research

Wave equation with concentrated nonlinearities

Abstract

In this paper we address the problem of wave dynamics in presence of concentrated nonlinearities. Given a vector field VV on an open subset of \CO^n and a discrete set Y\subset\RE^3 with nn elements, we define a nonlinear operator ΔV,Y\Delta_{V,Y} on L^2(\RE^3) which coincides with the free Laplacian when restricted to regular functions vanishing at YY, and which reduces to the usual Laplacian with point interactions placed at YY when VV is linear and is represented by an Hermitean matrix. We then consider the nonlinear wave equation ϕ¨=ΔV,Yϕ\ddot \phi=\Delta_{V,Y}\phi and study the corresponding Cauchy problem, giving an existence and uniqueness result in the case VV is Lipschitz. The solution of such a problem is explicitly expressed in terms of the solutions of two Cauchy problem: one relative to a free wave equation and the other relative to an inhomogeneous ordinary differential equation with delay and principal part ζ˙+V(ζ)\dot\zeta+V(\zeta). Main properties of the solution are given and, when YY is a singleton, the mechanism and details of blow-up are studied.Comment: Revised version. To appear in Journal of Physics A: Mathematical and General, special issue on Singular Interactions in Quantum Mechanics: Solvable Model

    Similar works