39 research outputs found

    High-resolution characterization of the diffusion of light chemical elements in metallic components by scanning microwave microscopy

    Get PDF
    International audienceAn original sub-surface, high spatial resolution tomographic technique based on scanning microwave microscopy (SMM) is used to visualize in-depth materials with different chemical compositions. A significant phase difference in SMM between aluminum and chromium buried patterns has been observed. Moreover this technique was used to characterize a solid solution of a light chemical element (oxygen) in a metal lattice (zirconium). The large solubility of the oxygen in zirconium leads to modifications of the properties of the solid solution that can be measured by the phase shift signal in the SMM technique. The signal obtained in cross-section of an oxidized Zr sample shows the excellent agreement between phase shift profiles measured at different depths. Such a profile can reveal the length of diffusion of the oxygen in zirconium under the surface. The comparison with the oxygen concentration measured by nuclear reaction analysis shows excellent agreement in terms of length of diffusion and spatial distribution of the oxygen. A rapid calibration shows a linear dependence between the phase shift and the oxygen concentration. The SMM method opens up new possibilities for indirect measurements of the oxygen concentration dissolved in the metal lattic

    Advances in quantitative nanoscale subsurface imaging by mode-synthesizing atomic force microscopy

    Get PDF
    This paper reports on advances toward quantitative non-destructive nanoscale subsurface investigation of a nanofabricated sample based on mode synthesizing atomic force microscopy with heterodyne detection, addressing the need to correlate the role of actuation frequencies of the probe f(p) and the sample f(s) with depth resolution for 3D tomography reconstruction. Here, by developing a simple model and validating the approach experimentally through the study of the nanofabricated calibration depth samples consisting of buried metallic patterns, we demonstrate avenues for quantitative nanoscale subsurface imaging. Our findings enable the reconstruction of the sample depth profile and allow high fidelity resolution of the buried nanostructures. Non-destructive quantitative nanoscale subsurface imaging offers great promise in the study of the structures and properties of complex systems at the nanoscale

    Response of the Great Barrier Reef to sea level and environmental changes over the past 30,000 years

    Get PDF
    Previous drilling through submerged fossil coral reefs has greatly improved our understanding of the general pattern of sea-level change since the Last Glacial Maximum, however, how reefs responded to these changes remains uncertain. Here we document the evolution of the Great Barrier Reef (GBR), the world\u27s largest reef system, to major, abrupt environmental changes over the past 30 thousand years based on comprehensive sedimentological, biological and geochronological records from fossil reef cores. We show that reefs migrated seaward as sea level fell to its lowest level during the most recent glaciation (~20.5-20.7 thousand years ago (ka)), then landward as the shelf flooded and ocean temperatures increased during the subsequent deglacial period (~20-10 ka). Growth was interrupted by five reef-death events caused by subaerial exposure or sea-level rise outpacing reef growth. Around 10 ka, the reef drowned as the sea level continued to rise, flooding more of the shelf and causing a higher sediment flux. The GBR\u27s capacity for rapid lateral migration at rates of 0.2-1.5 m yr−1 (and the ability to recruit locally) suggest that, as an ecosystem, the GBR has been more resilient to past sea-level and temperature fluctuations than previously thought, but it has been highly sensitive to increased sediment input over centennial-millennial timescales

    Identification of novel target genes of nerve growth factor (NGF) in human mastocytoma cell line (HMC-1 (V560G c-Kit)) by transcriptome analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nerve growth factor (NGF) is a potent growth factor that plays a key role in neuronal cell differentiation and may also play a role in hematopoietic differentiation. It has been shown that NGF induced synergistic action for the colony formation of CD34 positive hematopoietic progenitor cells treated with macrophage-colony stimulating factor (M-CSF or CSF-1), or stem cell factor (SCF). However, the exact role of NGF in hematopoietic system is unclear. It is also not clear whether NGF mediated signals in hematopoietic cells are identical to those in neuronal cells.</p> <p>Results</p> <p>To study the signal transduction pathways induced by NGF treatment in hematopoietic cells, we utilized the mastocytoma cell line HMC-1(V560G c-Kit) which expresses the NGF receptor, tropomyosin-receptor-kinase (Trk)A, as well as the constitutively activated SCF receptor, V560G c-Kit, which can be inhibited completely by treatment with the potent tyrosine kinase inhibitor imatinib mesylate (imatinib). NGF rescues HMC-1(V560G c-Kit) cells from imatinib mediated cell death and promotes proliferation. To examine the NGF mediated proliferation and survival in these cells, we compared the NGF mediated upregulated genes (30 and 120 min after stimulation) to the downregulated genes by imatinib treatment (downregulation of c-Kit activity for 4 h) by transcriptome analysis. The following conclusions can be drawn from the microarray data: Firstly, gene expression profiling reveals 50% overlap of genes induced by NGF-TrkA with genes expressed downstream of V560G c-Kit. Secondly, NGF treatment does not enhance expression of genes involved in immune related functions that were down regulated by imatinib treatment. Thirdly, more than 55% of common upregulated genes are involved in cell proliferation and survival. Fourthly, we found Kruppel-like factor (KLF) 2 and Smad family member 7 (SMAD7) as the NGF mediated novel downstream genes in hematopoietic cells. Finally, the downregulation of KLF2 gene enhanced imatinib induced apoptosis.</p> <p>Conclusion</p> <p>NGF does not induce genes which are involved in immune related functions, but induces proliferation and survival signals in HMC-1(V560G c-Kit) cells. Furthermore, the current data provide novel candidate genes, KLF2 and SMAD7 which are induced by NGF/TrkA activation in hematopoietic cells. Since the depletion of KLF2 causes enhanced apoptosis of HMC-1(V560G c-Kit), KLF2 may play a role in the NGF mediated survival signal.</p

    Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism

    Full text link
    Morphogens act in developing tissues to control the spatial arrangement of cellular differentiation(1,2). The activity of a morphogen has generally been viewed as a concentration-dependent response to a diffusible signal, but the duration of morphogen signalling can also affect cellular responses(3). One such example is the morphogen sonic hedgehog (SHH). In the vertebrate central nervous system and limbs, the pattern of cellular differentiation is controlled by both the amount and the time of SHH exposure(4-7). How these two parameters are interpreted at a cellular level has been unclear. Here we provide evidence that changing the concentration or duration of SHH has an equivalent effect on intracellular signalling. Chick neural cells convert different concentrations of SHH into time-limited periods of signal transduction, such that signal duration is proportional to SHH concentration. This depends on the gradual desensitization of cells to ongoing SHH exposure, mediated by the SHH-dependent upregulation of patched 1 (PTC1), a ligand-binding inhibitor of SHH signalling(8). Thus, in addition to its role in shaping the SHH gradient(8-10), PTC1 participates cell autonomously in gradient sensing. Together, the data reveal a novel strategy for morphogen interpretation, in which the temporal adaptation of cells to a morphogen integrates the concentration and duration of a signal to control differential gene expression.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62511/1/nature06347.pd

    Direct targets of Klf5 transcription factor contribute to the maintenance of mouse embryonic stem cell undifferentiated state

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A growing body of evidence has shown that Krüppel-like transcription factors play a crucial role in maintaining embryonic stem cell (ESC) pluripotency and in governing ESC fate decisions. Krüppel-like factor 5 (Klf5) appears to play a critical role in these processes, but detailed knowledge of the molecular mechanisms of this function is still not completely addressed.</p> <p>Results</p> <p>By combining genome-wide chromatin immunoprecipitation and microarray analysis, we have identified 161 putative primary targets of Klf5 in ESCs. We address three main points: (1) the relevance of the pathways governed by Klf5, demonstrating that suppression or constitutive expression of single Klf5 targets robustly affect the ESC undifferentiated phenotype; (2) the specificity of Klf5 compared to factors belonging to the same family, demonstrating that many Klf5 targets are not regulated by Klf2 and Klf4; and (3) the specificity of Klf5 function in ESCs, demonstrated by the significant differences between Klf5 targets in ESCs compared to adult cells, such as keratinocytes.</p> <p>Conclusions</p> <p>Taken together, these results, through the definition of a detailed list of Klf5 transcriptional targets in mouse ESCs, support the important and specific functional role of Klf5 in the maintenance of the undifferentiated ESC phenotype.</p> <p>See: <url>http://www.biomedcental.com/1741-7007/8/125</url></p

    Differential Gene Expression Patterns of EBV Infected EBNA-3A Positive and Negative Human B Lymphocytes

    Get PDF
    The genome of Epstein-Barr virus (EBV) encodes 86 proteins, but only a limited set is expressed in EBV–growth transformed B cells, termed lymphoblastoid cell lines (LCLs). These cells proliferate via the concerted action of EBV nuclear antigens (EBNAs) and latent membrane proteins (LMPs), some of which are rate limiting to establish a stable homeostasis of growth promoting and anti-apoptotic activities. We show here that EBV mutants, which lack the EBNA-3A gene, are impaired but can still initiate cell cycle entry and proliferation of primary human B cells in contrast to an EBNA-2 deficient mutant virus. Surprisingly, and in contrast to previous reports, these viral mutants are attenuated in growth transformation assays but give rise to permanently growing EBNA-3A negative B cell lines which exhibit reduced proliferation rates and elevated levels of apoptosis. Expression profiles of EBNA-3A deficient LCLs are characterized by 129 down-regulated and 167 up-regulated genes, which are significantly enriched for genes involved in apoptotic processes or cell cycle progression like the tumor suppressor gene p16/INK4A, or might contribute to essential steps of the viral life cycle in the infected host. In addition, EBNA-3A cellular target genes remarkably overlap with previously identified targets of EBNA-2. This study comprises the first genome wide expression profiles of EBNA-3A target genes generated within the complex network of viral proteins of the growth transformed B cell and permits a more detailed understanding of EBNA-3A's function and contribution to viral pathogenesis

    Monocytes induce STAT3 activation in human mesenchymal stem cells to promote osteoblast formation

    Get PDF
    A major therapeutic challenge is how to replace bone once it is lost. Bone loss is a characteristic of chronic inflammatory and degenerative diseases such as rheumatoid arthritis and osteoporosis. Cells and cytokines of the immune system are known to regulate bone turnover by controlling the differentiation and activity of osteoclasts, the bone resorbing cells. However, less is known about the regulation of osteoblasts (OB), the bone forming cells. This study aimed to investigate whether immune cells also regulate OB differentiation. Using in vitro cell cultures of human bone marrow-derived mesenchymal stem cells (MSC), it was shown that monocytes/macrophages potently induced MSC differentiation into OBs. This was evident by increased alkaline phosphatase (ALP) after 7 days and the formation of mineralised bone nodules at 21 days. This monocyte-induced osteogenic effect was mediated by cell contact with MSCs leading to the production of soluble factor(s) by the monocytes. As a consequence of these interactions we observed a rapid activation of STAT3 in the MSCs. Gene profiling of STAT3 constitutively active (STAT3C) infected MSCs using Illumina whole human genome arrays showed that Runx2 and ALP were up-regulated whilst DKK1 was down-regulated in response to STAT3 signalling. STAT3C also led to the up-regulation of the oncostatin M (OSM) and LIF receptors. In the co-cultures, OSM that was produced by monocytes activated STAT3 in MSCs, and neutralising antibodies to OSM reduced ALP by 50%. These data indicate that OSM, in conjunction with other mediators, can drive MSC differentiation into OB. This study establishes a role for monocyte/macrophages as critical regulators of osteogenic differentiation via OSM production and the induction of STAT3 signalling in MSCs. Inducing the local activation of STAT3 in bone cells may be a valuable tool to increase bone formation in osteoporosis and arthritis, and in localised bone remodelling during fracture repair

    The FunGenES Database: A Genomics Resource for Mouse Embryonic Stem Cell Differentiation

    Get PDF
    Embryonic stem (ES) cells have high self-renewal capacity and the potential to differentiate into a large variety of cell types. To investigate gene networks operating in pluripotent ES cells and their derivatives, the “Functional Genomics in Embryonic Stem Cells” consortium (FunGenES) has analyzed the transcriptome of mouse ES cells in eleven diverse settings representing sixty-seven experimental conditions. To better illustrate gene expression profiles in mouse ES cells, we have organized the results in an interactive database with a number of features and tools. Specifically, we have generated clusters of transcripts that behave the same way under the entire spectrum of the sixty-seven experimental conditions; we have assembled genes in groups according to their time of expression during successive days of ES cell differentiation; we have included expression profiles of specific gene classes such as transcription regulatory factors and Expressed Sequence Tags; transcripts have been arranged in “Expression Waves” and juxtaposed to genes with opposite or complementary expression patterns; we have designed search engines to display the expression profile of any transcript during ES cell differentiation; gene expression data have been organized in animated graphs of KEGG signaling and metabolic pathways; and finally, we have incorporated advanced functional annotations for individual genes or gene clusters of interest and links to microarray and genomic resources. The FunGenES database provides a comprehensive resource for studies into the biology of ES cells
    corecore