78 research outputs found

    Asymptotic pointwise behavior for systems of semilinear wave equations in three space dimensions

    Full text link
    In connection with the weak null condition, Alinhac introduced a sufficient condition for global existence of small amplitude solutions to systems of semilinear wave equations in three space dimensions. We introduce a slightly weaker sufficient condition for the small data global existence, and we investigate the asymptotic pointwise behavior of global solutions for systems satisfying this condition. As an application, the asymptotic behavior of global solutions under the Alinhac condition is also derived.Comment: 56 pages, the final versio

    Global Solutions for Incompressible Viscoelastic Fluids

    Full text link
    We prove the existence of both local and global smooth solutions to the Cauchy problem in the whole space and the periodic problem in the n-dimensional torus for the incompressible viscoelastic system of Oldroyd-B type in the case of near equilibrium initial data. The results hold in both two and three dimensional spaces. The results and methods presented in this paper are also valid for a wide range of elastic complex fluids, such as magnetohydrodynamics, liquid crystals and mixture problems.Comment: We prove the existence of global smooth solutions to the Cauchy problem for the incompressible viscoelastic system of Oldroyd-B type in the case of near equilibrium initial dat

    Wave equation with concentrated nonlinearities

    Full text link
    In this paper we address the problem of wave dynamics in presence of concentrated nonlinearities. Given a vector field VV on an open subset of \CO^n and a discrete set Y\subset\RE^3 with nn elements, we define a nonlinear operator ΔV,Y\Delta_{V,Y} on L^2(\RE^3) which coincides with the free Laplacian when restricted to regular functions vanishing at YY, and which reduces to the usual Laplacian with point interactions placed at YY when VV is linear and is represented by an Hermitean matrix. We then consider the nonlinear wave equation ϕ¨=ΔV,Yϕ\ddot \phi=\Delta_{V,Y}\phi and study the corresponding Cauchy problem, giving an existence and uniqueness result in the case VV is Lipschitz. The solution of such a problem is explicitly expressed in terms of the solutions of two Cauchy problem: one relative to a free wave equation and the other relative to an inhomogeneous ordinary differential equation with delay and principal part ζ˙+V(ζ)\dot\zeta+V(\zeta). Main properties of the solution are given and, when YY is a singleton, the mechanism and details of blow-up are studied.Comment: Revised version. To appear in Journal of Physics A: Mathematical and General, special issue on Singular Interactions in Quantum Mechanics: Solvable Model

    Constraint and gauge shocks in one-dimensional numerical relativity

    Get PDF
    We study how different types of blow-ups can occur in systems of hyperbolic evolution equations of the type found in general relativity. In particular, we discuss two independent criteria that can be used to determine when such blow-ups can be expected. One criteria is related with the so-called geometric blow-up leading to gradient catastrophes, while the other is based upon the ODE-mechanism leading to blow-ups within finite time. We show how both mechanisms work in the case of a simple one-dimensional wave equation with a dynamic wave speed and sources, and later explore how those blow-ups can appear in one-dimensional numerical relativity. In the latter case we recover the well known ``gauge shocks'' associated with Bona-Masso type slicing conditions. However, a crucial result of this study has been the identification of a second family of blow-ups associated with the way in which the constraints have been used to construct a hyperbolic formulation. We call these blow-ups ``constraint shocks'' and show that they are formulation specific, and that choices can be made to eliminate them or at least make them less severe.Comment: 19 pages, 8 figures and 1 table, revised version including several amendments suggested by the refere

    Strichartz estimates on Schwarzschild black hole backgrounds

    Get PDF
    We study dispersive properties for the wave equation in the Schwarzschild space-time. The first result we obtain is a local energy estimate. This is then used, following the spirit of earlier work of Metcalfe-Tataru, in order to establish global-in-time Strichartz estimates. A considerable part of the paper is devoted to a precise analysis of solutions near the trapping region, namely the photon sphere.Comment: 44 pages; typos fixed, minor modifications in several place

    Conservation laws and symmetries of quasilinear radial wave equations in multi-dimensions

    Full text link
    Symmetries and conservation laws are studied for two classes of physically and analytically interesting radial wave equations with power nonlinearities in multi-dimensions. The results consist of two main classifications: all symmetries of point type and all conservation laws of a general energy-momentum type are explicitly determined, including those such as dilations, inversions, similarity energies and conformal energies that exist only for special powers or dimensions. In particular, all variational cases (when a Lagrangian formulation exists) and non-variational cases (when no Lagrangian exists) for these wave equations are considered. As main results, the classification yields generalized energies and radial momenta in certain non-variational cases, which are shown to arise from a new type of Morawetz dilation identity that produces conservation laws for each of the two wave equations in a different way than Noether's theorem.Comment: Typos corrected in published version, 38 pages. Lagrangian functionals now include missing integration over the time variabl

    A smooth introduction to the wavefront set

    Full text link
    The wavefront set provides a precise description of the singularities of a distribution. Because of its ability to control the product of distributions, the wavefront set was a key element of recent progress in renormalized quantum field theory in curved spacetime, quantum gravity, the discussion of time machines or quantum energy inequalitites. However, the wavefront set is a somewhat subtle concept whose standard definition is not easy to grasp. This paper is a step by step introduction to the wavefront set, with examples and motivation. Many different definitions and new interpretations of the wavefront set are presented. Some of them involve a Radon transform.Comment: 29 pages, 7 figure

    The Cauchy Problem for the Einstein Equations

    Get PDF
    Various aspects of the Cauchy problem for the Einstein equations are surveyed, with the emphasis on local solutions of the evolution equations. Particular attention is payed to giving a clear explanation of conceptual issues which arise in this context. The question of producing reduced systems of equations which are hyperbolic is examined in detail and some new results on that subject are presented. Relevant background from the theory of partial differential equations is also explained at some lengthComment: 98 page

    On universality of critical behavior in the focusing nonlinear Schr\uf6dinger equation, elliptic umbilic catastrophe and the Tritronqu\ue9e solution to the Painlev\ue9-I equation

    Get PDF
    We argue that the critical behavior near the point of "gradient catastrophe" of the solution to the Cauchy problem for the focusing nonlinear Schrodinger equation i epsilon Psi(t) + epsilon(2)/2 Psi(xx) + vertical bar Psi vertical bar(2)Psi = 0, epsilon << 1, with analytic initial data of the form Psi( x, 0; epsilon) = A(x)e(i/epsilon) (S(x)) is approximately described by a particular solution to the Painleve-I equation

    Theorems on existence and global dynamics for the Einstein equations

    Get PDF
    This article is a guide to theorems on existence and global dynamics of solutions of the Einstein equations. It draws attention to open questions in the field. The local-in-time Cauchy problem, which is relatively well understood, is surveyed. Global results for solutions with various types of symmetry are discussed. A selection of results from Newtonian theory and special relativity that offer useful comparisons is presented. Treatments of global results in the case of small data and results on constructing spacetimes with prescribed singularity structure or late-time asymptotics are given. A conjectural picture of the asymptotic behaviour of general cosmological solutions of the Einstein equations is built up. Some miscellaneous topics connected with the main theme are collected in a separate section.Comment: Submitted to Living Reviews in Relativity, major update of Living Rev. Rel. 5 (2002)
    • …
    corecore