9 research outputs found

    Dissolved iron in the Arctic shelf seas and surface waters of the Central Arctic Ocean: Impact of Arctic river water and ice-melt

    Get PDF
    Key Points - DFe in the Arctic shelves and surface is linked to freshwater and alkalinity - Fluvial input main contributor to high DFe, low alkalinity in Central Arctic - Remineralisation and biological depletion determine DFe in the Arctic Shelf Seas Abstract Concentrations of dissolved (10 nM) in the bottom waters of the Laptev Sea shelf may be attributed to either sediment resuspension, sinking of brine or regeneration of DFe in the lower layers. A significant correlation (R2 = 0.60) between salinity and DFe is observed. Using δ18O, salinity ,nutrients and total alkalinity data, the main source for the high (>2 nM) DFe concentrations in the Amundsen and Makarov Basins is identified as (Eurasian) river water, transported with the Transpolar Drift (TPD). On the North American side of the TPD, the DFe concentrations are low ( 4) above the shelf and low ( < 4) off the shelf)

    Arctic Ocean sea ice drift origin derived from artificial radionuclides

    No full text
    Since the 1950s, nuclear weapon testing and releases from the nuclear industry have introduced anthropogenic radionuclides into the sea, and in many instances their ultimate fate are the bottom sediments. The Arctic Ocean is one of the most polluted in this respect, because, in addition to global fallout, it is impacted by regional fallout from nuclear weapon testing, and indirectly by releases from nuclear reprocessing facilities and nuclear accidents. Sea-ice formed in the shallow continental shelves incorporate sediments with variable concentrations of anthropogenic radionuclides that are transported through the Arctic Ocean and are finally released in the melting areas. In this work, we present the results of anthropogenic radionuclide analyses of sea-ice sediments (SIS) collected on five cruises from different Arctic regions and combine them with a database including prior measurements of these radionuclides in SIS. The distribution of 137Cs and 239,240Pu activities and the 240Pu/239Pu atom ratio in SIS showed geographical differences, in agreement with the two main sea ice drift patterns derived from the mean field of sea-ice motion, the Transpolar Drift and Beaufort Gyre, with the Fram Strait as the main ablation area. A direct comparison of data measured in SIS samples against those reported for the potential source regions permits identification of the regions from which sea ice incorporates sediments. The 240Pu/239Pu atom ratio in SIS may be used to discern the origin of sea ice from the Kara-Laptev Sea and the Alaskan shelf. However, if the 240Pu/239Pu atom ratio is similar to global fallout, it does not provide a unique diagnostic indicator of the source area, and in such cases, the source of SIS can be constrained with a combination of the 137Cs and 239,240Pu activities. Therefore, these anthropogenic radionuclides can be used in many instances to determine the geographical source area of sea-ice. © 2010 Elsevier B.V.This work was partially funded by the Ministerio de Eduación y Ciencia of Spain (POL2006-00449). The US National Science Foundation supported portions of this study. The first author expresses her gratitude to MEC through her scholarship AP2006-03071. Support for the research of PM was received through the prize ICREA Academia, funded by the Generalitat de Catalunya. Support from the government of Spain and the Fulbright Commission for a post-doctoral fellowship to J.G.-O. (ref 2007-0516) is gratefully acknowledged.Peer Reviewe

    New insights on the role of sea ice in intercepting atmospheric pollutants using 129I

    No full text
    et al.Measurements of 129I carried out on sea ice samples collected in the central Arctic Ocean in 2007 revealed relatively high levels in the range of 100-1400×107 at L-1 that are comparable to levels measured in the surface mixed layer of the ocean at the same time. The 129I/127I ratio in sea ice is much greater than that in the underlying water, indicating that the 129I inventory in sea ice cannot be supported by direct uptake from seawater or by iodine volatilization from proximal (nearby) oceanic regimes. Instead, it is proposed that most of the 129I inventory in the sea ice is derived from direct atmospheric transport from European nuclear fuel reprocessing plants at Sellafield and Cap La Hague. This hypothesis is supported by back trajectory simulations indicating that volume elements of air originating in the Sellafield/La Hague regions would have been present at arctic sampling stations coincident with sampling collection.This work was partially funded by the Ministerio de Educación y Ciencia (MEC) of Spain (POL2006–00449), the prize ICREA Academia, funded by the Generalitat de Catalunya (PM), and the fellowship AP2006–03071 (PC-M). PM was supported in part by a Gledden Visiting Fellowship awarded by the Institute of Advanced Studies at The University of Western Australia.Peer Reviewe

    New insights on the role of sea ice in intercepting atmospheric pollutants using 129I

    No full text
    Abstract Measurements of 129I carried out on sea ice samples collected in the central Arctic Ocean in 2007 revealed relatively high levels in the range of 100–1400 × 107 at L−1 that are comparable to levels measured in the surface mixed layer of the ocean at the same time. The 129I/127I ratio in sea ice is much greater than that in the underlying water, indicating that the 129I inventory in sea ice cannot be supported by direct uptake from seawater or by iodine volatilization from proximal (nearby) oceanic regimes. Instead, it is proposed that most of the 129I inventory in the sea ice is derived from direct atmospheric transport from European nuclear fuel reprocessing plants at Sellafield and Cap La Hague. This hypothesis is supported by back trajectory simulations indicating that volume elements of air originating in the Sellafield/La Hague regions would have been present at arctic sampling stations coincident with sampling collection.Ministerio de Educación y Ciencia POL2006–0044

    Interception of atmospheric fluxes by Arctic sea ice: Evidence from cosmogenic 7

    No full text

    The GEOTRACES Intermediate Data Product 2017

    No full text
    Unidad de excelencia María de Maeztu MdM-2015-0552The GEOTRACES Intermediate Data Product 2017 (IDP2017) is the second publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2016. The IDP2017 includes data from the Atlantic, Pacific, Arctic, Southern and Indian oceans, with about twice the data volume of the previous IDP2014. For the first time, the IDP2017 contains data for a large suite of biogeochemical parameters as well as aerosol and rain data characterising atmospheric trace element and isotope (TEI) sources. The TEI data in the IDP2017 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at crossover stations. The IDP2017 consists of two parts: (1) a compilation of digital data for more than 450 TEIs as well as standard hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing an on-line atlas that includes more than 590 section plots and 130 animated 3D scenes. The digital data are provided in several formats, including ASCII, Excel spreadsheet, netCDF, and Ocean Data View collection. Users can download the full data packages or make their own custom selections with a new on-line data extraction service. In addition to the actual data values, the IDP2017 also contains data quality flags and 1-σ data error values where available. Quality flags and error values are useful for data filtering and for statistical analysis. Metadata about data originators, analytical methods and original publications related to the data are linked in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2017 as section plots and rotating 3D scenes. The basin-wide 3D scenes combine data from many cruises and provide quick overviews of large-scale tracer distributions. These 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of tracer plumes near ocean margins or along ridges. The IDP2017 is the result of a truly international effort involving 326 researchers from 25 countries. This publication provides the critical reference for unpublished data, as well as for studies that make use of a large cross-section of data from the IDP2017. This article is part of a special issue entitled: Conway GEOTRACES - edited by Tim M. Conway, Tristan Horner, Yves Plancherel, and Aridane G. González
    corecore