
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Response of the Great Barrier Reef to sea level and
environmental changes over the past 30,000 years

Citation for published version:
Webster, JM,  Braga, JC, Humblet, M, Potts, D, Iryu, Y, Yokoyama, Y, Fujita, K, bourillot, R, Esat, TM,
fallon, S, Thompson, WG, Thomas, A, kan, H, McGregor, HV, Hinestrosa, G, Obrochta, SP & lougheed, BC
2018, 'Response of the Great Barrier Reef to sea level and  environmental changes over the past 30,000
years' Nature Geoscience. DOI: 10.1038/s41561-018-0127-3

Digital Object Identifier (DOI):
10.1038/s41561-018-0127-3

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Nature Geoscience

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 16. Jun. 2018

http://dx.doi.org/10.1038/s41561-018-0127-3
https://www.research.ed.ac.uk/portal/en/publications/response-of-the-great-barrier-reef-to-sea-level-and-environmental-changes-over-the-past-30000-years(920d9bf3-2233-464d-8890-6bce999804b7).html


Articles
https://doi.org/10.1038/s41561-018-0127-3

1Geocoastal Research Group, School of Geosciences, The University of Sydney, Sydney, Australia. 2Departamento de Estratigrafía y Paleontología, 
Universidad de Granada, Granada, Spain. 3Department of Earth and Planetary Sciences, Nagoya University, Nagoya, Japan. 4Department of Ecology & 
Evolutionary Biology, University of California, Santa Cruz, CA, USA. 5Institute of Geology and Paleontology, Graduate School of Science, Tohoku University, 
Sendai, Japan. 6Atmosphere and Ocean Research Institute, University of Tokyo, Tokyo, Japan. 7Department of Earth and Planetary Science, Graduate 
School of Science, University of Tokyo, Tokyo, Japan. 8Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan. 9Department of Physics 
and Earth Sciences, University of the Ryukyus, Okinawa, Japan. 10EA 4592G&E, ENSEGID, Bordeaux INP, Pessac Cedex, France. 11Research School of Earth 
Sciences, Australian National University, Canberra, Australia. 12Research School of Physics and Engineering, Australian National University, Canberra, 
Australia. 13Department of Geology & Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA. 14School of GeoSciences, University 
of Edinburgh, Edinburgh, UK. 15Graduate School of Integrated Sciences for Global Society Kyushu University, Fukuoka, Japan. 16School of Earth and 
Environmental Sciences, University of Wollongong, Wollongong, Australia. 17Graduate School of International Resource Science, Akita University, Akita, 
Japan. 18LSCE/IPSL, Laboratoire CNRS-CEA-UVSQ, Gif-sur-Yvette, France. *e-mail: jody.webster@sydney.edu.au

The Last Glacial Maximum (LGM) and subsequent deglacia-
tion represents a major reorganization of the global climate 
system, with rapid sea-level rises (for example, meltwater 

pulses (MWPs) 1A0, 1A, 1B and 1C)1–4 linked to ice-sheet collapse, 
changes in global ocean circulation and temperatures5, and periods 
of divergent atmospheric CO2 concentrations and ocean aragonite/
calcite saturation states6. Although to understand the responses of 
coral reef systems to these major, abrupt environmental changes is 
crucial to place possible reef futures into an appropriate time frame 
within the context of global processes7,8, few fossil reef records (for 
example, Barbados, Huon Peninsula, Vanuatu and Tahiti)1,2,9–11 fully 
span this ~30–10 thousand years (kyr) period. Thus, questions 
remain about the critical environmental thresholds that led to reef 
demise9,12 in the past and how reefs recover after disturbances on 
different spatiotemporal scales13–15.

In this study, we present a synthesis of all the available geomor-
phic, sedimentological, biological and dating information from 
fossil reef cores recovered from the Great Barrier Reef (GBR) 
shelf-edge reefs during Integrated Ocean Drilling Program (IODP) 
Expedition 32516. Radiometric and geochemical investigations of 

these cores, combined with sediment cores from the adjacent basin, 
have yielded precise constraints on variations in the relative sea level 
(RSL) (Y. Yokoyama et al., manuscript in preparation), sea-surface 
temperature (SST)17 and sediment flux18 over this period. We now 
document how the GBR responded to these major environmental 
variations, which includes the corresponding changes to reef mor-
phologies, communities and growth rates. We also confirm the 
existence and location of reef refugia19,20 during the LGM sea level 
and establish the critical environmental conditions at which the reef 
died and re-established on centennial–millennial timescales8 over 
the past 30 kyr.

Shelf-edge reef structure, composition and sequences
Transects of reef cores were recovered off Mackay (Hydrographer’s 
Passage at 19.7 °S, HYD-01C, Sites M0030–M0039) and Cairns 
(Noggin Pass at 17.1 °S, NOG-01B, Sites M0053–M0057), and 
consisted of 20 holes drilled at 16 different sites (Figs. 1 and 2 and 
Supplementary Notes 1 and 2), and were used to investigate the 
evolution of the GBR. U–Th and 14C accelerator mass spectrometry 
(AMS) dating16,17,21(Y. Yokoyama et al., manuscript in preparation) 
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of > 580 corals and coralline algae, combined with sedimentologi-
cal and biological analyses (Methods), provided a robust chro-
nostratigraphic framework to assess the impacts of abrupt sea-level 
and associated environmental changes (Supplementary Notes 2–5 
and Supplementary Figs. 1 and 2). First, we show that the GBR 
had a complex and dynamic history of reef growth and demise 
over the past 30 kyr, characterized by five distinct reef sequences 
(Reefs 1–5) that recorded episodic seaward (offlapping) then land-
ward (onlapping) reef growth across the shelf (Figs. 1 and 2). Each 
reef sequence consists of coherent, coeval shallow and deep reef 
habitats that can be traced in time and space. Second, we estab-
lish the nature and timing of the reef initiation and demise events, 
and document the corresponding changes in coral–algal assem-
blages, vertical accretion (VA) rates (that is, upward growth of 
the reef) and palaeoenvironmental conditions at each stage of the  
GBR’s development.

The development of the five reef sequences over the past ~30 kyr 
reflects the GBR’s responses to major changes in global climate 
(Fig. 3a). As temperatures cooled into the LGM, high-latitude ice 
sheets reached their maximum extent and reduced global mean sea 
levels (GMSL ~125–130 metres below sea level (mbsl)). In the GBR, 
the RSL was lowest (~118 m) by ~20.7–20.5 thousand years ago (ka) 
(Y. Yokoyama et al., manuscript in preparation) (Fig. 3b,d). Western 
Pacific SSTs were also lowest at 18–20 ka (refs 17,22) (Fig. 3a), with a 
corresponding much larger north–south SST gradient that points 
to a northward expansion of cooler subtropical waters and changes 
to GBR ocean currents17. As the deglaciation progressed from the 
LGM to 10 ka, SSTs warmed and sea level rose, albeit rapidly and 
non-linearly, as a result of global ice-sheet melting (Fig. 3a). Sea-
level change over the LGM to deglacial period was the primary, 
although not the sole, driver of spatiotemporal variations in reef 
development, coral–algal assemblages and VA rates, as recorded 
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in the five reef sequences (Figs. 3 and 4). Below we explore the 
interplay between the major environmental drivers (sea level, 
SST and sediments) at each stage of the GBR’s development and 
demonstrate that its growth and demise was more complex than 
 previously thought19,20.

Reef growth and demise during global glaciation
The GBR-initiated growth on the shelf edge at 28–27 ka follow-
ing the GMSL fall23 from Marine Isotope Stage (MIS) 3 to MIS 2. 
At Noggin Pass, an age of 35.6 + 0.30 to 34.3 + 0.30 ka21 (core 
M0056A-2R) constrains the timing of the exposure and death 
of Reef 1 (Supplementary Note 2) as GMSL fell ~40 m (ref. 23) at 
the inception of the LGM. The oldest ages from the inner terraces 
(holes M0031–M0033A and M0055A) indicate that Reef 2 started 
to grow on MIS 3 or older slope deposits between 27.35 + 0.14 to 
27.34 + 0.07 ka, synchronously across the two regions as shallow-
water reef growth migrated seaward. At this time the GBR formed a 
very narrow and ephemeral fringing reef system24 that was capable 
only of a slow vertical growth (0.3–2.5 mm yr−1) compared with the 
adjacent modern Holocene counterparts (Reef 5) (Fig. 3b,d and 
Supplementary Figs. 3 and 4). These apparently poor reef-growth 
conditions are consistent with globally synchronous slow VA rates 
(a meta-analysis is given Supplementary Figs. 5 and 6), but the  

reasons remain unclear (for example, restricted accommodation 
space or higher local sedimentation during the sea-level fall)25.

Although the timing and maximum extent of the LGM remain 
controversial23, RSL in the GBR fell to ~118 m below the present 
by 20.70 + 0.20 to 20.51 + 0.02 ka (Y. Yokoyama et al., manuscript 
in preparation). Major growth hiatuses at ~105 mbsl, at both tran-
sects (holes M0055A and M0031–M0033A), represent the turn-off 
of Reef 2 at 22.11 + 0.23 to 21.87 + 0.24 ka. Coral–algal assemblages 
indicate that palaeowater depths were shallow (< 10 m) before Reef 
2 death, and lithological, diagenetic and seismic evidence16,21,24 con-
firm that the top of the reef is a subaerial exposure surface, consis-
tent with a major RSL fall (Methods and Supplementary Note 2). 
However, shallow-reef development migrated from ~0.25 to 1 km 
seaward in < 2 kyr, which indicates a robust GBR ecosystem during 
the LGM capable of average reef habitat migration rates of ~0.5 and 
0.2 m yr−1 at Hydrographer’s Passage and Noggin Pass, respectively.

Surviving and thriving during the LGM
These are the first direct data to show that reefs were established 
on the GBR shelf edge during the LGM sea level, and demonstrate 
that the recruitment by propagules from external reef refugia (for 
example, the Queensland Plateau)20 was not necessary for the 
GBR to survive harsh LGM conditions. At both locations, Reef 3a  
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initiated growth at 20.70 + 0.20 to 20.51 + 0.02 ka on top of deeper 
fore-reef slope deposits of Reef 2 (Figs. 1 and 2) at the base of the 
mid-terraces (holes M0036A, M0035A, M0039A and M0053A), 
which indicates a pattern of shallowing, offlapping sequences 
related to seaward migration of the GBR. Shallow coral–algal 
assemblages (< 10 m) dominate the LGM and the subsequent 
sea-level rise until 17 ka, which leads to a continuous vertical 
aggradation of Reef 3a at accretion rates of 3.9–4.4 mm yr−1, simi-
lar to Holocene rates. Although Reef 3a has no discernible reef-
drowning event or distinct changes in coral–algal assemblages 
associated with the 19 ka MWP 1A0, hole M0053A has a clear 
inflection point, which indicates a major slowing of accretion (3.9 
to 1.8 mm yr−1) after 19.22 + 0.01 ka.

Rapid sea-level rise, shelf flooding, reef growth and demise
The deglaciation (~17–16.5 ka) saw a major reorganization of GBR 
shelf-edge reefs from aggrading to onlapping shallow sequences. 
Continued and rapid sea-level rise and associated environmen-
tal changes (for example, sediment flux) had two main impacts:  
(1) reflooding and re-initiation of reef growth on the inner ter-
races (holes M0033–M0031A and M0055A) and (2) major 
changes in lithologies, assemblages, accretion rates and ultimately 
reef drowning (RD) on the most distal part of the shelf edge (mid 
and outer terraces) (holes M0035A, M0036A, M0039A, M0053A 
and M0054A,B). Inner-terrace ages tightly constrain reflooding 
of the dead Reef 2 and the turn-on of Reef 3b at 16.85 + 0.24 to 
16.24 + 0.24 ka. This represents a landward migration of shallow-
water coral–algal assemblages from outer and mid terraces to the 
inner terraces that coincided with a major environmental pertur-
bation that caused the drowning of Reef 3a. Down-hole gamma-ray 
logs16 from the inner and mid terraces at Hydrographer’s Passage 
(holes M0031A and M0036A) (Supplementary Figs. 1 and 2)  
indicate an increased flux of fine terrigenous sediments ~16 ka 
on the now-deeper fore-reef slope that may have reduced light 
availability and water quality to cause Reef 3a drowning. This is 
consistent with shelf-flooding reconstructions that show a peak 
in the area of flooded shelf at Hydrographer’s Passage at ~16 ka 
(Supplementary Note 5).

Meanwhile, on the inner terrace (holes M0031–M0033A and 
M0055A), active fringing-reef growth continued, even flourishing 
at Hydrographer’s Passage, with VA rates up to 20 mm yr−1 at 15.5–
15.0 ka. These rates, the highest recorded from the GBR (Fig. 3) for 
the past 30 ka, coincided with a shift to shallow, high-energy, reef 
habitats characterized by a mix of coral assemblages (dominated by 
Isopora, Acropora or Seriatopora). At this location, in spite of the 
high sediment flux indicated by the gamma-ray data, Reef 3b kept 
pace with the rapid rises in sea level and SST17,22 prior to MWP 1A. 
Studies of Holocene near-shore reefs in the GBR indicate that even 
the most turbid fringing reefs are capable of VA rates that match or 
exceed those of clear water outer-shelf reefs26,27. Unlike the mid and 
outer terraces, the near-shore Reef 3b was less sensitive to sediment 
flux, and grew rapidly as accommodation increased with rapidly 
 rising sea levels.

Although the exact timing differs, our meta-analysis of 
Barbados and Tahiti data (Supplementary Figs. 5 and 6) shows 
the highest accretion rates in both records clustering around 
the disputed1,2 timing of MWP 1A. Results from Tahiti provide 
firm constraints on the timing (14.65–14.31 ka) and magnitude 
(14–18 m) of MWP 1A (ref. 2) and confirm that the Tahiti reef did 
not drown then9. The GBR record also shows no distinct drowning 
event directly correlated with MWP 1A, and the continuous shal-
low-water assemblages (< 10 m) throughout some cores (M0031–
M0033A) and the lack of recovery in others (M0055A) make it 
impossible to improve the Tahiti MWP 1A constraints. Ultimately, 
however, the sustained rapid sea-level rise during MWP 1A  
(ref. 2) and prior to the Younger Dryas (YD), combined with 
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Fig. 3 | Evolution of the GBR over the past 30 kyr in relation to major sea-
level and environmental changes. a, North Greenland Ice Core Project 
(NGRIP ice-core δ 18O record, with timing and duration of MWPs 1A0 (19 ka), 
MWP 1A and MWP 1B and other global climate events (LGM and YD) as 
vertical grey shaded bars1,2, 29,30. The brown bar shows a massive flux of fine 
sediment to the slope at ~10 ka (ref. 18) when > 60–75% of the GBR shelf area 
was flooded (Supplementary Note 4). The orange line shows the western 
Pacific warm pool (WPWP) SST anomalies (reconstructed from planktonic 
foraminifera Mg/Ca (ref. 22)). Points and regression lines are regional SST 
anomalies (Expedition 325 coral Sr/Ca (ref. 17)) from Noggin Pass (red) 
and Hydrographer’s Passage (blue). b, VA history for HYD-01C with the 
GBR maximum RSL curves (Y. Yokoyama et al., manuscript in preparation) 
(blue line) and percentage of shelf flooded (brown lines, not scaled to 
depth). Stepped plots are calculated VA rates, binned at 0.5 kyr intervals. 
c, Summary of spatial and temporal patterns of reef evolution (Reefs 1–5) 
at HYD-01C that encompass the outer-, mid- and inner-reef terraces, the 
inner- and outer-reef barriers and the modern Holocene reef. Periods of 
major reef turn-on, reef turn-off or reef death events caused by RD, RE and 
hiatus events are shown along with the distribution of coral assemblages 
(same colours as in Figs. 1, 2 and 4). The grey dashed boxes represent the 
timing and duration of the deep-water (> 10 m) fore-reef slope deposits, 
which are sometimes coeval with shallow-water (< 10 m) reef deposits 
upslope. d, VA history for NOG-01B (colours and plots as for b). e, Summary 
of spatial and temporal patterns of reef evolution (Reefs 1–5) at NOG-01B 
that encompass the outer-, mid- and inner-reef terraces, the inner- and 
outer-reef barriers and the modern Holocene reef. Periods of major reef 
turn-on, reef turn-off or reef death events caused by RD, RE and hiatus 
events are shown along with the distribution of coral assemblages (same 
colours as in Figs. 1, 2 and 4). The grey dashed boxes represent the timing 
and duration of the deep-water (> 10 m) fore-reef slope deposits, which are 
sometimes coeval with shallow-water ( < 10 m) reef deposits upslope.
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declining oceanographic conditions25, contributed to the final 
demise of Reef 3b at 13.72 + 0.07 ka.

Fringing to barrier–reef transition and the proto-GBR
Rapid deglacial sea-level rise forced a major landward migration 
of shallow-reef habitats 1.3–1.8 km to the inner (Noggin Pass, hole 
M0057A) and outer barrier (Hydrographer’s Passage, hole M0034A) 
in < 2 kyr. Reef 4 initiated growth soon after the reflooding of 
Reef 1 between 73 and 64 mbsl at 13.09 + 0.08 and 12.97 + 0.07 ka 
for Hydrographer’s Passage and Noggin Pass, respectively. Reef 4 
exhibits mainly continuous, shallow-water (< 5–10 m) Isopora-
dominated assemblages with very rapid initial accretion rates up 
to 9.6 mm yr−1 (Fig. 3). The Tahiti, Vanuatu and Huon Peninsula 
records have similarly rapid accretion rates (8–12 mm yr−1) during 
the YD (Supplementary Figs. 5 and 6). This rapid growth probably 
reflects the dominance of Acropora–Isopora reef frameworks and 
coincides with the West Pacific SST reaching modern values17,22. For 
the GBR, this also represents a major reorganization from fringing 
to barrier–reef-dominated morphologies (Figs. 1 and 2) that can be 
traced almost continuously over 2,000 km (ref. 24), and represents 
the true ‘proto-GBR’ that preceded the modern Holocene barrier 
reef. Basement substrate highs beneath the barriers24 may have 
influenced this morphological change, and similar fringing to bar-
rier–reef transitions are observed in Tahiti as the developing barrier 
acted initially to trap sediments and promote rapid reef growth28.

Demise of the proto-GBR caused by massive sediment flux
The top of Reef 4 is marked by a slower accretion (4.2 and 1.4 mm yr−1 
at Hydrographer’s Passage and Noggin Pass, respectively) as the 
sequence transitioned to deeper assemblages at 10.32 + 0.04 to 
10.14 + 0.16 ka, well after the 11.45 ka MWP 1B at Barbados1,3,29. 
The GBR data are consistent with Papeete30 and Expedition 310 
data9 and show no evidence for an abrupt drowning event directly 
associated with the 14 + 2 m sea-level pulse at ~11.45 ka. The ques-
tion remains as to what caused this period of slower accretion and 
suboptimal conditions that prevented keep-up growth, and led to 
the final drowning of the proto-GBR at 10.31–10.14 ka. Sediment 
cores along a 2,700 km north–south GBR transect show a massive 
increase in the flux of fine siliciclastic and carbonate sediments to 
the slope between 11 and 8 ka, peaking at ~10 ka, and almost three 
times above the LGM to Holocene background levels18,31. This is 
consistent with shelf-flooding models showing > 60–75% of the 
shelf area inundated around this time (Fig. 3b,d and Supplementary 
Note 5). Although the impact of a higher pCO2

 (> 260 ppm) and 
reduced reef calcification32 cannot be ruled out, we propose that 
Reef 4 drowned as a direct consequence of this elevated sediment 
flux and reduced water quality reaching a threshold level against a 
backdrop of continued sea-level rise. This interpretation is consis-
tent with declining VA rates prior to the final drowning as the bar-
rier building, but highly sediment intolerant33, Isopora-dominated 
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Fig. 4 | Simplified model that shows the evolution of the GBR over the past 30 kyr. a, Basic chronostratigraphy, facies relationships and key stages during 
the development of the shelf-edge reefs. Darker shading indicates the distribution of shallower (< 10 m) reef facies and paler shading that of deeper (> 10 m) 
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community became stressed and eventually gave up28,34. However, 
this remains to be tested against other indicators of sediment stress 
(for example, increased bioerosion). The final landward reef migra-
tion and GBR-wide turn-on of the modern Holocene GBR (Reef 5) 
at ~9 ka (ref. 19) occurred as sea levels rose above the Last Interglacial 
(125 ka)20,21 reef substrate at ~10–20 mbsl.

Implications for understanding GBR demise and resilience
IODP Expedition 325 provides the first continuous record of the 
GBR’s evolution over the past 30 kyr (Fig. 4). Patterns of growth and 
demise of the five reefs are consistent between the two locations, 
although some differences in reef architecture and composition 
reflect local variations in shelf geometry, substrate, sediment flux 
and SST gradients. Sea-level change was the fundamental control 
on reef development and position as the GBR closely tracked falling 
and rising sea levels across the shelf edge. At times, the reef was able 
to track rising sea level, accreting vertically at up to 20 m kyr−1 and 
migrating laterally at 1.5 m yr–1. Reef death occurred in two ways: 
subaerial exposure caused by sea-level fall or RD due to rapid sea-
level rise and associated environmental changes (Supplementary 
Table 6). Unlike previous studies1,12,34, our findings highlight the 
importance of a high sediment flux and poor water quality, rather 
than of an abrupt sea-level rise alone (that is, MWPs), in ultimately 
determining reef demise. We also show that reef morphology (fring-
ing versus barrier), reef location (shelf distal versus proximal) and 
coral assemblage composition (for example, Isopora dominated) 
also influenced the sensitivity of the GBR to past sediment fluxes.

The GBR persisted on the shelf edge throughout the LGM and, 
where suitable substrates were available, shallow-water reef habitats 
were capable of migrating seawards and then landwards in response 
to sea-level and other environmental changes. This temporal conti-
nuity of reef habitats within the GBR also provided a potential source 
of coral–algal recruits to re-establish reefs locally, without requiring 
external or regional refugia20. We attribute the GBR’s robustness 
on centennial–millennial scales, despite such major environmen-
tal perturbations as rising sea levels (~120 m at up to 30 mm yr–1) 
(Y. Yokoyama et al., manuscript in preparation) and temperatures 
(~3–4 °C over the deglacial, up to 0.04 °C per 100 years)17, to the 
presence of adjacent coeval shallow and deep reef habitats that pro-
vided the recruits (particularly broadcast spawners) that enabled a 
rapid migration across the shelf and persistence of the ecosystem 
connectivity similar to modern reef systems35. This hypothesis may 
explain (in part) how the GBR has reconstituted again and again on 
100 kyr timescales over its longer-term history15. Finally, our find-
ings that demonstrate the GBR’s sensitivity to such environmental 
factors as sediment flux and water quality over centuries to mil-
lennia are consistent with the declines on some inshore GBR reefs 
over the past two centuries since European settlement13. However, 
given the current rate of SST increase (0.7 °C per 100 years), sharp 
declines in coral coverage36 and the potential for year-on-year mass 
coral bleaching37, our new findings provide little evidence for resil-
ience of the GBR over the next few decades.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41561-018-0127-3.
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Methods
Lithological and chronostratigraphic analysis. The cores were logged and the 
stratigraphic distribution of the main reef framework (boundstones) and detrital 
(packstones–rudstones and unconsolidated sediments) facies defined. We used 
a database of > 580 published U–Th coral and 14C AMS coral and coralline 
ages16,17,21 (Y. Yokoyama et al., manuscript in preparation) combined with all the 
available geomorphic, lithological, coral–algal assemblage, petrophysical and 
seismic information (Supplementary Notes 1 and 2 and Supplementary Fig. 7) to 
establish a robust, new chronostratigraphic framework for the evolution of the 
GBR shelf-edge reef system. Four distinct reef sequences, distinguished by depth 
and proximity to the shelf edge, are bounded at the base by unconformities that 
are either subaerial exposure or maximum flooding surfaces. The top of each 
reef sequence records the reef-death event and is bounded by either (1) the last 
stratigraphic appearance of shallow (< 10 m palaeowater depths) coral reef facies 
in Reefs 3a, 3b and 4 (that is, RD) or (2) a subaerial exposure surface in Reefs 1 
and 2 (that is, reef exposure (RE)). Wherever possible, the closest in situ U–Th 
coral age to these boundaries was used to constrain the timing of the turn-on and 
turn-off of each reef sequence (Supplementary Table 6). Due to recovery issues and 
dating gaps, the record and cause of reef demise at ~16–17 ka and the boundary 
between Reefs 3a and 3b are more tentative (long dashed lines in Figs. 1 and 2 and 
Supplementary Figs. 1 and 2).

Coral–algal assemblage and palaeoenvironmental analysis. The lowest 
taxonomic level possible of all corals, and their growth positions and context, were 
assessed in cores. Coral assemblages were identified by examining the succession 
of in situ coral taxa in each hole and by using a suite of statistical analyses (cluster 
analysis and multidimensional-scaling ordination of Bray–Curtis similarities, 
analysis of similarities and similarity percentage analysis) on coral taxa and growth 
forms (Supplementary Note 3 and Supplementary Figs. 7 and 8). The coral data 
were then combined with coralline algal assemblage data (based on the analysis of 

400 thin sections) and other key indicators (percentage of coral–algal components, 
coralline algal crust thickness and presence or absence of vermetid gastropods 
measured every 10 cm) to form a coherent, internally consistent coral–algal 
assemblage scheme (Supplementary Table 1). We then reconstructed the likely 
depositional environment (including palaeowater depths) of each assemblage 
by comparison with their modern GBR and other Indo-Pacific counterparts 
(Supplementary Note 3).

VA analysis. VA rates within each reef sequence were estimated using only in 
situ corals and coralline algae that yielded robust U–Th and calibrated 14C AMS 
ages. The sample context was assessed using a range of established criteria16,28, 
and samples from highly drill-disturbed intervals were excluded. A total of 435 
samples that satisfied these criteria were used to construct a robust age model and 
reconstruct the VA pathway for each site. To quantify the uncertainties in the age 
model, we used two approaches: (1) a traditional linear visual fit and regression 
analysis widely used to study reef cores2,9,30 and (2) a Monte Carlo simulation39. The 
visual fits and regression analysis, including the rates and major inflection points, 
were in agreement with the Monte Carlo analysis, which indicates this traditional 
approach accurately reflects the VA histories of the GBR (Supplementary Note 4, 
Supplementary Figs. 3 and 9 and Supplementary Tables 3–5).

Data availability. The data supporting the findings of this study are available from 
the corresponding author upon request.
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