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Abstract
We argue that the critical behavior near the point of “gradient catastrophe” of

the solution to the Cauchy problem for the focusing nonlinear Schrödinger equa-

tion iεΨt + ε2

2 Ψxx + |Ψ |2Ψ = 0, ε � 1, with analytic initial data of the form

Ψ (x,0; ε) = A(x)e
i
ε
S(x) is approximately described by a particular solution to the

Painlevé-I equation.
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1 Introduction

The focusing nonlinear Schrödinger (NLS) equation for the complex valued function
Ψ = Ψ (x, t)

iΨt + 1

2
Ψxx + |Ψ |2Ψ = 0 (1.1)

has numerous physical applications in the description of nonlinear waves (see, e.g.,
the books (Whitham 1974; Newell 1985; Novikov et al. 1984)). It can be considered
as an infinite dimensional analogue of a completely integrable Hamiltonian system
(Zakharov and Shabat 1972; Shabat 1976), where the Hamiltonian and the Poisson
bracket is given by

Ψt + {
Ψ (x), H

} = 0,
{
Ψ (x),Ψ ∗(y)

} = iδ(x − y), (1.2)

H = 1

2

∫ (|Ψx |2 − |Ψ |4)dx

(here Ψ ∗ stands for the complex conjugate function). Properties of various classes
of solutions to this equation have been extensively studied both analytically and nu-
merically (Bronski and Kutz 2002; Buckingham and Venakides 2007; Carles 2007;
Ceniceros and Tian 2002; Forest and Lee 1986; Grenier 1998; Kamvissis 1996;
Kamvissis et al. 2003; Klein 2006; Lyng and Miller 2007; Miller and Kamvissis
1998; Tovbis et al. 2004, 2006). One of the striking features that distinguishes this
equation from, say, the defocusing case

iΨt + 1

2
Ψxx − |Ψ |2Ψ = 0

is the phenomenon of modulation (or Benjamin–Feir) instability (Agrawal 2006;
Cross and Hohenberg 1993; Forest and Lee 1986), that is, self-induced amplitude
modulation of a continuous wave propagating in a nonlinear medium, with subse-
quent generation of localized structures.

The appropriate mathematical framework for studying modulation instability of
the plane wave solutions

Ψ = Aei(kx−ωt), ω = 1

2
k2 − A2

is the theory of the initial value problem

Ψ (x,0; ε) = A(x)e
i
ε
S(x) (1.3)

for the ε-dependent focusing NLS

iεΨt + ε2

2
Ψxx + |Ψ |2Ψ = 0. (1.4)
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Here, ε > 0 is a small parameter, A(x) and S(x) are real-valued smooth functions.
Introducing the slow variables

u = |Ψ |2, v = ε

2i

(
Ψx

Ψ
− Ψ ∗

x

Ψ ∗

)
(1.5)

the equation can be recast into the following system:

ut + (uv)x = 0,

(1.6)

vt + vvx − ux + ε2

4

(
1

2

u2
x

u2
− uxx

u

)

x

= 0.

The initial data for the system (1.6) coming from (1.3) do not depend on ε:

u(x,0) = A2(x), v(x,0) = S′(x). (1.7)

The simplest explanation of the modulation instability then comes from considering
the so-called dispersionless limit ε → 0. In this limit, one obtains the following first
order quasilinear system

ut + vux + uvx = 0

vt − ux + vvx = 0

}

. (1.8)

This is a system of elliptic type because of the condition u > 0. Indeed, the eigenval-
ues of the coefficient matrix

(
v u

−1 v

)

are complex conjugate, λ = v ± i
√

u. So, the Cauchy problem for the system (1.8) is
ill-posed in the Hadamard sense (cf. Métivier 2006; Carles 2007). Even for analytic
initial data the life span of a typical solution is finite, t < t0. The x- and t-derivatives
explode at some point x = x0 when the time approaches t0. This phenomenon is
similar to the gradient catastrophe of solutions to nonlinear hyperbolic PDEs (Alinhac
1995).

For the full system (1.6), the Cauchy problem is well posed for a suitable class
of ε-independent initial data (see details in Ginibre and Velo 1979; Tsutsumi 1987).
However, the well posedness is not uniform in ε. In practical terms that means that the
solution to (1.6) behaves in a very irregular way in some regions of the (x, t)-plane
when ε → 0. Such an irregular behavior begins near the points (x = x0, t = t0) of the
“gradient catastrophe” of the solution to the dispersionless limit (1.8). The solutions
to (1.8) and (1.6) are essentially indistinguishable for t < t0; the situation changes
dramatically near x0 when approaching the critical point. Namely, when approaching
t = t0, the peak near a local maximum1 of u becomes more and more narrow due

1Regarding initial data with local minima, we did not observe cusps related to minima in numerical simu-
lations. We believe they do not exist because of the focusing effect in NLS that pushes maxima to cusps,
but seems to smoothen minima.
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to self-focusing; the solution develops a zone of rapid oscillations for t > t0. They
have been studied both analytically and numerically in Ceniceros and Tian (2002),
Forest and Lee (1986), Grenier (1998), Jin et al. (1994), Kamvissis (1996), Kamvissis
et al. (2003), Miller and Kamvissis (1998), Tovbis et al. (2004, 2006). In particular,
in Kamvissis et al. (2003), Tovbis et al. (2004) for certain NLS solutions, it was
introduced the notion of a breaking curve t = t0(x). The main theorem of Tovbis
et al. (2004) describes the limiting behavior of the solution in two disjoint regions:
for t < t0(x) or t > t0(x) by rigorous arguments based on application of the steepest
descent analysis of the associated Riemann–Hilbert problem. The structures of the
asymptotic formulae in these two regions are completely different. The points on the
breaking curve were excluded from the rigorous analysis of Kamvissis et al. (2003)
and Tovbis et al. (2004). However, no results are available so far about the behavior
of the solutions to the focusing NLS at the critical point (x0, t0) (that is, at the cusp
point t0(x0) of the breaking curve).

The main subject of this work is the study of the behavior of solutions to the
Cauchy problem (1.6), (1.7) near the point of gradient catastrophe of the dispersion-
less system (1.8). In order to deal with the Cauchy problem for (1.8), we will assume
analyticity2 of the initial data u(x,0), v(x,0). Then the Cauchy problem for (1.8)
can be solved for t < t0 via a suitable version of the hodograph transform (see Sect. 2
below). An important feature of the gradient catastrophe for this system is that it
happens at an isolated point of the (x, t)-plane, unlike the case of KdV or defocus-
ing NLS where the singularity of the hodograph solution takes place on a curve. We
identify this singularity for a generic solution to (1.8) as the elliptic umbilic singu-
larity (see Sect. 4 below) in the terminology of Thom (1989). This codimension 2
singularity is one of the real forms labeled by the root system of the D4 type in the
terminology of Arnold et al. (1993).

Our main goal is to find a replacement for the elliptic umbilic singularity when the
dispersive terms are added, i.e., we want to describe the leading term of the asymp-
totic behavior for ε → 0 of the solution to (1.6) near the critical point (x0, t0) of a
generic solution to (1.8).

Thus, our study can be considered as a continuation of the program initiated in
Dubrovin (2006) to study critical behavior of Hamiltonian perturbations of nonlinear
hyperbolic PDEs; the fundamental difference is that the nonperturbed system (1.8)
is not hyperbolic. However, many ideas and methods of Dubrovin (2006) (see also
Dubrovin et al. 2006) play an important role in our considerations.

The most important of these is the idea of universality of the critical behavior. The
general formulation of the universality suggested in Dubrovin (2006) for the case
of Hamiltonian perturbations of the scalar nonlinear transport equation says that the
leading term of the multiscale asymptotics of the generic solution near the critical
point does not depend on the choice of the solution, modulo Galilean transforma-
tions, and rescalings. This leading term was identified in Dubrovin (2006) via a par-
ticular solution to the fourth order analogue of the Painlevé-I equation (the so-called

2We believe that the main conclusions of this paper must hold true also for nonanalytic initial data; the
numerical experiments of Ceniceros and Tian (2002) do not show much difference in the properties of
solution between analytic and nonanalytic cases. However, the precise formulation of our main conjecture
has to be refined in the nonanalytic case.
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P 2
1 equation). The existence of the needed solution to P 2

1 has been rigorously estab-
lished in Claeys and Vanlessen (2006). Moreover, it was argued in Dubrovin (2006)
that this behavior is essentially independent on the choice of the Hamiltonian per-
turbation. Some of these universality conjectures have been partially confirmed by
numerical analysis carried out in Grava and Klein (2007). More recently, the univer-
sality conjecture of Dubrovin (2006) has been proven in Claeys and Grava (2008) for
solutions to the KdV equation with analytic initial data vanishing at infinity.

The main message of this paper is the formulation of the universality conjecture for
the critical behavior of the solutions to the focusing NLS. Our considerations suggest
the description of the leading term in the asymptotic expansion of the solution to (1.6)
near the critical point via a particular solution to the classical Painlevé-I equation (P-I)

Ωζζ = 6Ω2 − ζ.

The so-called tritronquée solution to P-I was discovered by Boutroux (1913) as the
unique solution having no poles in the sector | arg ζ | < 4π/5 for sufficiently large |ζ |.
Remarkably, the very same solution3 arises in the critical behavior of solutions to
focusing NLS.

The paper is organized as follows. In Sect. 2, we develop a version of the hodo-
graph transform for integrating the dispersionless system (1.8) before the catastrophe
t < t0. We also establish the shape of the singularity of the solution near the critical
point; the latter is identified in Sect. 4 with the elliptic umbilic catastrophe of Thom.
In Sect. 3, we develop a method of constructing formal perturbative solutions to the
full system (1.6) before the critical time. In Sect. 5, we collect the necessary informa-
tion about the tritronquée solution of P-I and formulate the main conjecture of this pa-
per. Such a formulation relies on a much stronger property of the tritronquée solution:
namely, we need this solution to be pole-free in the whole sector | arg ζ | < 4π/5. Nu-
merical evidence for the absence of poles in this sector is given in Sect. 6. In Sect. 7,
we analyze numerically the agreement between the critical behavior of solutions to
focusing NLS and its conjectural description in terms of the tritronquée solution re-
stricted to certain lines in the complex ζ -plane. In the final Sect. 8, we present some
additional remarks and outline the program of future research.

2 Dispersionless NLS, its Solutions and Critical Behavior

The equations (1.6) are a Hamiltonian system

ut + {u(x),H } = 0

vt + {v(x),H } = 0

}

with respect to the Poisson bracket originated in (1.2)
{
u(x), v(y)

} = δ′(x − y), (2.1)

3It is interesting that the same tritronquée solution (for real ζ only) appears also in the study of certain crit-
ical phenomena in plasma (Slemrod 2002). In the theory of random matrices and orthogonal polynomials,
a different solution to P-I arises; see, e.g., Grinevich and Novikov (1994), Duits and Kuijlaars (2006).



62 J Nonlinear Sci (2009) 19: 57–94

other brackets vanish, with the Hamiltonian

H =
∫ [

1

2

(
uv2 − u2) + ε2

8u
u2

x

]
dx. (2.2)

Let us first describe the general analytic solution to the dispersionless system (1.8).

Lemma 2.1 Let u0(x), v0(x) be two real valued analytic functions of the real vari-
able x satisfying

(
u0

x

)2 + (
v0
x

)2 �= 0.

Then the solution u = u(x, t), v = v(x, t) to the Cauchy problem

u(x,0) = u0(x), v(x,0) = v0(x) (2.3)

for the system (1.8) for sufficiently small t can be determined from the following
system

x = vt + fu

0 = ut + fv

}

(2.4)

where f = f (u, v) is an analytic solution to the following linear PDE:

fvv + ufuu = 0. (2.5)

Conversely, given any solution to (2.5) satisfying u2f 2
uu + f 2

uv �= 0 at some point
u = u1, v = v1 such that fv(u1, v1) = 0, the system (2.4) determines a solution to
(1.8) defined locally near the point x = x1 := fu(u1, v1) for sufficiently small t .

Remark 2.2 The solutions to the linear PDE (2.5) correspond to the first integrals of
dispersionless NLS:

F =
∫

f (u, v) dx,
d

dt
F = 0. (2.6)

Taking them as the Hamiltonians

us + {u(x),F } ≡ ut + (fv)x = 0

vs + {v(x),F } ≡ vt + (fu)x = 0

}

(2.7)

yields infinitesimal symmetries of the dispersionless NLS:

(ut )s = (us)t , (vt )s = (vs)t . (2.8)

One of the first integrals will be extensively used in this paper. It corresponds to
the Hamiltonian density

g = −1

2
v2 + u(logu − 1). (2.9)
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The associated Hamiltonian flow reads

us + vx = 0

vs = ux

u

}

(2.10)

Eliminating the dependent variable v one arrives at the elliptic version of the long
wave limit of Toda lattice:

uss + (logu)xx = 0.

Due to commutativity (2.8), the systems (1.8) and (2.10) admit a simultaneous solu-
tion u = u(x, t, s), v = v(x, t, s). Any such solution can be locally determined from
a system similar to (2.4)

x = vt + fu

s = ut + fv

}

(2.11)

where f = f (u, v), as above, solves the linear PDE (2.5).
The system (2.11) determines a solution u = u(x, t, s), v = v(x, t, s) provided

applicability of the implicit function theorem. The conditions of the latter fail to hold
at the critical point (x0, s0, t0, u0, v0), such that

x0 = v0t0 + fu(u0, v0),

s0 = u0t0 + fv(u0, v0),

fuu(u0, v0) = fvv(u0, v0) = 0,

fuv(u0, v0) = −t0.

(2.12)

In the sequel, we adopt the following system of notations: the values of the function
f and of its derivatives at the critical point will be denoted by f 0 etc. For example,
the last two lines of the conditions (2.12) will read

f 0
uu = f 0

vv = 0, f 0
uv = −t0.

Definition 1 We say that the critical point is generic if at this point:

f 0
uuv �= 0.

Let us the introduce real parameters r , ψ determined by the third derivatives of the
function f evaluated at the critical point,

1

r
(cosψ − i sinψ) = f 0

uuv + i
√

u0f
0
uuu. (2.13)

Due to the genericity assumption

ψ �= π

2
+ πk.
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In order to describe the local behavior of a solution to the dispersionless NLS/Toda
equations, we define a function R(X;S,ψ) of real variables X, S depending on the
real parameter ψ satisfying

(S + cosψ)2 + (X + sinψ)2 �= 0 (2.14)

by the following formula

R(X,S,ψ) = sign[cosψ]

×
√

1 + X sinψ + S cosψ +
√

1 + 2(X sinψ + S cosψ) + X2 + S2.

(2.15)

Put

P0(X,S,ψ) = 1√
2

[
R(X,S,ψ) cosψ − (X cosψ − S sinψ) sinψ

R(X,S,ψ)

]
− cosψ,

(2.16)

Q0(X,S,ψ) = 1√
2

[
(X cosψ − S sinψ) cosψ

R(X,S,ψ)
+ R(X,S,ψ) sinψ

]
− sinψ.

Observe that P0(X,S,ψ) and Q0(X,S,ψ) are smooth functions of the real variable
X provided validity of the inequality (2.14) holds.

Lemma 2.3 Given an analytic solution u(x, s, t), v(x, s, t) to the dispersionless
NLS/Toda equations with a generic critical point (x0, s0, t0, u0, v0), and arbitrary
real numbers X, S satisfying (2.14), an arbitrary T < 0, then there exist the follow-
ing limits

lim
λ→+0

λ−1/2
[
u

(
x0 + λ1/2v0T + λ

2
√

u0
rXT 2,

s0 + λ1/2u0T + λ

2
rST 2, t0 + λ1/2T

)
− u0

]

= rT P0(X,S,ψ),

(2.17)

lim
λ→+0

λ−1/2
[
v

(
x0 + λ1/2v0T + λ

2
√

u0
rXT 2,

s0 + λ1/2u0T + λ

2
rST 2, t0 + λ1/2T

)
− v0

]

= r√
u0

T Q0(X,S,ψ)

where the parameters r , ψ are defined by (2.13).

Proof From the linear PDE (2.5), it follows that

fuvv = −ufuuu − fuu, fvvv = −ufuuv.
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Using these formulae, we expand the implicit function equations (2.11) near the crit-
ical point in the form

x̄ − v0 t̄ = v̄t̄ + 1

2

[
f 0

uuu

(
ū2 − u0v̄

2) + 2f 0
uuvūv̄

] + O
((|ū|2 + |v̄|2)3/2)

,

(2.18)

s̄ − u0 t̄ = ūt̄ + 1

2

[
f 0

uuv

(
ū2 − u0v̄

2) − 2u0f
0
uuuūv̄

] + O
((|ū|2 + |v̄|2)3/2)

where we introduce the shifted variables

x̄ = x − x0, s̄ = s − s0, t̄ = t − t0,

ū = u − u0, v̄ = v − v0.

The rescaling

x̄ − v0 t̄ 	→ λ
(
x̄ − v0 t̄

)
,

s̄ − u0 t̄ 	→ λ
(
s̄ − u0 t̄

)
,

t̄ 	→ λ1/2 t̄ ,

ū 	→ λ1/2ū,

v̄ 	→ λ1/2v̄

(2.19)

in the limit λ → 0 yields the quadratic equation

z = t̄w + 1

2
aw2, t̄ �= 0 (2.20)

where the complex independent and dependent variables z and w read

z = s̄ + i
√

u0x̄ − (
u0 + i

√
u0v0

)
t̄ , w = ū + i

√
u0v̄ (2.21)

and the complex constant a is defined by

a = f 0
uuv + i

√
u0f

0
uuu, (2.22)

therefore,

1

a
= reiψ .

The substitution

X = 2
√

u0
x̄ − v0 t̄

r t̄2
, S = 2

s̄ − u0 t̄

r t̄2
,

reduces the quadratic equation to

(
w + t̄ reiψ

)2 = r2 t̄2e2iψ
[
1 + e−iψ (S + iX)

]
.

For t̄ < 0, we choose the following root

w = rt̄eiψ
[√

1 + e−iψ (S + iX) − 1
]

(2.23)
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where the branch of the square root is obtained by the analytic continuation of the
one taking positive values on the positive real axis. Equivalently,

w = t̄ reiψ

[
sign(cosψ)

1√
2

(√
Δ + 1 + S cosψ + X sinψ

+ i
X cosψ − S sinψ√

Δ + 1 + S cosψ + X sinψ

)
− 1

]

where

Δ =
√

1 + 2(S cosψ + X sinψ) + X2 + S2.

This gives the formulae (2.15). �

The result of the lemma describes the local structure of generic solutions to the
dispersionless NLS/Toda equations near the critical point. It can also be represented
in the following form

u(x, s, t) 
 u0 + rT P0(X,S,ψ),

(2.24)

v(x, s, t) 
 v0 + 1√
u0

rT Q0(X,S,ψ)

where

X = 2
√

u0
x̄ − v0 t̄

r t̄ 2
, S = 2

s̄ − u0 t̄

r t̄ 2
, T = t̄ . (2.25)

We want to emphasize that the approximation (2.24) works only near the criti-
cal point. Indeed, for large x → ±∞ the function u(x, s, t) and v(x, s, t) have the
following behavior

u = −√
r|x|u1/4

0

√
1 ∓ sinψ + u0 − rt̄ cosψ + O

(
1√|x|

)
, (2.26)

v = ∓
√

r|x|
u0

1/4
sign(cosψ)

√
1 ± sinψ + v0 − r√

u0
t̄ sinψ + O

(
1√|x|

)
. (2.27)

So, for sufficiently large |x|, the function u(x, s, t) defined by (2.24) becomes nega-
tive.

The function u has a maximum at the point X = S tanψ , so locally

u ≤ u0 + rT cosψ − √
r| cosψ |

√

2
S

cosψ
+ rT 2 < u0. (2.28)

At the critical point (x0, s0, t0, u0, v0), the function u develops a cusp. Let us consider
only the particular case S = 0 in order to avoid complicated expressions. In this case,
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the local behavior of the function u near the critical point is given by

lim
t̄→−0

u =
{

u0 − √
r|x̂|√1 − sinψ, x̂ > 0,

u0 − √
r|x̂|√1 + sinψ, x̂ < 0

(2.29)

(here, x̂ = √
u0(x̄ − v0 t̄ )). Thus, the parameters r , ψ describe the shape of the cusp

at the critical point.

3 First Integrals and Solutions of the NLS/Toda Equations

Let us first show that any first integral (2.6) of the dispersionless equations can be
uniquely extended to a first integral of the full equations.

Lemma 3.1 Given a solution f = f (u, v) to the linear PDE (2.5), there exists a
unique, up to a total derivative, formal power series in ε

hf = f +
∑

k≥1

ε2kh
[k]
f

(
u,v;ux, vx, . . . , u

(2k), v(2k)
)

such that the integral

Hf =
∫

hf dx

commutes with the Hamiltonian of the NLS equation:

{H,Hf } = 0

at every order in ε. Explicitly,

hf = f − ε2

12

[(
fuuu + 3

2u
fuu

)
u2

x + 2fuuvuxvx − ufuuuv
2
x

]

+ ε4
{

1

120

[(
fuuuu + 5

2u
fuuu

)
u2

xx + 2fuuuvuxxvxx − ufuuuuv
2
xx

]

− 1

80
fuuuuuxxv

2
x − 1

48u
fuuuvvxxu

2
x

− 1

3456u3

(
30fuuu − 9ufuuuu + 12u2f5u + 4u3f6u

)
u4

x

− 1

432u2

(−3fuuuv + 6ufuuuuv + 2u2f5uv

)
u3

xvx

+ 1

288u

(
9fuuuu + 9uf5u + 2u2f6u

)
u2

xv
2
x

+ 1

2160
(9fuuuuv + 10uf5uv)uxv

3
x − u

4320
(18f5u + 5uf6u)v

4
x

}
+ O

(
ε6).

(3.1)
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Here, we use short notations

f5u := ∂5f

∂u5
, f6u := ∂6f

∂u6
, f5uv := ∂6f

∂u5∂v
.

Example 1 Taking f = 1
2 (uv2 − u2), one obtains the Hamiltonian of the NLS equa-

tion

hf = 1

2

(
uv2 − u2) + ε2

8u
u2

x.

In this case, the infinite series truncates. It is easy to see that the series in ε truncates
if and only if f (u, v) is a polynomial in u. Solutions to the linear PDE (2.5) that are
polynomial in u correspond to the standard first integrals of the NLS hierarchy.

Example 2 Taking g = − 1
2v2 + u(logu − 1) (cf. (2.9)), one obtains the Hamiltonian

of the Toda equation

hg = −1

2
v2 + u(logu − 1) − ε2

24u2

(
u2

x + 2uv2
x

)

− ε4
(

u2
xx

240u3
+ v2

xx

60u2
+ uxxv

2
x

40u3
− u4

x

144u5
− u2

xv
2
x

24u4
+ v4

x

360u3

)
+ O

(
ε6) (3.2)

written in terms of the function φ = logu in the form

ε2φxx + eφ(s+ε) − 2eφ(s) + eφ(s−ε) = 0.

Lemma 3.2 Any solution to the NLS/Toda equations in the class of formal power
series in ε can be obtained from the equations

x = vt + δHf

δu(x)
,

(3.3)
s = ut + δHf

δv(x)

where f = f (u, v; ε) is an arbitrary admissible solution to the linear PDE (2.5) in
the class of formal power series in ε,

Hf =
∫

hf dx.

Now, we can apply to the system (3.3) the rescaling (2.19) accompanied by the
transformation

ε 	→ λ5/4ε. (3.4)

At the limit λ → 0, we arrive at the following system of equations

s̄ − u0 t̄ = ūt̄ + f 0
uuv

[
1

2

(
ū2 − u0v̄

2) + ε2

6
ūxx

]
− u0f

0
uuu

[
ūv̄ + ε2

6
v̄xx

]
,

(3.5)

x̄ − v0 t̄ = v̄t̄ + f 0
uuu

[
1

2

(
ū2 − u0v̄

2) + ε2

6
ūxx

]
+ f 0

uuv

[
ūv̄ + ε2

6
v̄xx

]
.
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Using the complex variables z, w defined in (2.21), we can rewrite the system in the
following form:

zreiψ = wt̄reiψ + 1

2
w2 + ε2

6
wxx. (3.6)

The last observation is that the Toda equations generated by the Hamiltonian Hg =∫
hgdx (see Example 2 above) after the scaling limit (2.19), (3.4) yield the Cauchy–

Riemann equations for the function w = w(z),

∂w/∂z̄ = 0.

Therefore, the system (3.5) can be recast into the form equivalent to the Painlevé-I
(P-I) equation (see (5.1) below)

zreiψ = wt̄reiψ + 1

2
w2 − ε2

6
u0wzz. (3.7)

Choosing

λ = ε4/5

we eliminate ε from the equation.
In Sect. 5 below, we will write explicitly the reduction of (3.7) to the Painlevé-I

equation and give a conjectural characterization of the particular solution of the latter.

4 Critical Behavior and Elliptic Umbilic Catastrophe

Separating again the real and complex parts of (3.6), one obtains a system of ODEs

ε2

6
UXX + 1

2

(
U2 − V 2) + rt̄(U cosψ − V sinψ) − r(S cosψ − X sinψ) = 0,

(4.1)
ε2

6
VXX + UV + rt̄(U sinψ + V cosψ) − r(S sinψ + X cosψ) = 0

that can be identified with the Euler–Lagrange equations

δS = 0, S =
∫

L(U,V,UX,VX)dX

with the Lagrangian

L = ε2

12

(
V 2

X − U2
X

) + 1

6

(
U3 − 3UV 2) + 1

2
rt̄

[(
U2 − V 2) cosψ − 2UV sinψ

]

+ r(X sinψ − S cosψ)U + r(S sinψ + X cosψ)V. (4.2)

In the “dispersionless limit” ε → 0, the Euler–Lagrange equations reduce to the
search of stationary points of a function (let us also set t̄ = 0)

F = 1

6

(
U3 − 3UV 2) + a+U + a−V (4.3)
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where we redenote

a+ = r(X sinψ − S cosψ), a− = r(S sinψ + X cosψ).

At a+ = a− = 0, the function F has an isolated singularity at the origin U = V = 0
of the type D4,−—also called elliptic umbilic singularity, according to Thom (1989).
This singularity appears in various physical problems; we mention here the caustics
in the collisionless dark matter (Sikivie 1999) to give just an example. The parameters
a+ and a− define two particular directions on the base of the miniversal unfolding of
the elliptic umbilic; the full unfolding depending on 4 parameters reads

F̂ = 1

6

(
U3 − 3UV 2) + 1

2
b
(
U2 + V 2) + a+U + a−V + c. (4.4)

It would be interesting to study the properties of the modified Euler–Lagrange equa-
tions for the Lagrangian

L̂ = L + 1

2
b
(
U2 + V 2).

This deformation does not seem to arrive from considering solutions to the NLS
hierarchy.

5 The Tritronquée Solution to the Painlevé-I Equation and the Main
Conjecture

In this section, we will select a particular solution to the Painlevé-I (P-I) equation

Ωζζ = 6Ω2 − ζ. (5.1)

Recall (Ince 1944) that an arbitrary solution to this equation is a meromorphic func-
tion on the complex ζ -plane. According to Boutroux (1913), the poles of the solutions
accumulate along the rays

arg ζ = 2πn

5
, n = 0, ±1, ±2. (5.2)

Boutroux proved that for each ray there is a one-parameter family of particular solu-
tions called intégrales tronquées whose lines of poles truncate for large ζ . He proved
that the intégrale tronquée has no poles for large |ζ | within two consecutive sectors
of the angle 2π/5 around the ray, and moreover, it has the asymptotic behavior

Ω = −
(

ζ

6

)1/2[
1 + O

(
ζ− 3

4 (1−ε)
)]

(5.3)

for a suitable choice of the branch of the square root (see below) and a sufficiently
small ε > 0.

Furthermore, if a solution truncates along any two of the rays (5.2), then it trun-
cates along three of them. These particular solutions to P-I are called tritronquées.
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They have no poles for large |ζ | in four consecutive sectors; their asymptotics for
large ζ are given by (5.3). It suffices to know the tritronquée solution Ω0(ζ ) for the
sector

| arg ζ | < 4π

5
. (5.4)

In this case, the branch of the square root in (5.3) is obtained by the analytic contin-
uation of the principal branch taking positive values on the positive half axis ζ > 0.
The other four tritronquées solutions are obtained by applying the symmetry

Ωn(ζ ) = e
4πin

5 Ω0
(
e

2πin
5 ζ

)
, n = ±1,±2. (5.5)

The properties of the tritronquées solutions in the finite part of the complex plane
were studied in the important paper of Joshi and Kitaev (2001).

Kapaev (2004) obtained a complete characterization of the tritronquées solutions
in terms of the Riemann–Hilbert problem associated with P-I. We will briefly sketch
here the main steps of his construction.

Equation (5.1) can be represented as the compatibility condition of the following
system of linear differential equations for a two-component vector valued function
Φ = Φ(λ, ζ )

Φλ =
(

Ωζ 2λ2 + 2Ωλ − ζ + 2Ω2

2(λ − Ω) −Ωζ

)
Φ, (5.6)

Φζ = −
(

0 λ + 2Ω

1 0

)
Φ. (5.7)

The canonical matrix solutions Φk(λ, ζ ) to the system (5.6)–(5.7) are uniquely deter-
mined by their asymptotic behavior

Φk(λ, ζ ) ∼ 1√
2

(
λ1/4 λ1/4

λ−1/4 −λ−1/4

)[
1 − 1√

λ

(
H 0
0 −H

)

+ 1

2λ

(
H 2 Ω

Ω H 2

)
+ O

(
λ−3/2)

]
eθ(λ,ζ )σ3, |λ| → ∞, λ ∈ Σk (5.8)

in the sectors

Σk =
{
λ ∈ C

∣
∣∣∣
2π

5

(
k − 3

2

)
< argλ <

2π

5

(
k + 1

2

)}
, k ∈ Z. (5.9)

Here,

θ(λ, ζ ) = 4

5
λ5/2 − ζλ1/2, σ3 =

(
1 0
0 −1

)
, H = 1

2
Ω2

ζ − 2Ω3 + ζΩ,

(5.10)
the branch cut on the complex λ-plane for the fractional powers of λ is chosen along
the negative real half-line.



72 J Nonlinear Sci (2009) 19: 57–94

The Stokes matrices Sk are defined by

Φk+1(λ, ζ ) = Φk(λ, ζ )Sk, λ ∈ Σk ∩ Σk+1. (5.11)

They have the triangular form

S2k−1 =
(

1 s2k−1
0 1

)
, S2k =

(
1 0

s2k 1

)
(5.12)

and satisfy the constraints

Sk+5 = σ1Skσ1, k ∈ Z; S1S2S3S4S5 = iσ1 (5.13)

where

σ1 =
(

0 1
1 0

)
.

Due to (5.13), two of the Stokes multipliers sk determine all others; they depend
neither on λ nor on ζ provided Ω(ζ) satisfies (5.1).

In order to obtain a parametrization of solutions to the P-I equation (5.1) by Stokes
multipliers of the linear differential equation (5.6), one has to reformulate the above
definitions as a certain Riemann–Hilbert problem. The solution of the Riemann–
Hilbert problem depends on ζ through the asymptotics (5.8). If the Riemann–Hilbert
problem has a unique solution for the given ζ0 ∈ C then the canonical matrices
Φk(λ, ζ ) depend analytically on ζ for sufficiently small |ζ − ζ0|; the coefficient
Ω = Ω(ζ) will then satisfy (5.1). The poles of the meromorphic function Ω(ζ) cor-
respond to the forbidden values of the parameter ζ for which the Riemann–Hilbert
problem admits no solution.

We will now consider a particular solution to the P-I equation specified by the
following Riemann–Hilbert problem. Denote four oriented rays γ0, γ±1, ρ in the
complex λ-plane defined by

γk =
{
λ ∈ C

∣∣∣∣ argλ = 2πk

5

}
, k = 0, ±1,

(5.14)
ρ = {λ ∈ C| argλ = π}

directed toward infinity. The rays divide the complex plane in four sectors. We are
looking for a piecewise analytic function Φ(λ, ζ ) on

λ ∈ C \ (γ−1 ∪ γ0 ∪ γ1 ∪ ρ)

depending on the parameter ζ continuous up to the boundary with the asymptotic
behavior at |λ| → ∞ of the form (5.8) satisfying the following jump conditions on
the rays

Φ+(λ, ζ ) = Φ−(λ, ζ )Sk, λ ∈ γk,

(5.15)
Φ+(λ, ζ ) = Φ−(λ, ζ )Sρ, λ ∈ ρ.
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Here, the plus/minus subscripts refer to the boundary values of Φ, respectively, on
the left/right sides of the corresponding oriented ray; the jump matrices are given
by

S0 =
(

1 0
i 1

)
, S±1 =

(
1 i

0 1

)
, Sρ =

(
0 −i

−i 0

)
. (5.16)

The following result is due to Kapaev.4

Theorem 5.1 The solution to the above Riemann–Hilbert problem exists and it is
unique for

| arg ζ | < 4π

5
, |ζ | > R (5.17)

for a sufficiently large positive number R. The associated function

Ω0(ζ ) := dH(ζ )

dζ
,

(5.18)

H(ζ) :=
[

lim
λ→∞λ1/2

(
1√
2

(
1 1
1 −1

)
λ− 1

4 σ3Φ(λ, ζ )e−θ(λ,ζ )σ3 − 1

)]

11

is analytic in the domain (5.17), it satisfies P-I and enjoys the asymptotic behavior

Ω0(ζ ) ∼ −
√

ζ

6
, |ζ | → ∞, | arg ζ | < 4π

5
. (5.19)

Moreover, any solution of P-I having no poles in the sector (5.17) for some large
R > 0 coincides with Ω0(ζ ).

Joshi and Kitaev (2001) proved that the tritronquée solution has no poles on the
positive real axis. They found a numerical estimate for the position of the first pole
ζ0 of the tritronquée solution Ω0(ζ ) on the negative real axis

ζ0 
 −2.3841687

(cf. also Costin 1999). The tritronquée solution is monotonically decreasing on
the interval (ξ0,+∞). Very little is known about the location of other poles
of Ω0(ζ ). Our numerical experiments (see Sect. 6 below) suggest the follow-
ing

4Our solution Ω0(ζ ) coincides with y3(x) ≡ y−2(x), x = −ζ , of Kapaev (2004) (see (2.73) of Kapaev

2004; Kapaev uses P-I in the form y′′ = 6y2 + x). In the classification scheme of Holmes and Spence
(1984), the tritronquée solution Ω0(ζ ) is a limiting case of solutions of type B .
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Main Conjecture Part 1 The tritronquée solution Ω0(ζ ) has no poles in the sector

| arg ζ | < 4π

5
. (5.20)

We are now ready to describe the conjectural universal structure behind the critical
behavior of generic solutions to the focusing NLS. For simplicity of the formulation,
let us assume cosψ > 0.

Main Conjecture Part 2 Any generic solution to the NLS/Toda equations near the
critical point behaves as follows

u(x, s, t; ε) + i
√

u0v(x, s, t; ε) 
 u0 + i
√

u0v0 − t̄ reiψ

+ 2ε2/5(3r
√

u0
)2/5

e
2iψ

5 Ω0(ζ ) + O
(
ε4/5), (5.21)

ζ =
(

3r

u2
0

)1/5

e
iψ
5

[
s̄ − u0 t̄ + i

√
u0(x̄ − v0 t̄ ) + 1

2 reiψ t̄2

ε4/5

]

where Ω0(ζ ) is the tritronquée solution to the Painlevé-I equation (5.1).

In Sect. 7 below, we will provide strong numerical evidences supporting also the
second part of the main conjecture.

The above considerations can actually be applied replacing the NLS time flow
by any other flow of the NLS/Toda hierarchy. The local description of the critical
behavior remains unchanged.

Remark 5.2 Note that the angle of the line ζ(x̄) in (5.21) for t̄ fixed is equal to
ψ/5 + π/2, ψ ∈ [−π,π], ψ �= ±π/2. Thus, the maximal value of argζ is equal to
7π/10 < 4π/5. The lines in (5.21) consequently do not get close to the critical lines
of the tritronquée solution of Painlevé-I.

6 Numerical Analysis of the Tritronquée Solution of P-I

In this section, we will numerically construct the tritronquée solution Ω0, i.e., the
tritronquée solution with asymptotic behavior (5.3). We will drop the index 0 in the
following. The solution will be first constructed on a straight line in the complex
plane. In a second step, we will then explore global properties of these solutions
within the limitations imposed by a numerical approach.5

Let the straight line in the complex plane be given by ζ = ay + b with a, b ∈ C

constant (we choose a to have a nonnegative imaginary part) and y ∈ R. The asymp-
totic conditions are

Ω ∼ −
√

ζ

6
, (6.1)

5Cf. Fokas and Tanveer (1998) where a similar technique was applied to solve numerically the Painlevé-II
equation in the complex domain.
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for y → ±∞. The root is defined to have its cut along the negative real axis and to
assume positive values on the positive real axis. This choice of the root implies the
following symmetry for the solution:

Ω
(
ζ ∗) = Ω∗(ζ ). (6.2)

Thus Ω is real on the real axis, see Joshi and Kitaev (2001).
Numerically, it is not convenient to impose boundary conditions at infinity. We

thus assume that the wanted solution can be expanded in a Laurent series in
√

ζ

around infinity. Such an asymptotic expansion is possible for the considered tritron-
quée solution in the sector | arg ζ | < 4π/5. The formal series can be written there (see
Joshi and Kitaev 2001) in the form

Ωf = −
√

ζ

6

∞∑

k=0

ak

ζ 5k/2
, (6.3)

where a0 = 1, and where the remaining coefficients follow from the recurrence rela-
tion for k ≥ 0

ak+1 = 25k2 − 1

8
√

6
ak − 1

2

k∑

m=1

amak+1−m. (6.4)

This formal series is divergent, the coefficients ak behave asymptotically as
((k − 1)!)2, see Joshi and Kitaev (2001) for a detailed discussion.

It is known that divergent series can be used to get numerically acceptable ap-
proximations to the values of the sum by properly truncating the series. Generally,
the best approximations for the sum result from truncating the series where the terms
take the smallest absolute values (see, e.g., Gradshteyn and Ryzhik 2000) which
would be here the case for N ∼ 18. Since we work in Matlab with a precision of
16 digits, machine precision is limited typically to the order of 10−14 because of
rounding errors. This implies that we can truncate the series where the terms drop
below machine precision because they are numerically zero. Since we consider val-
ues of |ζ | ≥ 10, and since the terms corresponding to a10 are already of the or-
der of machine precision, we typically take up to 10 terms in the series into ac-
count.

Thus, we have constructed approximations to the numerical values of the tritron-
quée solution for large values of |ζ |. These can be used as in Joshi and Kitaev (2001)
to set up an initial value problem for the P-I equation and to solve this with a standard
ODE solver. In fact, the approach works well on the real axis starting from positive
values until one comes close to the first singularity on the negative real axis. It is
straightforward to check the results of Joshi and Kitaev (2001) with, e.g., ode45, the
Runge–Kutta solver in Matlab corresponding to the Maple solver used in Joshi and
Kitaev (2001). If one solves P-I on a line that avoids the sector | arg ζ | > 4π/5, one
could integrate until one reaches once more large values of |ζ | for which the asymp-
totic conditions are known. This would provide a control of the numerical accuracy
of this so-called shooting approach. Shooting methods are problematic if the second
solution to the initial value problem has poles as is the case for P-I. In this case, the
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numerical errors in the initial data (here due to the asymptotic conditions) and in the
time integration will lead to a large contribution of the unwanted solution close to its
poles, which will make the numerical solution useless. It is obvious that P-I has such
poles from the numerical results in Joshi and Kitaev (2001) and the property (5.5).
In Joshi and Kitaev (2001), the task was to locate poles in the tritronquée solution,
and in this case, the shooting approach is useful. Here we are studying, however, the
solution on a line in the complex plane where we know the asymptotic conditions for
the affine parameter tending to ±∞.

Thus, we use as in Fokas and Tanveer (1998), the asymptotic conditions on lines
avoiding the sector | arg ζ | > 4π/5 to set up a boundary value problem for y = ±ye,
ye ≥ 10. The solution in the interval [−ye, ye] is numerically obtained with a finite
difference code based on a collocation method. The code bvp4c distributed with Mat-
lab, see Shampine et al. (2003) for details, uses cubic polynomials in between the
collocation points. The P-I equation is rewritten in the form of a first order system.
With some initial guess (we use Ω = −√

ζ/6 as the initial guess), the differential
equation is solved iteratively by linearization. The collocation points (we use up to
10,000) are dynamically adjusted during the iteration. The iteration is stopped when
the equation is satisfied at the collocation points with a prescribed relative accuracy,
typically 10−10. The solution for ζ = iy is shown in Fig. 1. The values of Ω in be-
tween the collocation points are obtained by interpolation via the cubic polynomials
in terms of which the solution has been constructed. This interpolation leads to a loss

Fig. 1 Real (blue) and imaginary part (red) of the tritronquée solution to the Painlevé I equation for
ζ = iy
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Fig. 2 Error in the solution of the Painlevé I equation

in accuracy of roughly one order of magnitude with respect to the precision at the
collocation points. To test this, we determine the numerical solution via bvp4c for P-I
on Chebychev collocation points and check the accuracy with which the equation is
satisfied via Chebychev differentiation, see, e.g., Trefethen (2000). It is found that the
numerical solution with a relative tolerance of 10−10 on the collocation points satis-
fies the ODE to roughly the same order except at the boundary points where it is of
the order 10−8, see Fig. 2 where we show the residual Res by plugging the numerical
solution into the differential equation for the above example. It is straightforward to
achieve a prescribed accuracy by requiring a certain value for the relative tolerance.
Notice that we are not interested in a high precision solution of P-I here, but in a com-
parison of solutions to the NLS equation close to the point of gradient catastrophe of
the semiclassical system with an asymptotic solution in terms of P-I transcendents.
As argued in the previous section, we expect the difference to be of the order of ε4/5,
i.e., roughly 0.05 for the smallest value of ε (0.025) we consider. To study differences
of this order, an accuracy of the PI-solution of the order of 10−4 will be sufficient in
all studied cases.

The quality of the boundary conditions based on the asymptotic behavior can be
checked by computing the solution for different values of ye. One finds that the differ-
ence between the asymptotic square root and the tritronquée solution is only visible
near the origin, see Fig. 3. For large x, it can be seen that the difference between the
square root asymptotics and the tritronquée solution reaches quickly values below
the aimed at threshold of 10−4. It is interesting to note that this difference is actually
smaller than the difference between the tritronquée solution and the truncated formal
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Fig. 3 The plot on the left side shows the absolute value of the difference between the tritronquée solution
and the asymptotic condition −√

ζ/6 for ζ = iy. The plot on the right side shows in blue the same differ-
ence for y > 10 and in red the difference between the tritronquée solution and the truncated asymptotic
series

asymptotic series except at the boundary, where the latter condition is implemented
(see Fig. 3).

The dominant behavior of the square root changes if one approaches the critical
lines a = exp(4πi/5), b = 0. As can be seen from Fig. 4, the solution shows os-
cillations on top of the square root. The closer one comes to the critical lines, the
slower is the fall off of the amplitude of the oscillations. We conjecture that these
oscillations will have on the critical lines only a slow algebraic fall off toward infin-
ity.

The above approach thus allows the computation of the tritronquée solution for
a line avoiding the sector | arg ζ | > 4π/5 with high accuracy. The picture one ob-
tains by computing Ω along several such lines is that there are indeed no singu-
larities in the sector | arg ζ | < 4π/5, and that the square root behavior is followed
for large |ζ |. To obtain a more complete picture, we compute the tritronquée so-
lution for | arg ζ | < 4π/5 − 0.05 and |ζ | < R (we choose R = 20). The boundary
data for |ζ | = R follow as before from the truncated asymptotic series, the data for
arg ζ = ±4π/5 − 0.05 are obtained by computing the tritronquée solution on the
respective lines as above.
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Fig. 4 Real (blue) and imaginary part (red) of the tritronquée solution close to the critical line (for
ζ = exp(i(4π/5 − 0.05))y) with oscillations of slowly decreasing amplitude

To solve the resulting boundary value problem for the P-I equation is, however,
computationally expensive since we have to solve an equation in 2 real dimensions
iteratively. Since the solution we want to construct is holomorphic there, we can in-
stead solve the harmonicity condition (the two dimensional Laplace equation) for
the given boundary conditions. To this end, we introduce polar coordinates |ζ |, arg ζ

and use a spectral grid as described in Trefethen (2000): the main point is a dou-
bling of the interval |ζ | ∈ [0,Re] to [−Re,Re] to allow for a better distribution of
the Chebychev collocation points. Since we work with values of argζ < φe , we can-
not use the usual Fourier series approach for the azimuthal coordinate. Instead, we
use again a Chebychev collocation method. The found solution in the considered
domain is shown in Figs. 5 and 6. The quality of the solution can be tested by plug-
ging the found solution to the Laplace equation into the P-I equation. Due to the low
resolution and problems at the boundary, the accuracy is considerably lower in the
two dimensional case than on the lines. This is, however, not a problem since we
need only the one dimensional solutions for quantitative comparisons with NLS so-
lutions. The two dimensional solutions give nonetheless strong numerical evidence
for the conjecture that the tritronquée solution has globally no poles in the sector
| arg ζ | < 4π/5.
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Fig. 5 Real part of the tritronquée solution in the sector |ζ | < 20 and | arg ζ | < 4π/5 − 0.05

Fig. 6 Imaginary part of the tritronquée solution in the sector |ζ | < 20 and | arg ζ | < 4π/5 − 0.05
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7 Critical Behavior in NLS and the Tritronquée Solution of P-I: Numerical
Results

In this section, we will compare the numerical solution of the focusing NLS equa-
tion for two examples of initial data for values of ε between 0.1 and 0.025 with the
asymptotic solutions discussed in the previous sections, the semiclassical solution up
to the breakup, and the tritronquée solution to the Painlevé I equation. The numerical
approach to solve the NLS equation is discussed in detail in Klein (2006). For values
of ε below 0.04, we have to use Krasny filtering (Krasny 1986) (Fourier coefficients
with an absolute value below 10−13 are put equal to zero to avoid the excitation of
unstable modes). With double precision arithmetic, we could thus reach ε = 0.025,
but could not go below.

7.1 Initial Data

We consider initial data where u(x,0) has a single positive hump, and where
v(x,0) is monotonically decreasing. For initial data of the form u(x,0) = A2(x) and
v(x,0) = 0 where the function A(x) is analytic with a single positive hump with max-
imum value A0, the semiclassical solution of NLS follows from (2.11) with f (u, v)

given by

f (u, v) = −2�
( iA0∫

− 1
2 v+i

√
u

dηρ(η)

√(
η + 1

2
v

)2

+ u

)

(7.1)

where

ρ(η) = η

π

∫ x+(η)

x−(η)

dx
√

A2(x) + η2
,

and where x±(η) are defined by A(x±(η)) = iη. The formula (7.1) follows from
results by Kamvissis et al. (2003).

From f (u, v), it is straightforward to recover the initial data from the equations

x = fu, fv = 0. (7.2)

Numerically, we study the critical behavior of two classes of initial data, one sym-
metric with respect to x which were used in Miller and Kamvissis (1998), and initial
data without symmetry with respect to x which are built from the initial data studied
in Tovbis et al. (2004). For the former class, the corresponding exact solution of fo-
cusing NLS is known in terms of a determinant. Nonetheless, we integrate the NLS
equation for these initial data numerically since this approach is not limited to special
cases, but can be used for general smooth Schwartzian initial data as in the latter case.

7.1.1 Symmetric Initial Data

We consider the particular class of initial data

u(x, t = 0) = A2
0sech2x, v(x, t = 0) = −μtanhx, μ ≥ 0. (7.3)
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Introducing the quantity

M =
√

μ2

4
− A2

0,

we find that the semiclassical solution for these initial data follows from (2.11) with

f (u, v) = μ

2
v − 1

4
(v − 2M)Δ+ − 1

4
(v + 2M)Δ− − 1

2
u logu

+ 1

2
u log

[(
−1

2
v + M + Δ+

)(
−1

2
v − M + Δ−

)]
(7.4)

where

Δ± =
((

−1

2
v ± M

)2

+ u

) 1
2

.

For μ = 0, we recover the Satsuma and Yajima (1974) initial data that were studied
numerically in Miller and Kamvissis (1998). The function f (u, v) takes the form

f (u, v) = �
[(

−v

2
+ iA0

)√

u +
(

−v

2
+ iA0

)2

+ u log
− v

2 + iA0 +
√

(− v
2 + iA0)2 + u

√
u

]
, (7.5)

which can also be recovered from (7.1) by setting ρ = i. The critical point is given
by

u0 = 2A2
0, v0 = 0, x0 = 0, t0 = 1

2A0
. (7.6)

Furthermore, we have

f 0
uuu = 0, f 0

uuv = 1

4A3
0

, r = 4A3
0, ψ = 0, (7.7)

where r , ψ are defined in (2.13). For A0 = 1, the initial data (7.3) coincides with the
one studied in Tovbis et al. (2004). In the particular case μ = 2, A0 = 1, the function
f (u, v) in (7.1) simplifies to

f (u, v) = v − v

2

√
1

4
v2 + u + u log

[− 1
2v +

√
1
4v2 + u

√
u

]
. (7.8)

In this case, the critical point is given by

v0 = 0, u0 = 2 + μ, t0 = 1

2 + μ
, x0 = 0.
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Furthermore,

f 0
uuu = 0, f 0

uuv = 2

(μ + 2)3
, r = (μ + 2)3

2
, ψ = 0.

7.1.2 Asymmetric Initial Data

Recall that we are interested here in Cauchy data in the Schwartz class of rapidly
decreasing functions. The above initial data are symmetric with respect to x, u is an
even, and v an odd function in x. To obtain a situation which is manifestly not sym-
metric, we use the fact that if f is a solution to (2.5), the same holds for derivatives
and antiderivatives of f with respect to v and for any linear combination of those. If
fv is an even function in v, this will obviously not be the case for a linear combination
of f and fv .

As a specific example, we consider the linear combination

f = f1 + αf2, α = const,

where f1 coincides with (7.8), and where

f2 = 2u

√
1

4
v2 + u − 2

3

(
1

4
v2 + u

)3/2

+ uv log

[− 1
2v +

√
1
4v2 + u

√
u

]
. (7.9)

The function f2 is obtained from the integration of f2,v = f1 − v. The critical point
is given in this case by

u0 = 4
(
1 − 16α2), v0 = −16α, x0 = 1

2
log

1 + 4α

1 − 4α
,

t0 = 1

4
− α

2
log

1 + 4α

1 − 4α
;

thus, we have |α| < 1/4. Furthermore,

f 0
uuv = − 4α2 − 1/8

4
√

1 − 16α2
, f 0

uuu = α

4
√

1 − 16α2
,

such that

r = 8u0, ψ = − arctan
α
√

1 − 16α2

1/8 − 4α2
.

We determine the initial data corresponding to f for a given value of |α| < αc =
0.20838 . . ., where αc is defined by t0(αc) = 0, i.e., where the critical point occurs at
the initial time, by solving (7.2) for u, v in dependence of x. This is done numerically
by using the algorithm of Lagarias et al. (1988) which is implemented as the function
fminsearch in Matlab. The algorithm provides an iterative approach which converges
in our case rapidly if the starting values are close enough to the solution, which is
achieved by choosing u and v corresponding to f1 as an initial guess. For α close



84 J Nonlinear Sci (2009) 19: 57–94

Fig. 7 Initial data for the NLS equations without symmetry with respect to x

to αc, we observe numerically a steepening of the initial pulse which will lead to a
shock front in the limit α → αc . For the computations presented here, we consider
the case α = 0.1 which leads to the initial data shown in Fig. 7.

The initial data are computed in the way described above to the order of the Krasny
filter on the interval x ∈ [−15,11] on Chebychev collocation points. Standard inter-
polation via Chebychev polynomials is then used to interpolate the resulting data to
a Fourier grid. To avoid a Gibbs phenomenon at the interval ends due to the nonperi-
odicity of the data, we use a Fourier grid on the interval [−10π,10π] to ensure that
the function u takes values of the order of the Krasny filter. For x < −15 and x > 11,
the function u is exponentially small which implies the zero-finding algorithm will
no longer provide the needed precision. Thus, we determine the exponential tails of
the solution to leading order analytically. We find for x → −∞

u ∼ v2+ exp

(
2(x − αv+)

αv+ + 1

)
,

(7.10)

v ∼ v+ − v+ exp

(
2(x − αv+)

αv+ + 1

)(
2 log(v+) + 2(x − αv+)

αv+ + 1

)
,

and for x → +∞
u ∼ v2− exp

(
−2(x + α)

αv− + 1

)
,

(7.11)

v ∼ v− − v− exp

(
−2(x + α)

αv− + 1

)(
2 log(−v−) − 2(x + α)

αv− + 1

)
,
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where v± = (
√

1 ± α − 1)/α. The initial data for the NLS equation in the form Ψ =√
u exp(iS/ε) are then found by integrating v on the Chebychev grid by standard

integration of Chebychev polynomials. The exponential tails for S follow from (7.10)
and (7.11). The matching of the tails to the Chebychev interpolant is not smooth and
leads to a small Gibbs phenomenon. The Fourier coefficients decrease, however, to
the order of the Krasny filter which is sufficient for our purposes. Thus, we obtain the
asymmetric initial data with roughly the same precision as the analytic symmetric
data.

7.2 Semiclassical Solution

For times t � t0, the semiclassical solution gives a very accurate asymptotic descrip-
tion for the NLS solution. The situation is similar to the Hopf and the KdV equation
(Grava and Klein 2007). We find for the symmetric initial data for t = tc/2 that the
L∞ norm of the difference between the solutions decreases as expected as ε2. More
precisely, a linear regression analysis in the case of symmetric initial data (for the
values ε = 0.03,0.04, . . . ,0.1) for the logarithm of this norm leads to an error pro-
portional to εa with a = 1.94, a correlation coefficient rc = 0.9995 and standard error
σa = 0.03. In the asymmetric case, we find a = 1.98, rc = 0.999996, and σa = 0.003.

Close to the critical time the semiclassical solution only provides a satisfactory
description of the NLS solution for large values of |x − x0|. In the breakup region,
it fails to be accurate since it develops a cusp at x0 whereas the NLS solution stays
smooth. This behavior can be well seen in Fig. 8 for the symmetric initial data. The
largest difference between the semiclassical and the NLS solution is always at the
critical point. We find that the L∞ norm of the difference scales roughly as ε2/5 as
suggested by the main conjecture. More precisely, we find a scaling proportional to
εa with a = 0.38 and rc = 0.999997 and σa = 4.2 × 10−4. For the asymmetric initial
data, we find a = 0.36, rc = 0.9999, and σa = 0.002. The corresponding plot for u

can be seen in Fig. 9.
The function v for the same situation as in Fig. 8 is shown in Fig. 10. It can be seen

that the semiclassical solution is again a satisfactory description for |x −x0| large, but
fails to be accurate close to the breakup point. The phase for the asymmetric initial
data can be seen in Fig. 11. In the following, we will always study the scaling for the
function u without further notice.

7.3 Multiscales Solution

It can be seen in Figs. 8 and 10 that the multiscales solution (5.21) in terms of the
tritronquée solution to the Painlevé I equation gives a much better asymptotic de-
scription to the NLS solution at breakup time close to the breakup point than the
semiclassical solution for the symmetric initial data. For larger values of |x − x0|, the
semiclassical solution provides, however, the better approximation. The rescaling of
the coordinates in (5.21) suggests to consider the difference between the NLS and
the multiscales solution in an interval x̄ ∈ [−γ ε4/5, γ ε4/5] (we choose here γ = 1,
but within numerical accuracy the result does not depend on varying γ around this
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Fig. 8 The blue line is the function u of the solution to the focusing NLS equation for the initial data
u(x,0) = 2sechx, v(x,0) = 0 and ε = 0.04 at the critical time, and the red line is the corresponding semi-
classical solution given by formulas (2.4). The green line gives the multiscales solution via the tritronquée
solution of the Painlevé I equation

Fig. 9 The blue line is the function u of the solution to the focusing NLS equation for the asymmetric
initial data and ε = 0.04 at the critical time, and the red line is the corresponding semiclassical solution
given by formulas (2.4). The green line gives the multiscales solution via the tritronquée solution of the
Painlevé I equation
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Fig. 10 The blue line is the function v of the solution to the focusing NLS equation for the initial data
u(x,0) = 2sechx, v(x,0) = 0 and ε = 0.04 at the critical time, and the red line is the corresponding semi-
classical solution given by formulas (2.4). The green line gives the multiscales solution via the tritronquée
solution of the Painlevé I equation

Fig. 11 The blue line is the function v of the solution to the focusing NLS equation for the asymmetric
initial data and ε = 0.04 at the critical time, and the red line is the corresponding semiclassical solution
given by formulas (2.4). The green line gives the multiscales solution via the tritronquée solution of the
Painlevé I equation
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Fig. 12 The blue line is the solution to the focusing NLS equation for the initial data u0(x) = 2sechx

at the critical time, and the green line gives the multiscales solution via the tritronquée solution of the
Painlevé I equation. The plots are shown for two values of ε at the critical time

value). These intervals can be seen in Fig. 12. We find that the L∞ norm of the differ-
ence between these solutions in this interval scales roughly like ε4/5. More precisely,
we have a scaling εa with a = 0.76 (rc = 0.998 and σa = 0.019).

For the asymmetric initial data, the situation at the critical point can be seen in
Figs. 9 and 11. Again, the multiscales solution (5.21) gives a much better description
close to the critical point than the semiclassical solution. However, the approximation
is here much better on the side with weak slope for u than on the side with strong
slope. We consider again the L∞-norm of the difference between the multiscales
and the NLS solution in the interval x̄ ∈ [−γ ε4/5, γ ε4/5]. The scaling behavior of
the solution can be seen in Fig. 13. For γ = 1, we find a = 0.71, rc = 0.998, and
σa = 0.02. These values do not change much for larger γ . For smaller γ, there are
not enough points to provide valid statistics. The value of a smaller than the predicted
4/5 is seemingly due to the strong asymmetry in the quality of the approximation of
NLS by the multiscales solution as can be seen from Fig. 9. In the considered interval,
the deviation is already so big that the scaling no longer holds as in the symmetric
case. To study the scaling with reliable statistics would, however, require the use of a
considerably higher resolution which would be computationally too expensive.

Going beyond the critical time, one finds that the real part of the NLS solution
continues to grow before the central hump breaks up into several humps. Notice that
the multiscales solution always leads to a function u that is smaller than the corre-
sponding function of the NLS solution at breakup and before. This changes for times
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Fig. 13 The blue line is the solution to the focusing NLS equation for the asymmetric initial data at the
critical time, and the green line gives the multiscales solution via the tritronquée solution of the Painlevé I
equation. The plots are shown for two values of ε at the critical time

after the breakup as can be inferred from Fig. 14 which shows the time dependence of
the NLS and the corresponding multiscales solution for the asymmetric initial data.
The approximation is always best at the critical time.

t±(ε) = t0 + u0/r −
√

(u0/r)2 ∓ ε4/5β. (7.12)

To study the quality of the approximation (5.21), we use rescaled times. The scal-
ing of the coordinates in (5.21) suggests to consider the NLS solution close to breakup
at the times t±(ε) with where β is a constant (we consider β = 0.01). We will only
study the symmetric initial data in this context. Before breakup, we obtain the situ-
ation shown in Fig. 15. It can be seen that the multiscales solution always provides
a better description close to x0 for small enough t̄ than the semiclassical solution,
and that the quality improves in this respect with decreasing ε. We find that the L∞
norm of the difference between semiclassical and NLS solution scales in this case as
εa with a = 0.37 (rc = 0.9999 and σa = 0.0025), whereas the same difference be-
tween NLS and the multiscales solutions scales as εa with a = 0.73 (rc = 0.9999 and
σa = 0.004). The biggest difference to the NLS solution occurs for the semiclassical
solution at x0 and for the multiscales solution at the interval ends.

The situation for times after breakup can be inferred from Fig. 16, where β = 0.1
in (7.12). Close to the central region the multiscales solution shows a clear differ-
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Fig. 14 The blue line is the solution to the focusing NLS equation for the asymmetric initial data for
ε = 0.04 for various times, and the magenta line gives the multiscales solution via the tritronquée solution
of the Painlevé I equation. The plot in the middle shows the behavior at the critical time

ence to the NLS solution. But it is interesting to note that the ripples next to the
central hump are well approximated by the Painlevé I solution. The L∞ norm of
the difference between the two solutions for β = 0.01 scales like εa with a = 0.80
(rc = 0.9999 and σa = 0.004).

8 Concluding Remarks

In this paper, we have started the study of the critical behavior of generic solutions of
the focusing nonlinear Schrödinger equation. We have formulated the conjectural an-
alytic description of this behavior in terms of the tritronquée solution to the Painlevé-I
equation restricted to certain lines in the complex plane. We provided analytical as
well as numerical evidence supporting our conjecture. In subsequent publications, we
plan to further study the main conjecture of the present paper by applying techniques
based, first of all, on the Riemann–Hilbert problem method (Kamvissis et al. 2003;
Tovbis et al. 2004, 2006) and the theory of Whitham equations (see Grava and Klein
2007 for the numerical implementation of the Whitham procedure in the analysis of
oscillatory behavior of solutions to the KdV equations). The latter will also be applied
to the asymptotic description of solutions inside the oscillatory zone.
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Fig. 15 The blue line is the solution to the focusing NLS equation for the initial data u(x,0)(x) = 2sechx,
v(x,0) = 0, and the red line is the corresponding semiclassical solution given by formulas (2.4). The green
line gives the multiscales solution via the tritronquée solution of the Painlevé I equation. The plots are
shown for two values of ε at the corresponding times t−(ε)

Fig. 16 The blue line is the solution to the focusing NLS equation for the initial data u(x,0) = 2sechx,
v(x,0) = 0, and the green line gives the multiscales solution via the tritronquée solution of the Painlevé I
equation. The plots are shown for two values of ε at the corresponding times t+(ε)
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Furthermore, we plan to study the possibility of extending the main conjecture
to the critical behavior of solutions to the Hamiltonian perturbations of more gen-
eral first order quasilinear systems of elliptic type. Certainly the main challenge
would be to also include an asymptotic description of critical behavior in the gen-
eral nonintegrable perturbations (as it was done in Dubrovin (2006) for the case of
scalar Hamiltonian equations). There is, however, an important difference between
the scalar Hamiltonian equations and the more general case of systems of Hamil-
tonian evolutionary PDEs of order greater or equal to 2. In the scalar case, any Hamil-
tonian perturbation remains integrable within the order ε4 approximation. Breaking
of integrability in higher orders does not change the structure of the leading term
of the asymptotics. It turns out that for systems, a generic Hamiltonian perturbation
destroys integrability already at the order ε2. This was shown in Dubrovin (2008)
for the particular class of perturbations of the second order nonlinear wave equation.
The perturbations preserving integrability at the order ε2 have been classified in this
paper; the critical behavior for these perturbations is expected to be described by the
same tritronquée solution to the Painlevé-I. The case of more general perturbations
violating integrability at this order is currently under investigation.

Last but not least, it would be of interest to study the distribution of poles of
the tritronquée solution in the sector | arg ζ | > 4π

5 and to compare these poles with
the peaks of solutions to NLS inside the oscillatory zone. The elliptic asymptotics
obtained by Kitaev (1994) might be useful for studying these poles for large |ζ |.

In this paper, we did not study the behavior of solutions to NLS near the boundary
u = 0. Such a study is postponed for a subsequent publication.
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