 10% level.Comment: 6 pages, 5 figure
Condensed Matter Theory of Dipolar Quantum Gases
Recent experimental breakthroughs in trapping, cooling and controlling
ultracold gases of polar molecules, magnetic and Rydberg atoms have paved the
way toward the investigation of highly tunable quantum systems, where
anisotropic, long-range dipolar interactions play a prominent role at the
many-body level. In this article we review recent theoretical studies
concerning the physics of such systems. Starting from a general discussion on
interaction design techniques and microscopic Hamiltonians, we provide a
summary of recent work focused on many-body properties of dipolar systems,
including: weakly interacting Bose gases, weakly interacting Fermi gases,
multilayer systems, strongly interacting dipolar gases and dipolar gases in 1D
and quasi-1D geometries. Within each of these topics, purely dipolar effects
and connections with experimental realizations are emphasized.Comment: Review article; submitted 09/06/2011. 158 pages, 52 figures. This
document is the unedited author's version of a Submitted Work that was
subsequently accepted for publication in Chemical Reviews, copyright American
Chemical Society after peer review. To access the final edited and published
work, a link will be provided soo
Infrared behavior of interacting bosons at zero temperature
We review the infrared behavior of interacting bosons at zero temperature.
After a brief discussion of the Bogoliubov approximation and the breakdown of
perturbation theory due to infrared divergences, we present two approaches that
are free of infrared divergences -- Popov's hydrodynamic theory and the
non-perturbative renormalization group -- and allow us to obtain the exact
infrared behavior of the correlation functions. We also point out the
connection between the infrared behavior in the superfluid phase and the
critical behavior at the superfluid--Mott-insulator transition in the
Bose-Hubbard model.Comment: 8 pages, 4 figures. Proceedings of the 19th International Laser
Physics Workshop, LPHYS'10 (Foz do Iguacu, Brazil, July 5-9, 2010
- …
