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Abstract: We study dispersive properties for the wave equation in the Schwarzschild
space-time. The first result we obtain is a local energy estimate. This is then used, fol-
lowing the spirit of [29], to establish global-in-time Strichartz estimates. A considerable
part of the paper is devoted to a precise analysis of solutions near the trapping region,
namely the photon sphere.

1. Introduction

The aim of this article is to contribute to the understanding of the global-in-time disper-
sive properties of solutions to wave equations on Schwarzschild black hole backgrounds.
Precisely, we consider two robust ways to measure dispersion, namely the local energy
estimates and the Strichartz estimates.

Let us begin with the local energy estimates. For solutions to the constant coefficient
wave equation in 3 + 1 dimensions,

�u = 0, u(0) = u0, ut (0) = u1,

we have the original estimates of Morawetz [33], 1

∫ t

0

∫
R3

1

|x | |�∇u|2(t, x) dt dx � ‖∇u0‖2
L2 + ‖u1‖2

L2 , (1.1)

where �∇ denotes the angular derivative. To prove this one multiplies the wave equation
by the multiplier (∂r + 1

r )u and integrates by parts. Within dyadic spatial regions one
can also control u, ∂t u and ∂r u. Precisely, we have the local energy estimates

� The authors were supported in part by the NSF grants DMS0354539 and DMS0301122.
1 There is another estimate commonly referred to as a Morawetz estimate. This corresponds to using the

multiplier (t2 + r2)∂t + 2tr∂r . We will reserve the term Morawetz estimate for (1.1) and shall call the latter
estimate the Morawetz conformal estimate.
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R− 1
2 ‖∇u‖L2(R×B(0,R)) + R− 3

2 ‖u‖L2(R×B(0,R)) � ‖∇u0‖L2 + ‖u1‖L2 . (1.2)

See for instance [20,22,40–42].
One can also consider the inhomogeneous problem,

�u = f, u(0) = u0, ut (0) = u1. (1.3)

In view of (1.2) we define the local energy space L EM for the solution u by

‖u‖L EM = sup
j∈Z

[
2− j

2 ‖∇u‖L2(A j )
+ 2− 3 j

2 ‖u‖L2(A j )

]
, (1.4)

where

A j = R × {2 j ≤ |x | ≤ 2 j+1}.
For the inhomogeneous term f we introduce a dual type norm

‖ f ‖L E∗
M

=
∑
j∈Z

2
j
2 ‖ f ‖L2(A j )

.

Then we have:

Theorem 1.1. The solution u to (1.3) satisfies the following estimate:

‖u‖L EM � ‖∇u0‖L2 + ‖u1‖L2 + ‖ f ‖L E∗
M
. (1.5)

One may ask whether similar bounds also hold for perturbations of the Minkowski
space-time. Indeed, in the case of small long range perturbations the same bounds as
above were established very recently by two of the authors, see [30, Prop. 2.2] or [28,
(2.23)] (with no obstacle, � = ∅). See also [1,27] for related local energy estimates for
small perturbations of the d’Alembertian. For large perturbations one faces additional
difficulties, due on one hand to trapping for large frequencies and on the other hand to
eigenvalues and resonances for low frequencies. The Schwarzschild space-time, con-
sidered in the present paper, is a very interesting example of a large perturbation of the
Minkowski space-time, where trapping causes significant difficulties.

The Schwarzschild space-time M is a spherically symmetric solution to Einstein’s
equations with an additional Killing vector field K , which models the exterior of a mas-
sive spherically symmetric body. Factoring out the S

2 component it can be represented
via the Penrose diagram in Fig. 1. The radius r of the S

2 spheres is intrinsically deter-
mined and is a smooth function on M which has a single critical point at the center.
The regions I and I ′ represent the exterior of the black hole, respectively its symmetric
twin, and are characterized by the relation r > 2M . We can represent I as

I = R × (2M,∞)× S
2

with a metric whose line element is

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2dω2, (1.6)

where dω2 is the measure on the sphere S
2. The Killing vector field K is given by

K = ∂t , which is time-like within I . The differential dt is intrinsic, but the function t is
only defined up to translations on I .
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Fig. 1. The Penrose diagram for the Kruskal extension of the Schwarzschild solution

The regions I I and I I ′ represent the black hole, respectively its symmetric twin, the
white hole, and are characterized by the relation r < 2M . The same metric as in (1.6)
can be used. The Killing vector field K is still given by K = ∂t , which is now space-like.
Light rays can enter the black hole but not leave it. By symmetry light rays can leave
the white hole but not enter it.

The surface r = 2M is called the event horizon. While the singularity at r = 0 is
a true metric singularity, we note that the apparent singularity at r = 2M is merely a
coordinate singularity. Indeed, denote

r∗ = r + 2M log(r − 2M)− 3M − 2M log M,

so that

dr∗ =
(

1 − 2M

r

)−1

dr, r∗(3M) = 0

and set v = t + r∗. Then in the (r, v, ω) coordinates the metric in region I is expressed
in the form

ds2 = −
(

1 − 2M

r

)
dv2 + 2dvdr + r2dω2,

which extends analytically into the black hole region I + I I . In particular, given a choice
of the function t in region I , this uniquely determines the function t in the region I I via
the same change of coordinates.

In a symmetric fashion we set w = t − r∗. Then in the (r, w, ω) coordinates the
metric is expressed in the form

ds2 = −
(

1 − 2M

r

)
dw2 − 2dwdr + r2dω2,

which extends analytically into the white hole region I + I I ′.
One can also introduce global nonsingular coordinates by rewriting the metric in the

Kruskal-Szekeres coordinate system,

v′ = e
v

4M , w′ = −e− w
4M .
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However, this is of less interest for our purposes here. Further information on the
Schwarzschild space can be found in a number of excellent texts. We refer the interested
reader to, e.g., [18,31 and 51].

As far as the results in this paper are concerned, for large r the Schwarzschild space-
time can be viewed as a small perturbation of the Minkowski space-time. The difficulties
in our analysis are caused by the dynamics for small r , where trapping occurs. The pres-
ence of trapped rays, i.e. rays which do not escape either to infinity or to the singularity
r = 0, are known to be a significant obstacle to proving local energy, dispersive, and
Strichartz estimates and, in some cases, are known to necessitate a loss of regularity.
See, e.g., [10 and 37].

There are two places where trapping occurs on the Schwarzschild manifold. The first
is the surface r = 3M which is called the photon sphere. Null geodesics which are ini-
tially tangent to the photon sphere will remain on the surface for all times. Microlocally
the energy is preserved near such periodic orbits. However what allows for local energy
estimates near the photon sphere is the fact that these periodic orbits are hyperbolic. The
second is at the event horizon r = 2M , where the trapped geodesics are the vertical
ones in the (r, v, ω) coordinates. However, this second family of trapped rays turns out
to cause no difficulty in the decay estimates since in the high frequency limit the energy
decays exponentially along it as v → ∞. This is due to the fact that the frequency decays
exponentially along the Hamilton flow, and in the physics literature it is well-known as
the red shift effect.

To describe the decay properties of solutions to the wave equation in the Schwarzs-
child space, it is convenient to use coordinates which make good use of the Killing vector
field and are nonsingular along the event horizon. The (r, v, ω) coordinates would satisfy
these requirements. However the level sets of v are null surfaces, which would cause
some minor difficulties. This is why in I + I I we introduce the function ṽ defined by

ṽ = v − µ(r),

where µ is a smooth function of r . In the (ṽ, r, ω) coordinates the metric has the form

ds2 = −
(

1 − 2M

r

)
d ṽ2 + 2

(
1 −

(
1 − 2M

r

)
µ′(r)

)
d ṽdr

+

(
2µ′(r)−

(
1 − 2M

r

)
(µ′(r))2

)
dr2 + r2dω2.

On the function µ we impose the following two conditions:

(i) µ(r) ≥ r∗ for r > 2M , with equality for r > 5M/2.
(ii) The surfaces ṽ = const are space-like, i.e.

µ′(r) > 0, 2 −
(

1 − 2M

r

)
µ′(r) > 0.

The first condition (i) insures that the (r, ṽ, ω) coordinates coincide with the (r, t, ω)
coordinates in r > 5M/2. This is convenient but not required for any of our results.
What is important is that in these coordinates the metric is asymptotically flat as r → ∞.

In the proof of the Strichartz estimates, it is also required that µ′(r) = (
1 − 2M

r

)−1
near

r = 3M , which in other words says that we can work in the (r, t) coordinates near the
photon sphere. However, this may be merely an artifact of our method.
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Fig. 2. The Schwarzschild space partition represented on the Penrose diagram

We introduce a symmetric function ṽ1 in I ′ + I I , as well as the functions w̃ and
w̃1 in I + I I ′, respectively I ′ + I I ′. Given a parameter 0 < r0 < 2M we partition the
Schwarzschild space into seven regions

M = MR ∪ ML ∪ M′
R ∪ M′

L ∪ MT ∪ MC ∪ MB

as in Fig. 2. The right/left top/bottom regions are

MR = {ṽ ≥ 0, r ≥ r0} ⊂ I + I I, ML = {ṽ1 ≥ 0, r ≥ r0} ⊂ I ′ + I I,

M′
R = {w̃ ≤ 0, r ≥ r0} ⊂ I + I I ′, M′

L = {w̃1 ≤ 0, r ≥ r0} ⊂ I ′ + I I ′,

the top and bottom regions are

MT = {r < r0} ∩ I I, MB = {r < r0} ∩ I I ′,

and the central region MC is the remainder of M. Moreover, define

�−
R = MR ∩ {ṽ = 0},

�+
R = MR ∩ {r = r0}.

and similarly for the other regions.
In what follows we consider the Cauchy problem

�gφ = f, φ|�0 = φ0, K̃φ|�0 = φ1, (1.7)

where for convenience we choose the initial surface �0 to be the horizontal surface of
symmetry

�0 = {t = 0} ∩ (I + I ′)

and K̃ is smooth, everywhere timelike and equals K on �0 outside MC . Observe that
we cannot use K on all of �0 since it is degenerate at the center (i.e. on the bifurcate
sphere).

Equation (1.7) can be solved as follows:

(i) Solve the equation in MC with Cauchy data on�0. Since MC is compact and has
forward and backward space-like boundaries, this is a purely local problem.
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(ii) Solve the equation in MR with Cauchy data on�−
R . The forward boundary of MR

is�+
R , which is space-like. This is the most interesting part, where we are interested

in the decay properties as ṽ → ∞. In a similar manner solve the equation in ML ,
M′

R and M′
L .

(iii) Solve the equation in MT with initial data on the space-like surface �T = {r =
r0} ∩ I I . Here one can track the solution up to the singularity and encounter a mix
of local and global features. This part of the analysis is not pursued in the present
article.

A significant role in our analysis is played by the Killing vector field K , which in
the (r, ṽ) coordinates equals ∂ṽ . This is time-like outside the black hole but space-like
inside it. Furthermore, it is degenerate at the center. Using the Killing vector field outside
the black hole we obtain a conserved energy E0[φ] for solutions φ to the homogeneous
equation �gφ = 0. On surfaces t = const in the (r, t) coordinates the energy E0[φ](t)
has the form

E0[φ]=
∫

S2

∫ ∞

2M

[(
1 − 2M

r

)−1

(∂tφ)
2+

(
1 − 2M

r

)
(∂rφ)

2+|�∇φ|2
]

r2drdω. (1.8)

Since the vector field K is degenerate at the center, so is the corresponding energy
E0 at r = 2M . Hence it would be natural to replace it with a nondegenerate energy,
which on the initial surface �0 can be expressed as

E[φ](�0)=
∫

S2

∫ ∞

2M

[(
1 − 2M

r

)− 3
2

(∂tφ)
2+

(
1 − 2M

r

) 1
2

(∂rφ)
2+|�∇φ|2

]
r2drdω.

(1.9)

Unfortunately this is no longer conserved, and this is one of the difficulties which we
face in our analysis. We remark that a related form of a nondegenerate energy expres-
sion was introduced in [14] and proved to be bounded in the exterior region on surfaces
t = const .

Part of the novelty of our approach is to prove bounds not only in the exterior region,
but also inside the event horizon. This is natural if one considers the fact that the sin-
gularity at r = 2M is merely a removable coordinate singularity. In order to do this, it
is no longer suitable to measure the evolution of the energy on the surfaces t = const
(see below). Thus the above energy E[φ](�0) is relegated to a secondary role here and
is used only to measure the size of the initial data.

A priori the energy E[φ](t) of φ only determines its Cauchy data at time t modulo
constants. However, in what follows we implicitly assume that φ decays at ∞, in which
case φ can also be estimated via a Hardy-type inequality,

∫ (
1 − 2M

r

)− 1
2

r−2φ2 r2drdω �
∫ (

1 − 2M

r

) 1
2

(∂rφ)
2 r2drdω. (1.10)

This is proved in a standard manner; the details are left to the reader.
We shall now further describe our main estimates in the region MR : the local energy

decay, the WKB analysis which yields a local energy decay with only a logarithmic loss,
and finally the Strichartz estimates.
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For the initial energy on �−
R we use

E[φ](�−
R ) =

∫
�−

R

(
|∂rφ|2 + |∂ṽφ|2 + |�∇φ|2

)
r2drdω.

For the final energy on �+
R we set

E[φ](�+
R) =

∫
�+

R

(
|∂rφ|2 + |∂ṽφ|2 + |�∇φ|2

)
r2

0 d ṽdω.

We also track the energy on the space-like slices ṽ = const ,

E[φ](ṽ0) =
∫
MR∩{ṽ=ṽ0}

(
|∂rφ|2 + |∂ṽφ|2 + |�∇φ|2

)
r2drdω.

Thus E[φ](�−
R ) = E[φ](0).

For the local energy estimates one may first consider a direct analogue of the
Minkowski bound (1.5). Unfortunately such a bound is hopeless due to the trapping
which occurs at r = 3M . Instead, for our first result we define a weaker preliminary
local energy space L E0 with norm

‖φ‖2
L E0

=
∫
MR

(
1

r2 |∂rφ|2+

(
1 − 3M

r

)2 (
1

r2 |∂ṽφ|2+
1

r
|�∇φ|2

)
+

1

r4φ
2

)
r2drd ṽdω.

(1.11)

Compared to the L EM norm we note the power loss in the angular and ṽ derivatives at
r = 3M . The L E0 norm is also weaker than L EM as r → ∞, but this is merely for
convenience.

At the same time we would like to also consider the inhomogeneous problem �gφ =
f . To measure the inhomogeneous term f , we introduce the norm L E∗

0 , which is stronger
than L E∗

M :

‖ f ‖2
L E∗

0
=

∫
MR

(
1 − 3M

r

)−2

r2 f 2 r2drd ṽdω. (1.12)

Again the important difference is at r = 3M . Our first local energy estimate is the
following:

Theorem 1.2. Letφ solve the inhomogeneous wave equation �gφ = f on the Schwarzs-
child manifold. Then we have

E[φ](�+
R) + sup

ṽ≥0
E[φ](ṽ) + ‖φ‖2

L E0
� E[φ](�−

R ) + ‖ f ‖2
L E∗

0
. (1.13)

Here we made no effort to optimize the weights at r = 3M and r = ∞. This is done
later in the paper. On the other hand the above estimate follows from a relatively simple
application of the classical positive commutator method. The advantage of having even
such a weaker estimate is that it is sufficient in order to allow localization near the inter-
esting regions r = 3M and r = ∞, which can then be studied in greater detail using
specific tools.
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The first related results regarding the solution of the wave equation on Schwarzschild
backgrounds were obtained in [50 and 24] which proved uniform boundedness in region
I (including the event horizon). The first pointwise decay result (without, however, a rate
of decay) was obtained in [49]. Heuristics from [36] suggest that solutions to the wave
equation in the Schwarzschild case should locally decay like v−3. For spherically sym-
metric data a v−3+ε decay rate was obtained in [16], and under the additional assumption
of the initial data vanishing near the event horizon, the v−3 decay rate was proved in
[23]. In general the best known decay rate, proved in [14], is v−1 (see also [7]). We also
refer the reader to [38], where optimal pointwise decay rates for each spherical harmonic
are established for a closely related problem.

Estimates related to (1.13) were first proved in [25] for radially symmetric Schröding-
er equations on Schwarzschild backgrounds. In [2–4], those estimates are extended to
allow for general data for the wave equation. The same authors, in [5,6], have provided
studies that give improved estimates near the photon sphere r = 3M .

Moreover, we note that variants of these bounds have played an important role in
the works [7 and 14] which prove analogues of the Morawetz conformal estimates on
Schwarzschild backgrounds. This allows one to deduce a uniform decay rate for the
local energy away from the event horizon, though there is necessarily a loss of regularity
due to the trapping that occurs at the photon sphere. Instead in this paper we restrict
ourselves to time translation invariant estimates, and we aim to clarify/streamline these
as much as possible.

All of the above articles use the conserved (degenerate) energy E0[φ] on time slices,
obtained using the Killing vector field ∂t . As such, their estimates are degenerate near
the event horizon. Further progress was made in [14], where an additional vector field
was introduced near the event horizon, in connection to the red shift effect. This led to
bounds in the exterior region involving a nondegenerate form of the energy related to
(1.9).

The approach of [2,7,14 and 25] is to write the equation using the Regge-Wheeler
tortoise coordinate and to expand in spherical harmonics. For the equation correspond-
ing to each spherical harmonic, one uses a multiplier which changes sign at the critical
point of the effective potential.

Here we work in the coordinates (r, ṽ, ω), though this is not of particular signifi-
cance, and we do not expand into spherical harmonics. We prove (1.13) using a positive
commutator argument which requires a single differential multiplier. We hope that this
makes the methods more robust for other potential applications.

During final preparations of this article, localized energy estimates proved without
using the spherical harmonic decomposition also appeared in [15]. The methods con-
tained therein are somewhat different from ours.

Compared to the stronger norms L EM , L E∗
M the weights in (1.13) have a polyno-

mial singularity at r = 3M , which corresponds to the family of trapped geodesics on
the photon sphere. As a consequence of the results we prove later, see Theorem 3.2, the
latter fact can be remedied to produce a stronger estimate.

Theorem 1.3. Letφ solve the inhomogeneous wave equation �gφ = f on the Schwarzs-
child manifold. Then (1.13) still holds if the coefficient (1 − 3M/r)2 in the L E0 and the
L E∗

0 norms is replaced by

(
1 − ln

∣∣∣∣1 − 3M

r

∣∣∣∣
)−2

.
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Now we have only a logarithmic singularity at r = 3M . The result above is only
stated in this form for the reader’s convenience. The full result in Theorem 3.2 is stron-
ger but also more complicated to state since it provides a more precise microlocal local
energy estimate.

The logarithmic loss is not surprising, since it is characteristic of geometries with
trapped hyperbolic orbits (see for instance [9,12,34]). Indeed, a similar estimate in the
semiclassical setting is obtained in [13] using entirely different techniques. Note, how-
ever, that the aforementioned estimate only involves logarithmic loss of the frequency;
our result is stronger since it also implies bounds for ‖(ln |r∗|)−1u‖L2 , which are nec-
essary in order to prove Strichartz estimates.

There are two regions on which the analysis is distinct. The metric is asymptotically
flat, and thus, near infinity, one can retrieve the classical Morawetz type estimate. On
the other hand, around the photon sphere r = 3M we take an expansion into spherical
harmonics as well as a time Fourier transform. Then it remains to study an ordinary
differential equation which is essentially similar to

(∂2
x − λ2(x2 + ε))u = f, |ε| � 1, |x | � 1.

For this we use a rough WKB approximation in the hyperbolic region combined with
energy estimates in the elliptic region. Airy type dynamics occur near the zeroes of the
potential.

Even though it is weaker, the initial bound in Theorem 1.2 plays a key role in the
analysis. Precisely, it allows us to glue together the estimates in the two regions described
above.

We next consider the Strichartz estimates. For solutions to the constant coefficient
wave equation on R × R

3, the well-known Strichartz estimates state that

‖|Dx |−ρ1∇u‖L
p1
t L

q1
x

� ‖∇u(0)‖L2 + ‖|Dx |ρ2 f ‖
L

p′
2

t L
q′

2
x

. (1.14)

Here the exponents (ρi , pi , qi ) are subject to the scaling relation

1

p
+

3

q
= 3

2
− ρ (1.15)

and the dispersion relation

1

p
+

1

q
≤ 1

2
, 2 < p ≤ ∞. (1.16)

All pairs (ρ, p, q) satisfying (1.15) and (1.16) are called Strichartz pairs. Those for
which the equality holds in (1.16) are called sharp Strichartz pairs. Such estimates first
appeared in the seminal works [8,43,44] and as stated include contributions from, e.g.,
[17,19,26,35 and 21].

If one allows variable coefficients, such estimates are well-understood locally-
in-time. For smooth coefficients, this was first shown in [32] and later for C2 coeffi-
cients in [39 and 45–47].

Globally-in-time, the problem is more delicate. Even a small, smooth, compactly
supported perturbation of the flat metric may refocus a group of rays and produce caus-
tics. Thus, constructing a parametrix for incoming rays proves to be quite difficult. At the
same time, one needs to contend with the possibility of trapped rays at high frequencies
and with eigenfunctions/resonances at low frequencies.
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Global-in-time estimates were shown for small, long range perturbations of the
metric in [29] using an outgoing parametrix. In order to keep the parametrix outgo-
ing one must allow evolution both forward and backward in time. This construction
is based on an earlier argument in [48] for the Schrödinger equation. The smallness
assumption, however, precludes trapping and does not permit a direct application to the
current setup.

On the other hand, a second result of [29] asserts that even for large, long range pertur-
bations of the metric one can still establish global-in-time Strichartz estimates provided
that a strong form of the local energy estimates holds. This switches the burden to the
question of proving local energy estimates.

The result in [29] cannot be applied directly to the present problem due to the log-
arithmic losses in the local energy estimates near the trapped rays. However, it can be
applied for the near infinity part of the solution. In a bounded spatial region, on the
other hand, we take advantage of the local energy estimates to localize the problem to
bounded sets, in which estimates are shown using the local-in-time Strichartz estimates
of [39,45]. Thus we obtain

Theorem 1.4. If φ solves �gφ = f in MR then for all nonsharp Strichartz pairs
(ρ1, p1, q1) and (ρ2, p2, q2) we have

E[φ](�+
R) + sup

ṽ≥0
E[φ](ṽ) + ‖∇φ‖2

L
p1
ṽ

Ḣ
−ρ1,q1
x

� E[φ](�−
R ) + ‖ f ‖2

L
p′
2
ṽ

Ḣ
ρ2,q

′
2

x

. (1.17)

Here the Sobolev-type spaces Ḣ s,p coincide with the usual Ḣ s,p homogeneous spaces
in R

3 expressed in polar coordinates (r, ω).
As a corollary of this result one can consider the global solvability question for the

energy critical semilinear wave equation in the Schwarzschild space,{
�gφ = ±φ5 in M
φ = φ0, K̃φ = φ1 in �0.

(1.18)

Theorem 1.5. Let r0 > 0. Then there exists ε > 0 so that for each initial data (φ0, φ1)

which satisfies

E[φ](�0) ≤ ε,

Eq. (1.18) admits an unique solution φ in the region {r > r0} which satisfies the bound

E[φ](�r0) + ‖φ‖Ḣ s,p({r>r0}) � E[φ](�0)

for all indices s, p satisfying

4

p
= s +

1

2
, 0 ≤ s <

1

2
.

Furthermore, the solution has a Lipschitz dependence on the initial data in the above
topology.

Some further clarification is needed for the function space Ḣ s,p({r > r0}) appear-
ing above, in view of the ambiguity due to the choice of coordinates. In a compact
neighbourhood of the center region MC this is nothing but the classical Hs,p norm. By
compactness, different choices of coordinates lead to equivalent norms. Consider now
the upper exterior region MR (as well as its three other mirror images). Using the coor-
dinates (ṽ, x) with x = ωr , we define Ḣ s,p(MR) as the restrictions to R

+ × {|x | > r0}
of functions in the homogeneous Sobolev space Ḣ s,p(R × R

3).
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2. The Morawetz-Type Estimate

In this section, we shall prove Theorem 1.2. We note that the estimate (1.13) is trivial
over a finite ṽ interval by energy estimates for the wave equation; the difficulty consists
in proving a global bound in ṽ. By the same token, once we prove (1.13) for some choice
of r0 < 2M , we can trivially make the transition to any r0 < 2M due to the local theory.
Thus in the arguments which follow we reserve the right to take r0 sufficiently close to
2M .

We consider solutions to the inhomogeneous wave equation on the Schwarzschild
manifold in MR , which is given by

�gφ = ∇α∂αφ = f.

Here ∇ represents the metric connection. Associated to this equation is an energy-
momentum tensor given by

Qαβ [φ] = ∂αφ∂βφ − 1

2
gαβ∂

γ φ∂γ φ.

A simple calculation yields the most important property of Qαβ , namely that if φ solves
the homogeneous wave equation then Qαβ [φ] is divergence-free:

∇αQαβ [φ] = 0, if ∇α∂αφ = 0.

More generally, we have

∇αQαβ [φ] = ∂βφ �gφ.

In order to prove Theorem 1.2, we shall contract Qαβ with a vector field X to form
the momentum density

Pα[φ, X ] = Qαβ [φ]Xβ.

Computing the divergence of this vector field, we have

∇αPα[φ, X ] = �gφXφ + Qαβ [φ]παβ,
where

παβ = 1

2
(∇αXβ + ∇βXα)

is the deformation tensor of X .
If X is the Killing vector field K then the above divergence vanishes,

∇αPα[φ, K ] = 0 if �gφ = 0. (2.1)

This gives rise to the E0[φ] conservation law outside the black hole.
Naively, one may seek vector fields X so that the quadratic form Qαβ [φ]παβ is

positive definite. However, this may not always be possible to achieve. Instead we note
that it may be just as good to have the symbol of this quadratic form positive on the
characteristic set of �g . Then it would be possible to make the above quadratic form
positive after adding a Lagrangian correction term of the form q∂γ φ∂γ φ. Such a term
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can be conveniently expressed in divergence form modulo lower order terms. Precisely,
for a vector field X , a scalar function q and a 1-form m we define

Pα[φ, X, q,m] = Pα[φ, X ] + qφ∂αφ − 1

2
∂αqφ2 +

1

2
mαφ

2,

where m allows us to modify the lower order terms in the divergence formula. Then we
obtain the modified divergence relation

∇αPα[φ, X, q,m] = �gφ (Xφ + qφ) + Q[φ, X, q,m],
(2.2)

Q[φ, X, q,m] = Qαβ [φ]παβ + q∂αφ ∂αφ + mαφ ∂
αφ +

1

2
(∇αmα − ∇α∂αq) φ2.

Theorem 1.2 is proved by making appropriate choices for X , q and m so that the
quadratic form Q[φ, X, q,m] defined by the divergence relation is positive definite. In
what follows we assume that X , q and m are all spherically symmetric and invariant
with respect to the Killing vector field K .

Lemma 2.1. There exist smooth, spherically symmetric, K -invariant X, q, and m in
r ≥ 2M satisfying the following properties:

(i) X is bounded2 , |q(r)| � r−1, |q ′(r)| � r−2 and m has compact support in r .
(ii) The quadratic form Q[φ, X, q,m] is positive definite,

Q[φ, X, q,m] � r−2|∂rφ|2 +

(
1 − 3M

r

)2

(r−2|∂ṽφ|2 + r−1|�∇φ|2) + r−4φ2.

(iii) X (2M) points toward the black hole, X (dr)(2M) < 0, and 〈m, dr〉(2M) > 0.

We postpone the proof of the lemma and use it to conclude the proof of Theorem 1.2.
Let X , q and m be as in the lemma. We extend them smoothly beyond the event horizon
preserving the spherical symmetry and the K -invariance. By (2.1) we can modify the
vector field X without changing the quadratic form Q in (2.3),

∇αPα[φ, X + C K , q,m] = �gφ ((X + C K )φ + qφ) + Q[φ, X, q,m].
Here C is a large constant. We integrate this relation in the region

D = {0 < ṽ < ṽ0, r > r0}
using the (r, ṽ, ω) coordinates. This yields

∫
D

(
�gφ ((X + C K )φ + qφ) + Q[φ, X, q,m]) r2drd ṽdω

=
∫

〈d ṽ, P[φ, X + C K , q,m]〉r2drdω

∣∣∣∣
ṽ=ṽ0

ṽ=0

−
∫

r=r0

〈dr, P[φ, X + C K , q,m]〉r2
0 d ṽdω.

2 In the (r, ṽ) coordinates
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We claim that if C is large enough and r0 sufficiently close to 2M then the integrals on
the right have the correct sign,

E[φ](ṽ1)�−
∫
ṽ=ṽ1

〈d ṽ, P[φ, X +C K , q,m]〉r2drdω�C E[φ](ṽ1), ṽ1 ≥ 0, (2.3)

〈dr, P[φ, X + C K , q,m]〉 � |∂rφ|2 + |∂ṽφ|2 + |∂ωφ|2 + φ2, r = r0. (2.4)

If these bounds hold then the conclusion of the theorem follows by (ii) and Cauchy-
Schwarz.

Indeed, a direct computation yields

〈d ṽ, P[φ, ∂ṽ]〉 = −1

2

[(
2µ′ −

(
1 − 2M

r

)
µ′2

)
|∂ṽφ|2 +

(
1 − 2M

r

)
|∂rφ|2

+ r−2|∂ωφ|2
]
,

respectively

〈dr, P[φ, ∂ṽ]〉 = |∂ṽφ|2 +

(
1 − 2M

r

)
(∂r − µ′∂ṽ)φ∂ṽφ.

On the other hand

〈d ṽ, P[φ, ∂r ]〉 =
(

1 −
(

1 − 2M

r

)
µ′

)
|∂rφ|2 −

(
2µ′ −

(
1 − 2M

r

)
µ′2

)
∂ṽφ∂rφ,

while

〈dr, P[φ, ∂r ]〉 = −1

2

[
−

(
2µ′ −

(
1 − 2M

r

)
µ′2

)
|∂ṽφ|2 −

(
1 − 2M

r

)
|∂rφ|2

+ r−2|∂ωφ|2
]
.

We compute

〈d ṽ, P[φ, X + C K ]〉 = (X (d ṽ) + C)〈d ṽ, P[φ, ∂ṽ]〉 + X (dr)〈d ṽ, P[φ, ∂r ]〉.
For large enough C we have X (d ṽ) + C � C . Therefore the first term on the right is
negative definite for r > 2M . More precisely, it is only the coefficient of the |∂rφ|2 term
which degenerates at r = 2M . However, due to condition (iii) in the lemma we have
X (dr)(2M) < 0; therefore we pick up a negative |∂rφ|2 coefficient at r = 2M . Thus
we obtain

−〈d ṽ, P[φ, X + C K ]〉 ≈ C

[
|∂ṽφ|2 +

(
1 − 2M

r

)
|∂rφ|2 + r−2|∂ωφ|2

]
+ |∂rφ|2,

r > 2M.

Since all the coefficients in the quadratic form on the left are continuous, it follows that
the above relation extends to r > r0 for some r0 < 2M depending on C , namely

0 < 2M − r0 � C−1. (2.5)
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In order to prove (2.3) it remains to estimate the lower order terms P[φ, 0, q,m] in
terms of the positive contribution above. Since |q| � r−1 and m has compact support in
r , we can bound

|〈d ṽ, P[φ, 0, q,m]〉| � r−1|φ|
[
|∂ṽφ|2 + |∂rφ|2

] 1
2

+ r−2|φ|2.
Then by Cauchy-Schwarz it suffices to estimate

∫ ∞

r0

r−2|φ|2r2dr � C− 1
2

∫ ∞

r0

[
C

(
1 − 2M

r

)
+ 1

]
|∂rφ|2r2dr

which is a routine Hardy-type inequality.
We next turn our attention to (2.4) and begin with the principal part

〈dr, P[φ, X + C K ]〉 = (X (d ṽ) + C)〈dr, P[φ, ∂ṽ]〉 + X (dr)〈dr, P[φ, ∂r ]〉.
Examining the expressions for the two terms above, we see that for r0 subject to (2.5)
we have

〈dr, P[φ, X + C K ]〉 � C |∂ṽφ|2 + |∂ωφ|2 −
(

1 − 2M

r0

)
|∂rφ|2, r = r0.

Next we consider the lower order terms. The contribution of m is

1

2
〈m, dr〉φ2 � φ2

due to condition (iii) in the lemma. The contribution of q is

qφ〈dr, dφ〉 − 1

2
φ2〈dr, dq〉.

The coefficient of the second term is
(
1 − 2M

r

)
q ′, which is negligible for r0 close to 2M .

In the first term we have

〈dr, dφ〉 =
(

1 − 2M

r

)
∂rφ +

(
1 −

(
1 − 2M

r

)
µ′

)
∂ṽφ.

All terms involving
(
1 − 2M

r

)
are negligible, and since q is bounded we get

qφ∂ṽφ � C |∂ṽφ|2 + φ2

for large enough C .

Proof of Lemma 2.1. It is convenient to look for X in the (r, t) coordinates, where we
choose the vector field X of the form

X = X1 + δX2, δ � 1,

with

X1 = a(r)

(
1 − 2M

r

)
∂r , X2 = b(r)

(
1 − 2M

r

)(
∂r −

(
1 − 2M

r

)−1

∂t

)
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and a and b
(
1 − 2M

r

)
will be chosen to be smooth. Note that X is a smooth vector field

in the nonsingular coordinates (r, v), since in these coordinates we have

X1 = a(r)

((
1 − 2M

r

)
∂r + ∂v

)
, X2 = b(r)

(
1 − 2M

r

)
∂r .

We remark that the vector field X2 is closely related to the vector field Y introduced
earlier in [14] in order to take advantage of the red shift effect. However, in their con-
struction Y is in a form which is nonsmooth near the event horizon and which is restricted
to the exterior region.

The primary role played by X2 here is to ensure that X + C K is time-like near the
event horizon. The red-shift effect largely takes care of the rest.

For convenience, we set

t1(r) =
(

1 − 2M

r

)
1

r2 ∂r

(
r2a(r)

)
.

A direct computation yields

∇αPα[φ, X1] =
(

1 − 2M

r

)2

a′(r)(∂rφ)
2 + a(r)

r − 3M

r2 |�∇φ|2

− 1

2
t1(r)∂

γ φ ∂γ φ + X1φ�gφ,

(2.6)

respectively

∇αPα[φ, X2] = 1

2
b′(r)

((
1 − 2M

r

)
∂rφ − ∂tφ

)2

+

(
r − 3M

r2 b(r)− 1

2

(
1 − 2M

r

)
b′(r)

)
|�∇φ|2 (2.7)

− 1

r

(
1 − 2M

r

)
b(r)∂γ φ ∂γ φ + X2φ�gφ,

where

∂γ φ ∂γ φ = −
[(

1 − 2M

r

)−1

(∂tφ)
2 −

(
1 − 2M

r

)
(∂rφ)

2 − |�∇φ|2
]
.

We choose a so that the first line of the right side of (2.6) is positive. This requires that

a′(r) � r−2, a(3M) = 0. (2.8)

We choose b so that the first line of the right-hand side of (2.7) is positive. Precisely, we
take b supported in r ≤ 3M with

b = − b0(r)

1 − 2M
r

, r ∈ [2M, 3M],

with b0 smooth, decreasing in [2M, 3M) and supported in {r ≤ 3M}. In particular
this guarantees that b0(2M) > 0, which is later used to verify the condition (iii) in the
lemma.
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The exact choice of b0 is not important, and in effect b only plays a role very close
to the event horizon r = 2M . Even though b is singular at 2M , the second term of the
coefficient of |�∇φ|2 in the second line of (2.7) is nonsingular. Hence if δ is sufficiently
small this term is controlled by the first line in (2.6).

Taking the above choices into account, we have

Q[φ, X, 0, 0] =
(

1 − 2M

r

)2

a′(r)(∂rφ)
2 + δ

1

2
b′(r)

((
1 − 2M

r

)
∂rφ − ∂tφ

)2

+ O

(
(r − 3M)2

r3

)
|�∇φ|2 − q0∂

γ φ ∂γ φ

(2.9)

where

q0(r) =
(

1

2
t1(r) + δ

1

r
b(r)

(
1 − 2M

r

))
.

The last term in (2.9) is a Lagrangian expression and is accounted for via the q term.
The first three terms give a nonnegative quadratic form in ∇φ. This form is in effect
positive definite for r < 3M , where b′ > 0. However for larger r it controls ∂rφ and
�∇φ but not ∂tφ. This can be easily remedied with the Lagrangian term. Precisely, we
choose q of the form

q = q0 + δ1q1, q1(r) = χ{r>5M/2}
(r − 3M)2

r4 ,

where χ{r>5M/2} is a smooth nonnegative cutoff which is supported in {r > 5M/2} and
equals 1 for r > 3M . The positive parameter δ1 is chosen so that δ1 � δ. Then the only
nonnegligible contribution of δ1q1 is the one involving ∂tφ. We obtain

Q[φ, X, q, 0] =
(

1 − 2M

r

)2

O(r−2)(∂rφ)
2 + δ

1

2
b′(r)

((
1 − 2M

r

)
∂rφ − ∂tφ

)2

+ O

(
(r − 3M)2

r3

)
|�∇φ|2 + δ1q1

(
1 − 2M

r

)−1

|∂tφ|2 − 1

2
∇α∂αq φ2.

(2.10)

The contribution of q1 can be made arbitrarily small by taking δ1 small. Hence it will
be neglected in the sequel. At this stage it would be convenient to be able to choose a
so that ∇α∂αt1(r) < 0. A direct computation yields

∇α∂αt1(r) = −La

with

La(r) = − 1

r2 ∂r

[(
1 − 2M

r

)
r2∂r

{(
1 − 2M

r

)
1

2r2 ∂r

(
r2a(r)

)}]
.

Unfortunately it turns out that the condition La > 0 and (2.8) are incompatible, in the
sense that there is no smooth a which satisfies both. However, one can find a with a
logarithmic blow-up at 2M which satisfies both requirements. Such an example is

a(r) = r−2
(
(r − 3M)(r + 2M) + 6M2 log

(
r − 2M

M

))
.
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This is in no way unique, it is merely the simplest we were able to produce. One verifies
directly that

a′(r) � r−2, La(r) � r−4.

To eliminate the singularity of a above we replace it by

aε(r) = 1

r2 fε(R),

where ε is a small parameter,

R = (r − 3M)(r + 2M) + 6M2 log

(
r − 2M

M

)
,

and

fε(R) = ε−1 f (εR),

where f is a smooth nondecreasing function such that f (R) = R on [−1,∞] and
f = −2 on (−∞,−3]. The condition (2.8) is satisfied uniformly with respect to small
ε; therefore the choice of δ is independent of the choice of ε.

With this modification of a we recompute

Laε = f ′(εR)La + O(ε) f ′′(εR) + O

(
ε2

(
1 − 2M

r

)−1
)

f ′′′(εR).

This is still positive except for the region {εR < −1}. To control it we introduce an m
term in the divergence relation as follows: Let γ (r) be a function to be chosen later. We
set

mt = δb′(r)
(

1 − 2M

r

)2

γ, mr = δb′(r)
(

1 − 2M

r

)
γ, mω = 0.

Then

mα∂
αφ = δb′(r)γ (r)

(
1 − 2M

r

) ((
1 − 2M

r

)
∂rφ − ∂tφ

)
,

while

∇αmα = δr−2∂r

((
1 − 2M

r

)2

r2 b′(r)γ (r)
)
.

Hence, completing the square we obtain

Q[φ, X, q,m] =
(

1 − 2M

r

)2

O(r−2)(∂rφ)
2 + O

(
(r − 3M)2

r3

)
|�∇φ|2

+ δ1q1

(
1 − 2M

r

)−1

|∂tφ|2 + nφ2

+ δ
1

2
b′(r)

((
1 − 2M

r

)
∂rφ − ∂tφ +

(
1 − 2M

r

)
γφ

)2

,
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where the coefficient n is given by

n=Laε− 1

2
δr−2∂r r2

(
1 − 2M

r

)
∂r

(
r−1b(r)

(
1 − 2M

r

))
−δ b′(r)

2

(
1 − 2M

r

)2

γ (r)2

+
1

2
δr−2γ ∂r

(
r2

(
1 − 2M

r

)2

b′(r)
)

+
1

2
δγ ′

(
1 − 2M

r

)2

b′(r).

We assume that γ is supported in {r < 3M} and satisfies

0 ≤ γ ≤ 1, γ ′ > −1.

Then for r > 3M we have

n = Laε � r−4,

while for r ≤ 3M we can write

n = Laε + δγ ′(r)
(

1 − 2M

r

)2

b′(r) + O(δ).

If εR > −1 then, using the bound from below on γ ′, we further have

n ≥ La + O(δ),

which is positive provided that δ is sufficiently small. On the other hand in the region
{εR ≤ −1}, we have

n ≥ 1

2
δ

(
1 − 2M

r

)2

b′(r)γ ′(r) + O(δ)+O(ε) f ′′(εR) + O

(
ε2

(
1 − 2M

r

)−1
)

f ′′′(εR).

The γ ′ term can be taken positive, while all the other terms may be negative so they
must be controlled by it. The restriction we face in the choice of γ ′ comes from the fact
that 0 ≤ γ ≤ 1. Hence we need to verify that

I =
∫
εR≤−1

δ + ε| f ′′(εR)| + ε2
(

1 − 2M

r

)−1

| f ′′′(εR)| � δ.

Indeed, the interval of integration has size ≤ e−cε−1
; therefore the above integral can be

bounded by

I � e−cε−1
+ ε,

which suffices provided that ε is small enough.
Finally, note that

X (dr)(2M) =
(

a(r)

(
1 − 2M

r

)
+ δb(r)

(
1 − 2M

r

))
(2M) < 0,

〈m, dr〉(2M) =
(
δb′(r)

(
1 − 2M

r

)2

γ

)
(2M) > 0.

So (iii) is also satisfied. ��
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3. Log-Loss Local Energy Estimates

The aim of this section is to prove a local energy estimate for solutions to the wave
equation on the Schwarzschild space which is stronger than the one in Theorem 1.2.
Consequently, we strengthen the norm L E0 to a norm L E and we relax the norm L E∗

0
to a norm L E∗ which satisfy the following natural bounds:

‖φ‖2
L E0

� ‖φ‖2
L E � ‖φ‖2

L EM
, (3.11)

respectively

‖ f ‖2
L E∗

M
� ‖ f ‖2

L E∗ � ‖ f ‖2
L E∗

0
. (3.12)

We note that these bounds uniquely determine the topology of the L E and L E∗ spaces
away from the photon sphere and from infinity. This is due to the fact that the local
energy estimates in Theorem 1.2 have no loss in any bounded region away from the pho-
ton sphere. To define the L E , respectively L E∗, norms we consider a smooth partition
of unity

1 = χeh(r) + χps(r) + χ∞(r),

where χeh is supported in {r < 11M/4}, χps is supported in {5M/2 < r < 5M} and
χ∞ is supported in {r > 4M}. Then we set

‖φ‖2
L E = ‖χehφ‖2

L EM
+ ‖χpsφ‖2

L E ps
+ ‖χ∞φ‖2

L EM
, (3.13)

respectively

‖φ‖2
L E∗ = ‖χehφ‖2

L E∗
M

+ ‖χpsφ‖2
L E∗

ps
+ ‖χ∞φ‖2

L E∗
M
. (3.14)

The norms L E ps and L E∗
ps near the photon sphere are defined in Sect. 3.1 below, see

(3.20), respectively (3.21); their topologies coincide with L EM , respectively L E∗
M , away

from the photon sphere.
With these notations, the main result of this section can be phrased in a manner similar

to Theorem 1.2:

Theorem 3.2. For all functions φ which solve �gφ = f in MR we have

sup
ṽ>0

E[φ](ṽ) + E[φ](�+
R) + ‖φ‖2

L E � E[φ](�−
R ) + ‖ f ‖2

L E∗ . (3.15)

We continue with the setup and estimates near the photon sphere in Sect. 3.1, the
setup and estimates near infinity in Sect. 3.2 and finally the proof of the theorem in
Sect. 3.3.
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3.1. The analysis near the photon sphere. Here it is convenient to work in the Regge-
Wheeler coordinates given by

r∗ = r + 2M log(r − 2M)− 3M − 2M log M.

Then r = 3M corresponds to r∗ = 0, and a neighbourhood of r = 3M away from
infinity and the event horizon corresponds to a compact set in r∗. In these coordinates
the operator �g has the form

r

(
1 − 2M

r

)
�gr−1 = L RW =∂2

t −∂2
r∗ − r − 2M

r3 ∂ω + V (r), V (r)=r−1∂2
r∗r.

(3.16)

For r∗ in a compact set the energy has the form

E[φ] ≈
∫
(∂tφ)

2 + (∂r∗φ)2 + (∂ωφ)
2drdω,

and the initial local smoothing norms are expressed as

‖φ‖2
L E0

≈
∫
(∂r∗φ)2 + r∗2

((∂ωφ)
2 + (∂tφ)

2) + φ2drdωdt,

respectively

‖ f ‖2
L E∗

0
≈

∫
r∗−2 f 2drdωdt.

On the other hand

‖φ‖2
L EM

≈
∫
(∂r∗φ)2 + (∂ωφ)

2 + (∂tφ)
2 + φ2drdωdt,

‖ f ‖2
L E∗

M
≈

∫
f 2drdωdt.

In the sequel we work with spatial spherically symmetric pseudodifferential opera-
tors in the (r∗, ω) coordinates where ω ∈ S

2. We denote by ξ the dual variable to r∗,

and by λ the spectral parameter for (−�S2)
1
2 . Thus the role of the Fourier variable is

played by the pair (ξ, λ), and all our symbols are of the form

a(r∗, ξ, λ).

To such a symbol we associate the corresponding Weyl operator Aw. Since there is no
symbol dependence on ω, one can view this operator as a combination of a one dimen-

sional Weyl operator and the spectral projectors�λ associated to the operator (−�S2)
1
2 ,

namely

Aw =
∑
λ

aw(λ)�λ.

All of our L2 estimates admit orthogonal decompositions with respect to spherical har-
monics, therefore in order to prove them it suffices to work with the fixed λ operators
aw(λ), and treat λ as a parameter. However, in the proof of the Strichartz estimates later
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on we need kernel bounds for operators of the form Aw, which is why we think of λ
as a second Fourier variable and track the symbol regularity with respect to λ as well.
Of course, this is meaningless for λ in a compact set; only the asymptotic behavior as
λ → ∞ is relevant.

Let γ0 : R → R
+ be a smooth increasing function so that

γ0(y) =
{

1 y < 1,
y y ≥ 2.

Let γ1 : R
+ → R

+ be a smooth increasing function so that

γ1(y) =
{

y
1
2 y < 1/2,

1 y ≥ 1.

Let γ : R
2 → R

+ be a smooth function with the following properties:

γ (y, z) =
⎧⎨
⎩

1 z < C,
γ0(y) y <

√
z/2, z ≥ C,

z
1
2 γ1(y2/z) y ≥ √

z/2, z ≥ C,

where C is a large constant. In the sequel z is a discrete parameter, so the lack of
smoothness at z = C is of no consequence.

Consider the symbol

aps(r
∗, ξ, λ) = γ (− ln(r∗2 + λ−2ξ2), ln λ),

and its inverse

a−1
ps (r

∗, ξ, λ) = 1

γ (− ln(r∗2 + λ−2ξ2), ln λ)
.

We note that if λ is small then they both equal 1, while if λ is large then they satisfy the
bounds

1 ≤ aps(r
∗, ξ, λ) ≤ aps(r

∗, 0, λ) ≤ (ln λ)
1
2 ,

(ln λ)−
1
2 ≤ a−1

ps (r
∗, 0, λ) ≤ a−1

ps (r
∗, ξ, λ) ≤ 1.

(3.17)

We also observe that the region where y2 > z corresponds to r∗2 + λ−2ξ2 < e−√
ln λ.

Thus differentiating the two symbols we obtain the following bounds

|∂αr∗∂
β
ξ ∂

ν
λaps(r

∗, ξ, λ)| ≤ cα,β,νλ
−β−ν(r∗2 + λ−2ξ2 + e−√

ln λ)−
α+β

2 , (3.18)

respectively

|∂αr∗∂
β
ξ ∂

ν
λa−1

ps (r
∗, ξ, λ)|≤cα,β,νa−2

ps (r
∗, ξ, λ)λ−β−ν(r∗2+λ−2ξ2+e−√

ln λ)−
α+β

2 , (3.19)

where α + β + ν > 0. These show that we have a good operator calculus for the cor-
responding pseudodifferential operators. In particular in terms of the classical symbol
classes we have

aps, a−1
ps ∈ Sδ1,0, δ > 0.
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Then we introduce the Weyl operators

Aps =
∑
λ

awps(λ)�λ,

respectively

A−1
ps =

∑
λ

(a−1
ps )

w(λ)�λ.

By (3.18) and (3.19) one easily sees that these operators are approximate inverses. More
precisely for small λ, ln λ < C , they are both the identity, while for large λ,

‖awps(λ)(a
−1
ps )

w(λ)− I‖L2→L2 � λ−1e
√

ln λ, ln λ ≥ C.

Choosing C large enough we insure that the bound above is always much smaller than 1.
We use these two operators in order to define the improved local smoothing norms

‖φ‖L E ps = ‖A−1
ps φ‖H1

t,x
≈ ‖A−1

ps ∇t,xφ‖L2 , (3.20)

‖ f ‖L E∗
ps

= ‖Aps f ‖L2 . (3.21)

Due to the inequalities (3.17) we have a bound from above for awps(λ),

‖awps(λ) f ‖L2 � ‖aps(r
∗, 0, λ) f ‖L2 � ‖| ln |r∗|| f ‖L2 ,

respectively a bound from below for (a−1
ps )

w(λ),

‖(a−1
ps )

w(λ) f ‖L2 � ‖a−1
ps (r

∗, 0, λ) f ‖L2 � ‖| ln |r∗||−1 f ‖L2

for f supported near r∗ = 0. In particular this shows that for f supported near the
photon sphere we have

‖φ‖L E ps � ‖| ln |r∗||−1∇φ‖L2 , ‖ f ‖L E∗
ps

� ‖| ln |r∗|| f ‖L2 , (3.22)

which makes Theorem 1.3 a direct consequence of Theorem 3.2.
Our main estimate near the photon sphere is

Proposition 3.3. a) Let φ be a function supported in {5M/2 < r < 5M} which solves
�gφ = f . Then

‖φ‖2
L E ps

� ‖ f ‖2
L E∗

ps
. (3.23)

b) Let f ∈ L E∗
ps be supported in {11M/4 < r < 4M}. Then there is a function φ

supported in {5M/2 < r < 5M} so that

sup
t

E[φ] + ‖φ‖2
L E ps

+ ‖�gφ − f ‖2
L E∗

0
� ‖ f ‖2

L E∗
ps
. (3.24)
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Proof. Due to (3.16) we can recast the problem in Regge-Wheeler coordinates. Denot-
ing u = rφ, g = (

1 − 2M
r

)
r f , we have L RW u = g. Also it is easy to verify that for φ

and f supported in a fixed compact set in r∗ we have

‖φ‖L E ps ≈ ‖u‖L E ps , ‖ f ‖L E∗
ps

≈ ‖g‖L E∗
ps
.

Hence in the proposition we can replace φ and f by u and g, and �g by L RW .
To prove part (a) we expand in spherical harmonics with respect to the angular variable

and take a time Fourier transform. We are left with the ordinary differential equation

(∂2
r∗ + Vλ,τ (r

∗))u = g, (3.25)

where

Vλ,τ (r
∗) = τ 2 − r − 2M

r3 λ2 + V .

Depending on the relative sizes of λ and τ we consider several cases. In the easier
cases it suffices to replace the bound (3.23) with a simpler bound

‖∂r∗u‖L2 + (|τ | + |λ|)‖u‖L2 � ‖g‖L2 . (3.26)

Case 1. λ, τ � 1. Then we solve (3.25) as a Cauchy problem with data on one side and
obtain a pointwise bound,

|u| + |ur∗ | � ‖g‖L2 ,

which easily implies (3.26).

Case 2. λ � τ . Then Vλ,τ (r∗) ≈ τ 2 for r∗ in a compact set; therefore (3.25) is hyper-
bolic in nature. Hence we can solve (3.25) as a Cauchy problem with data on one side
and obtain

τ |u| + |ur∗ | � ‖g‖L2 ,

which implies (3.26).

Case 3. λ � τ . Then Vλ,τ (r∗) ≈ −λ2 for r∗ in a compact set; therefore (3.25) is ellip-
tic. Then we solve (3.25) as an elliptic problem with Dirichlet boundary conditions on
a compact interval and obtain

λ
3
2 |u| + λ

1
2 |ur∗ | � ‖g‖L2 ,

which again gives (3.26).

Case 4. λ ≈ τ � 1. In this case (3.26) is no longer true, and we need to prove (3.23),
which in this case can be written in the form

‖∂r∗u‖L2 + λ‖(a−1
ps )

w(λ)u‖L2 � ‖awps(λ)g‖L2 , (3.27)

where u, g are subject to (3.25). The ∂r∗u term above is present in order to estimate the
high frequencies |ξ | � λ. For lower frequencies it is controlled by the second term on
the left of (3.27).
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The potential V in (3.25) can be treated perturbatively in (3.23) and is negligible. The
remaining part of Vλ,τ (r∗) has a nondegenerate minimum at r = 3M which corresponds
to r∗ = 0. Hence we express it in the form

Vλ,τ (r
∗) = λ2(W (r∗) + ε),

where W is smooth and has a nondegenerate zero minimum at r∗ = 0 and |ε| � 1.
We now prove the following:

Proposition 3.4. Let W be a smooth function satisfying W (0) = W ′(0) = 0, W ′′(0)>0,
and |ε| � 1. Let w be a solution of the ordinary differential equation

(∂2
r∗ + λ2(W (r∗) + ε))w(r∗) = g,

supported near r∗ = 0. Then (3.27) holds.

It would be convenient to replace the norm on the right in (3.27) by‖aps(r∗, 0, λ)g‖L2 .
This is not entirely possible since this is a stronger norm. However, we can split g into
a component g1 with aps(r∗, 0, λ)g1 ∈ L2 plus a high frequency part:

Lemma 3.5. Each function g ∈ L2 supported near the photon sphere can be expressed
in the form

g = g1 + λ−2∂2
r∗ g2

with g1 and g2 supported near the photon sphere so that

‖aps(r
∗, 0, λ)g1‖L2 + ‖|r∗2 + e−√

ln λ| 1
8 g2‖L2 + λ−2‖∂r∗ g2‖L2 � ‖awps(λ)g‖L2 .

(3.28)

Proof. The symbols aps(r∗, 0, λ) and aps(r∗, ξ, λ) are comparable provided that

ln(r∗2 + e−√
ln λ) ≈ ln(r∗2 + e−√

ln λ + λ−2ξ2).

This includes a region of the form

D =
{

ln(λ−2ξ2) <
1

8
ln(r∗2 + e−√

ln λ)

}
.

We note that the factor 1
8 , arising also in the exponent of the second term in (3.28), is

somewhat arbitrary. A small choice leads to a better bound in (3.28).
If χ is a smooth function which is 1 in (−∞,−1] and 0 in [0,∞) then we define a

smooth characteristic function χD of the domain D by

χD(r
∗, ξ, λ) = χ(ln(λ−2ξ2)− 1

8
ln(r∗2 + e−√

ln λ)).

One can directly compute the regularity of χD ,

χD ∈ S0
1,δ, δ > 0.

To obtain the decomposition of g we set

g2 = qwg,
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where the symbol of q is

q(r∗, ξ, λ) = λ2ξ−2(1 − χD).

Since (a−1
ps )

w(λ) is an approximate inverse for awps(λ), the estimate for g2 in the lemma
can be written in the form

‖(r∗2 + e−√
ln λ)

1
8 qw(a−1

ps )
w(λ) f ‖L2 + λ−2‖∂r∗qw(a−1

ps )
w(λ) f ‖L2 � ‖ f ‖L2 . (3.29)

In the first term it suffices to look at the principal symbol of the operator product since
the remainder belongs to O P S−1+δ

1,δ for all δ > 0. To verify that the product of the
symbols is bounded we note that a−1

ps is bounded. For the other two factors we consider
two cases. If |ξ | � λ then both factors are bounded. On the other hand if |ξ | � λ then
in the support of q we have

λ−2ξ2 � (r∗2 + e−√
ln λ)

1
8 ,

which gives

q � (r∗2 + e−√
ln λ)−

1
8 .

The estimate for the second term in (3.29) is similar but simpler.
It remains to consider the bound for g1, which is given by

g1 = (1 + λ−2 D2
r∗qw)g, Dr∗ = 1

i
∂r∗ .

As above, the bound for g1 can be written in the form

‖aps(r
∗, 0, λ)(1 + λ−2 D2

r∗qw)(a−1
ps )

w(λ) f ‖L2 � ‖ f ‖L2 .

The three operators above belong respectively to Sδ1,δ , S0
1,δ , and Sδ1,δ for all δ > 0. Hence

the product belongs to Sδ1,δ , and it suffices to show that its principal symbol is bounded.
But the principal symbol of the product is given by

aps(r
∗, 0, λ)χDa−1

ps (r
∗, ξ, λ),

which is bounded due to the choice of D.
Finally we remark that as constructed the functions g1 and g2 are not necessarily sup-

ported near the photon sphere. This is easily rectified by replacing them with truncated
versions,

g1 := χ1(r
∗)g1, g2 := χ1(r

∗)g2,

where χ1 is a smooth compactly supported cutoff which equals 1 in the support of g. It
is clear that the bound (3.28) is still valid after truncation. ��
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Using the above decomposition of g we write u in the form

u = λ−2g2 + ũ.

For the first term we use the above lemma to estimate

λ‖λ−2g2‖L2 + ‖λ−2∂r∗ g2‖L2 � ‖awps(λ)g‖L2 ,

which is stronger than what we need. For ũ we write the equation

(∂2
r∗ + λ2(W + ε))ũ = g̃, g̃ = g1 − (W + ε)g2. (3.30)

For g̃ we only use a weighted L1 bound,

‖(λ−1 + |W + ε|)− 1
4 g̃‖L1 � ‖awps(λ)g‖L2 ,

which is obtained from the weighted L2 bounds on g1 and g2 by Cauchy-Schwarz.
For ũ on the other hand, it suffices to obtain a pointwise bound:

Lemma 3.6. For each λ−1 < σ < 1 and each function ũ with compact support, we have

λ‖(a−1
ps )

w(λ)ũ‖L2 � ‖(σ + |W + ε|)− 1
4 ∂r∗ ũ‖L∞ + λ‖(σ + |W + ε|) 1

4 ũ‖L∞ .

Proof. Since W has a nondegenerate zero minimum at 0, if ε > −σ then σ + |W +
ε| ≈ σ + |ε| + W . Hence without any restriction in generality we can replace (ε, σ ) by
(0, σ + |ε|). Thus in the sequel we can assume that either ε = 0 or ε < −σ . We consider
three cases:

Case 1. |ε|, σ < e−√
ln λ. We consider an almost orthogonal partition of ũ in dyadic

regions with respect to r∗:

ũ = ũ<s0 +
∑

s0≤s<1

ũs, s0 = e− 1
2

√
ln λ.

For each piece we can freeze r∗ in the symbol of a−1
ps and estimate in L2,

‖(a−1
ps )

w(λ)ũs‖L2 ≈ ‖a−1
ps (s, D, λ)ũs‖L2 ,

‖(a−1
ps )

w(λ)ũ<s0‖L2 ≈ ‖a−1
ps (0, D, λ)ũ<s0‖L2 .

In the first case we use the symbol bound

λa−1
ps (s, ξ, λ) � λ| ln s|−1 + s−δ|ξ |, δ > 0,

where the second term accounts for the region where |ξ | > λsδ . This yields

λ‖(a−1
ps )

w(λ)ũs‖L2 � | ln s|−1λ‖ũs‖L2 + s−δ‖∂r∗ ũs‖L2 .

In the support of ũs we have σ + |W + ε| ≈ s2; therefore by Cauchy-Schwarz we obtain

λ‖(a−1
ps )

w(λ)ũs‖L2 � | ln s|−1λ‖(σ + |W + ε|) 1
4 ũ‖L∞ + s1−δ‖(σ + |W +ε|)− 1

4 ∂r∗ ũ‖L∞ .
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The summation with respect to s follows due to the L2 almost orthogonality of the
functions (a−1

ps )
w(λ)ũs ,

λ

∥∥∥∥∥∥(a
−1
ps )

w(λ)
∑

s0≤s<1

ũs

∥∥∥∥∥∥
L2

� λ

⎛
⎝ ∑

s0≤s<1

‖(a−1
ps )

w(λ)ũs‖2
L2

⎞
⎠

1
2

� λ‖(σ + |W + ε|) 1
4 ũ‖L∞ + ‖(σ + |W + ε|)− 1

4 ∂r∗ ũ‖L∞ .

This orthogonality is due to the fact that the kernel of (a−1
ps )

w(λ) decays rapidly on the
λ−1+δ scale in r∗, therefore the overlapping of the two functions of the form (a−1

ps )
w(λ)ũs

is trivially small for nonconsecutive values of s.
On the other hand for the center piece ũ<s0 a similar computation yields

λ‖(a−1
ps )

w(λ)ũ<s0‖L2 � | ln s0|−1λ‖ũ<s0‖L2 + s−δ
0 ‖∂r∗ ũ<s0‖L2

� λ‖(σ + |W + ε|) 1
4 ũ‖L∞ + s1−δ

0 ‖(σ + |W + ε|)− 1
4 ∂r∗ ũ‖L∞ ,

where the weaker bound in the first term is due to the fact that

∫
|r∗|<s0

(σ + |W + ε|)− 1
2 dr∗ � ln λ.

Case 2. ε = 0, σ ≥ e−√
ln λ. Then we select s0 by s2

0 = σ and partition ũ into

ũ = ũ<s0 +
∑

s0≤s≤1

ũs .

The analysis proceeds as in the first case, with the simplification that there is no longer

a singularity in the weight (σ + |W + ε|)− 1
2 for |r∗| < s0.

Case 3. σ, e−√
ln λ < −ε. Then we select s0 by s2

0 = −ε and partition ũ into

ũ = ũ<s0 + ũs0 +
∑

s0<s≤1

ũs .

Then all pieces are estimated as in Case 2 with the exception of ũs0 , where we have
to contend with the singularity in the weight. However, compared to Case 1 we have a
better integral bound

∫
|r∗|≈s0

|W + ε|− 1
2 dr∗ � 1

and the conclusion follows again.

��
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Due to the above lemma, it suffices to prove that, given |ε| � 1 and (u, g) supported
near the photon sphere so that

(∂2
r∗ + λ2(W + ε))u = g, (3.31)

then for some λ−1 < σ < 1 we have

‖(σ +|W +ε|)− 1
4 ∂r∗u‖L∞ +λ‖(σ +|W +ε|) 1

4 u‖L∞ �‖(λ−1+|W +ε|)− 1
4 g‖L1 . (3.32)

We remark that the first term on the left gives the L2 bound for ur∗ in (3.27).
We consider three subcases depending on the choice of ε:

Case 4 (i). ε � λ−1. Then |W + ε| ≈ r∗2 + ε. Choosing σ = ε, it suffices to prove that:

Lemma 3.7. Suppose that ε � λ−1. Then for u with compact support solving (3.31),
we have

λ(ε + r∗2
)

1
4 |u| + (ε + r∗2

)−
1
4 |ur∗ | � ‖(ε + r∗2

)−
1
4 g‖L1 .

Proof. We solve (3.31) as a Cauchy problem from both sides toward 0. For this we use
an energy functional which is inspired by the classical WKB approximation,

E(u(r∗)) = λ2(W + ε)
1
2 u2 + (W + ε)−

1
2 u2

r∗ +
1

2
Wr∗(W + ε)−

3
2 uur∗ .

Since |Wr∗ | � W
1
2 , the condition ε � λ−1 guarantees that E is positive definite.

Computing its derivative, we have

d

dr∗ E(u(r∗)) = 1

2
(Wr∗r∗(W + ε)−

3
2 − 3

2
W 2

r∗(W + ε)−
5
2 )uur∗

+(2(W + ε)−
1
2 ur∗ +

1

2
Wr∗(W + ε)−

3
2 u)g.

This leads to the bound∣∣∣∣ d

dr∗ E(u(r∗))
∣∣∣∣ � λ−1(W + ε)−

3
2 E(u(r∗)) + E

1
2 (u(r∗))(W + ε)−

1
4 g.

Since ∫
λ−1(W + ε)−

3
2 dr � 1,

the conclusion follows by Gronwall’s inequality. ��
Case 4 (ii). |ε| � λ−1. We choose σ = λ−1. Then σ + |W + ε| ≈ λ−1 + r∗2. Hence it
suffices to prove the pointwise bound:

Lemma 3.8. Suppose that |ε| � λ−1. Then for u with compact support solving (3.31),
we have

λ(λ−1 + r∗2
)

1
4 |u| + (λ−1 + r∗2

)−
1
4 |ur∗ | � ‖(λ−1 + r∗2

)−
1
4 g‖L1 .
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Proof. We use the same energy functional E as above. However, this time E is only

positive definite when W � λ−1 or equivalently |r∗| � λ− 1
2 . Applying Gronwall as in

the first case yields the conclusion of the lemma for |r∗| � λ− 1
2 .

In the remaining interval {|r∗| � λ− 1
2 } we view (3.31) as a small perturbation of the

equation ∂2
r∗u = g. Precisely, we can use the energy functional

E1(u(r
∗)) = λ

3
2 |u|2 + λ

1
2 |ur∗ |2,

which satisfies ∣∣∣∣ d

dr∗ E1(u(r
∗))

∣∣∣∣ � λ
1
2 E1(u(r

∗)) + E
1
2
1 (u(r

∗))λ
1
4 g.

This allows us to use Gronwall’s inequality to estimate the remaining part of u. ��

Case 4 (iii). −ε � λ−1. Then we choose σ = |ε| 1
3 λ− 2

3 and prove the pointwise bound:

Lemma 3.9. Suppose that −ε � λ−1. Then for u with compact support solving (3.31)
we have

λ(|W +ε| + |ε| 1
3 λ− 2

3 )
1
4 |u|+(|W +ε|+|ε| 1

3 λ− 2
3 )−

1
4 |ur∗ |�‖(|W + ε| + |ε| 1

3 λ− 2
3 )−

1
4 g‖L1 .

Proof. The energy E above is still useful for as long as it stays positive definite, i.e. if

|Wr∗ | < 2λ|W + ε|3/2. (3.33)

Given the quadratic behavior of W at 0, this amounts to

W + ε � λ− 2
3 |ε| 1

3 .

In this range, due to (3.33) we obtain, as in Case 4(i),
∣∣∣∣ d

dr∗ E(u(r∗))
∣∣∣∣ � λ−1(W + ε)−

3
2 E(u(r∗)) + E

1
2 (u(r∗))(W + ε)−

1
4 g,

which by Gronwall’s inequality and Cauchy-Schwarz yields the desired bound.
In a symmetric region around the zeroes of W + ε,

|W + ε| � λ− 2
3 |ε| 1

3 ,

the bounds for u and ur∗ remain unchanged and Eq. (3.31) behaves like a small per-
turbation of ∂2

r∗u = g, and we can use a straightforward modification of the argument
above.

Finally, in the region

[r−, r+] = {W + ε < −Cλ− 2
3 ε

1
3 },

we use an elliptic estimate. Denote

ω = |W + ε| + |ε| 1
3 λ− 2

3 .
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Then multiplying Eq. (3.31) by −λu and integrating by parts we obtain

∫ r+

r−
λ|∂r∗u|2 + λ3|W + ε||u|2dr∗ =

∫ r+

r−
−λugdr∗ + λuur∗

∣∣∣r
+

r−

� λ‖ω 1
4 u‖L∞(r−,r+)‖ω− 1

4 g‖L1 + ‖ω− 1
4 g‖2

L1,

(3.34)

where for the boundary terms at r± we have used the previously obtained pointwise
bounds. On the other hand from the fundamental theorem of calculus one obtains

λ2‖ω 1
4 u‖2

L∞(r−,r+)
�

∫ r+

r−
λ|∂r∗u|2 + λ3|W + ε||u|2dr∗,

where the bound (3.33) is used for the derivative of W in [r−, r+]. Combining the last
two inequalities gives the desired bound for u,

λ‖ω 1
4 u‖L∞(r−,r+) � ‖ω− 1

4 g‖L1 . (3.35)

Returning to (3.34), it also follows that

∫ r+

r−
λ|∂r∗u|2 + λ3|W + ε||u|2dr∗ � ‖ω− 1

4 g‖2
L1 . (3.36)

It remains to obtain the pointwise bound for ur∗ . In [r−, r+] we have W < |ε|, there-

fore Wr∗ � |ε| 1
2 . Given r∗

0 ∈ [r−, r+] we consider an interval r∗
0 ∈ I ⊂ [r−, r+] of size

|I | = cλ−1ω(r∗
0 )

− 1
2 with a small c. In I the size of the weight ω is constant; indeed, ω

can change at most by

|I ||Wr∗ | = cλ−1ω(r∗
0 )

− 1
2 ε

1
2 � cω(r∗

0 ),

where at the last step we have used the bound ω(r∗
0 ) ≥ |ε| 1

3 λ− 2
3 .

Within I we first use the L2 bound (3.36) to estimate the average uI
r∗ of ur∗ in I ,

|uI
r∗ |2 � |I |−1

∫
I
|ur∗ |2dr∗ � ω(r∗

0 )
1
2 ‖ω− 1

4 g‖2
L1 .

It remains to compute the variation of ur∗ in I , which is estimated using the equation
(∂2

r∗ + λ2(W + ε))u = g and (3.35),

∫
I
|∂2

r∗u|dr∗ �
∫

I
λ2ω|u| + |g|dr∗ � ω(r∗

0 )
1
4 ‖ω− 1

4 g‖L1 .

Together, the last two bounds show that

|ur∗(r∗
0 )| � ω(r∗

0 )
1
4 ‖ω− 1

4 g‖L1 .

The proof of the lemma is concluded. ��
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We continue with part (b) of the proposition. We switch to the Regge-Wheeler coordi-
nates. By taking a spherical harmonics expansion it suffices to prove the result at a fixed
spherical frequency λ. Let gλ be at spherical frequency λ with support in {11M/4 <
r < 4M}. Using a time frequency multiplier with smooth symbol we can split gλ into
two components, one with high (� λ) time frequency and one with low time frequency.
We consider the two cases separately.

Case I. gλ is localized at time frequencies {|τ | � (1 + λ)}. This corresponds to Cases
1,2,3 in the proof of part (a). As a consequence of the results there we have the a-priori
bound

(|τ | + λ)‖u‖L2 � ‖(∂2
r∗ + Vλ,τ )u‖L2

for all u with support in {5M/2 < r < 5M}. By duality this implies that for each g ∈ L2

with support in {5M/2 < r < 5M} there exists a solution v to

(∂2
r∗ + Vλ,τ )v = g

in3 {5M/2 < r < 5M} with

(|τ | + λ)‖v‖L2 � ‖g‖L2 .

Applying this at all time frequencies |τ | � (1 + λ) we find a solution uλ to

L RW uλ = gλ (3.37)

in {5M/2 < r < 5M} so that

(1 + λ)‖uλ‖L2 + ‖∂t uλ‖L2 � ‖gλ‖L2 .

Multiplying Eq. (3.37) by χ2
psuλ and integrating by parts we obtain

‖∂r∗(χpsuλ)‖2
L2 � λ2‖χpsuλ‖2

L2 + ‖χps∂t uλ‖2
L2 + ‖uλ‖2

L2 + ‖gλ‖2
L2 .

Hence the function vλ = χpsuλ satisfies

‖∇vλ‖L2 � ‖gλ‖L2 . (3.38)

On the other hand, since gλ is supported in the smaller interval {11M/4 < r < 4M}, it
follows that vλ solves the equation

L RW vλ − gλ = [L RW , χps]uλ.
Here the right-hand side is supported in a region, away from the photon sphere, where
the L2 and L E∗

ps norms are equivalent. Then this is seen to satisfy

‖L RW vλ − gλ‖L2 � ‖gλ‖L2

by applying (3.38) with χps replaced by a cutoff with slightly larger support.

Finally, the standard energy estimates for vλ allow us to obtain uniform energy bounds
for vλ from the averaged energy bounds in (3.38), thus improving (3.38) to

‖∇vλ‖L2 + ‖∇vλ‖L∞L2 � ‖gλ‖L2 . (3.39)

3 No boundary condition is imposed on v.
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Case II. gλ is localized at time frequencies {|τ | � (1 + λ)}. This corresponds to Case 4
in the proof of part (a). We first observe that the result in part (a) can be strengthened to

‖φ‖2
L E ps

� ‖ f ‖2
L E∗

ps +L1 L2 . (3.40)

Indeed, suppose that f = f1 + f2 with f1 ∈ L E∗
ps and f2 ∈ L1L2. We solve the forward

problem

�gφ2 = f2.

By Theorem 1.2 and Duhamel’s formula we have

‖φ2‖L E0 � ‖ f2‖L1 L2 .

We truncate φ2 → χ̃ps(r)φ2 in a slightly larger set than the support of f2 and compute

‖�g(χ̃psφ2)− f2‖L E∗
ps

= ‖[�g, χ̃ps]φ2‖L E∗
ps

≈ ‖[�g, χ̃ps]φ2‖L2 � ‖φ2‖L E0 ,

since the above commutator is supported in a compact set in r away from the photon
sphere.

From Duhamel’s formula and part (a) of the proposition it follows that

‖χ̃psφ2‖L E ps � ‖ f2‖L1 L2 .

On the other hand applying directly part (a) of the proposition to φ − χ̃psφ2 we obtain

‖φ − χ̃psφ2‖L E ps � ‖�g(φ − χ̃psφ2)‖L E∗
ps

� ‖ f1‖L E∗
ps

+ ‖ f2‖L1 L2 .

Hence (3.40) follows.
As a consequence of (3.40) we obtain

λ‖(a−1
ps )

w(λ)uλ‖L2 � inf
L RW uλ=g1+g2

(
‖awps(λ)g1‖L2 + ‖g2‖L1 L2

)
.

By duality, from this bound from below for L RW , we obtain a local solvability result.
Precisely, for each gλ at spherical frequency λ with support in {5M/2 < r < 5M} there
is a function uλ in the same set which solves

L RW uλ = gλ (3.41)

and satisfies the bound

λ(‖(a−1
ps )

w(λ)uλ‖L2 + ‖uλ‖L∞L2) � ‖awps(λ)gλ‖L2 . (3.42)

Since (a−1
ps )

w has an inverse in O P Sδ1,0, from the first term above we also obtain an L2

bound for uλ, namely

λ1−δ‖uλ‖L2 � ‖awps(λ)gλ‖L2 . (3.43)

Since gλ is localized at time frequencies |τ | � (1 + λ), it follows that uλ above can be
assumed to have a similar time frequency localization. Hence (3.42) also gives

‖(a−1
ps )

w(λ)uλt‖L2 + ‖uλt‖L∞L2 � ‖awps(λ)gλ‖L2 . (3.44)
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We can also obtain a similar bound for the r∗ derivative of uλ. For the local energy
part we multiply (3.41) by χps((a−1

ps )
w(λ))2χpsuλ. After some commutations where all

errors are bounded using the previous estimates we obtain

‖(a−1
ps )

w(λ)∂r∗(χpsuλ)‖2
L2 � λ2‖(a−1

ps )
w(λ)χpsuλ‖2

L2 + ‖(a−1
ps )

w(λ)χpsuλt‖2
L2

+λ2−2δ‖uλ‖2
L2 + ‖gλ‖2

L2 .

For the L∞L2 bound on ∂r∗(χpsuλ)we consider a smooth compactly supported function
χ(t). Then multiplying (3.41) by χ2χ2

psuλ and commuting we obtain

‖χ∂r∗(χpsuλ)‖2
L2 � λ2‖χχpsuλ‖2

L2 + ‖χχpsuλt‖2
L2 + ‖uλ‖2

L2 + ‖gλ‖2
L2 .

Taking also (3.42) and (3.44) into account we have a bound on local averaged energy
for χχpsuλ:

‖∂r∗(χχpsuλ)‖2
L2 + λ2‖χχpsuλ‖2

L2 + ‖∂t (χχpsuλ)‖2
L2 � ‖awps(λ)gλ‖2

L2 .

By energy estimates applied to χχpsuλ we can convert the averaged energy bound into
a pointwise energy bound to obtain

‖∂r∗(χχpsuλ)‖2
L∞L2 + λ2‖χχpsuλ‖2

L∞L2 + ‖∂t (χχpsuλ)‖2
L∞L2 � ‖awps(λ)gλ‖2

L2 .

Summing up (3.42), (3.44) and the similar bounds above for the r∗ derivatives we finally
obtain

‖(a−1
ps )

w(λ)∇(χpsuλ)‖L2 + ‖∇(χpsuλ)‖L∞L2 � ‖gλ‖L E∗ ,

where ∇ = (∂r∗ , ∂t , λ).
On the other hand if gλ is supported in {11M/4 < r < 4M}, then uλ solves the

equation

L RWχpsuλ − gλ = [L RW , χps]uλ.
The right-hand side is supported away from the photon sphere, where the L2 and L E∗

0
norms are equivalent. Then, by applying Theorem 1.2 with χps replaced by a cutoff with
slightly larger support, this is seen to satisfy

‖L RWχpsuλ − gλ‖L E∗
0

� ‖gλ‖L E∗
ps
.

The proof of the proposition is concluded. ��

3.2. The analysis at infinity. In the Schwarzschild space M, if a function u in M is sup-
ported in {r > 4M} we interpret it as a function in R×R

3 by setting u(t, x) = u(t, r, ω)
for x = rω. We now state the analogue of Proposition 3.3.

Proposition 3.10. a) Let φ solve �gφ = 0 in {r > 4M}. Then

‖χ∞φ‖2
L EM

� ‖φ‖2
L E0

+ E[φ](0).
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b) Let f ∈ L E∗
M be supported in {r > 4M}. Then there is a function φ supported in

{r > 3M} which solves �gφ = f in {r � M} so that

sup
t

E[φ](t) + ‖φ‖2
L EM

+ ‖�gφ − f ‖2
L2 � ‖ f ‖2

L E∗
M
. (3.45)

Proof. a) For R > 0 we denote by χ>R a smooth cutoff function which is supported in
{|x | > R} and equals 1 in {|x | ≥ 2R}. If R > 4M then

‖(χ∞ − χ>R)φ‖2
L EM

� ‖φ‖2
L E0

.

It remains to show that for a fixed sufficiently large R we have

‖χ>Rφ‖2
L EM

� ‖φ‖2
L E0

+ E[φ](0).
For this we notice that χ>Rφ solves the equation

�g(χ>Rφ) = f1(x)∇φ + f2(x)φ, (3.46)

where f1 and f2 are supported in {R < |x | < 2R}. If R is sufficiently large then outside
the ball {|x | ≤ R} the operator �g is a small long range perturbation of the d’Alem-
bertian. Then the estimate (1.5) applies, see e.g. [30, Prop. 2.2] or [28, (2.23)] (with no
obstacle, � = ∅) and we have

‖χ>Rφ‖2
L EM

� E[χ>Rφ](0) + ‖�g(χ>Rφ)‖2
L E∗

M

� E[φ](0) + ‖[�g, χ>R]φ‖2
L2

� E[φ](0) + ‖φ‖2
L E0

,

where in the last two steps we have used the compact support of �g(χ>Rφ) =
[�g, χ>R]φ.

b) Let R be large enough, as in part (a). For |x | > R the Schwarzchild metric g is
a small long range perturbation of the Minkowski metric, according to the definition in
[29]. We consider a second metric g̃ in R

3+1 which coincides with g in {|x | > R} but
which is globally a small long range perturbation of the Minkowski metric. Letψ be the
forward solution to �g̃ψ = f . Then we set

φ = χ>Rψ.

The estimate (1.5) holds for the metric g̃, therefore we obtain

sup
t

E[ψ](t) + ‖ψ‖L EM � ‖ f ‖2
L E∗

M
.

Then the same bound holds as well for φ. Furthermore, we can compute the error

�gφ − f = (χ>R − 1) f + [�g, χ>R]ψ.

This has compact spatial support, and can be easily estimated in L2 as in part (a). ��
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3.3. Proof of Theorem 3.2. Given f ∈ L E∗ we split it into

f = χeh f + χps f + χ∞ f.

For the last two terms we use part (b) of Propositions 3.3, 3.10 to produce approximate
solutions φps and φ∞ near the photon sphere, respectively near infinity. Adding them
up we obtain an approximate solution

φ0 = φps + φ∞

for the equation �gφ = f . Due to (3.24) and (3.45) we obtain for φ0 the bound

sup
ṽ

E[φ0](ṽ) + ‖φ0‖2
L E � ‖ f ‖2

L E∗ , (3.47)

while the error

f1 = �g(φps + φ∞)− f

is supported away from r = 3M and r = ∞ and satisfies

‖ f1‖L E∗
0

≈ ‖ f1‖L2 � ‖ f ‖L E∗ .

Then we find φ = φ0 + φ1 by solving

�gφ1 = f1 ∈ L E∗
0 , φ1[0] = φ[0] − φ0[0].

By Theorem 1.2 we obtain the L E0 bound for φ1. It remains to improve this to an L E
bound for φ1. By part (a) of Proposition 3.10 we can estimate ‖χ∞φ‖L EM .

Near the photon sphere we would like to apply part (a) of Proposition 3.3 to χpsφ.
However we cannot proceed in an identical manner because part (a) of Proposition 3.3
does not involve the Cauchy data of φ at t = 0, and instead applies to functions φ defined
on the full real axis in t . To address this issue we extend φ1 backward in t to the set M′

R ,
by solving the homogeneous problem �gφ1 = 0 in M′

R , with matching Cauchy data
on the common boundary of MR and M′

R . The extended function φ1 belongs to both
L E(MR) and L E(M′

R), and now we can estimate χpsφ1 via part (a) of Proposition 3.3.

4. Strichartz Estimates

In this section we prove Theorem 1.4. The theorem follows from the following two
propositions. The first gives the result for the right-hand side, f , in the dual local energy
space:

Proposition 4.11. Let (ρ, p, q) be a nonsharp Strichartz pair. Then for each φ ∈ L E
with �gφ ∈ L E∗ + L1

ṽ
L2 we have

‖∇φ‖2
L p
ṽ

Ḣ−ρ,q � E[φ](0) + ‖φ‖2
L E + ‖�gφ‖2

L E∗+L1
ṽ

L2 . (4.48)

The second one allows us to use L p′
2 Lq ′

2 in the right-hand side of the wave equation.
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Proposition 4.12. There is a parametrix K for �g so that for all nonsharp Strichartz
pairs (ρ1, p1, q1) and (ρ2, p2, q2) we have

sup
ṽ

E[K f ](ṽ) + E[K f ](�+
R) + ‖K f ‖2

L E + ‖∇K f ‖2
L

p1
ṽ

Ḣ−ρ1,q1
� ‖ f ‖2

L
p′
2
ṽ

Ḣρ2,q
′
2
,

(4.49)

and the error estimate

‖�g K f − f ‖L E∗+L1
ṽ

L2 � ‖ f ‖
L

p′
2
ṽ

Ḣρ2,q
′
2
. (4.50)

We first show how to use the propositions in order to prove the theorem.

Proof of Theorem 1.4. Suppose that �gφ = f with f ∈ L p′
2 Ḣρ2,q ′

2 . We write φ as

φ = φ1 + K f

with K as in Proposition 4.12. By (4.49) the K f term satisfies all the required estimates;
therefore it remains to consider φ1. Using also (4.50) we obtain

‖�gφ1‖2
L E∗+L1

ṽ
L2 + E[φ1](0) � E[φ](0) + ‖ f ‖2

L p′
2 Ḣρ2,q

′
2
.

Then Theorem 3.2 combined with Duhamel’s formula yields

‖φ1‖2
L E + ‖�gφ1‖2

L E∗+L1
ṽ

L2 + sup
ṽ

E[φ1](ṽ) � E[φ](0) + ‖ f ‖2

L p′
2 Ḣρ2,q

′
2
.

Finally the L p1 Ḣ−ρ1,q1 bound for ∇φ1 follows by Proposition 4.11. ��
We continue with the proofs of the two propositions.

Proof of Proposition 4.11. By Duhamel’s formula and Theorem 3.2 we can neglect the
L1L2 part of �gφ. Hence in the sequel we assume that �gφ ∈ L E∗.

We use cutoffs to split the space into three regions, namely near the event horizon,
near the photon sphere and near infinity,

φ = χehφ + χpsφ + χ∞φ.

Due to the definition of the L E and L E∗ norms we have

E[φ](0) + ‖φ‖2
L E + ‖�gφ‖2

L E∗ � E[χehφ](0) + ‖χehφ‖2
H1 + ‖�g(χehφ)‖2

L2

+ E[χpsφ](0) + ‖χpsφ‖2
L E ps

+ ‖�g(χpsφ)‖2
L E∗

ps

+E[χ∞φ](0) + ‖χ∞φ‖2
L EM

+ ‖�g(χ∞φ)‖2
L E∗

M
.

Proving this requires commuting �g with the cutoffs. However this is straightforward
since the L E and L E∗ norms are equivalent to the H1, respectively L2, norm in the
support of ∇χeh , ∇χps and ∇χ∞.

It remains to prove the L p
ṽ

Ḣ−ρ,q bound for each of the three terms in ∇φ. We consider
the three cases separately:
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I. The estimate near the event horizon. This is the easiest case. Given φ supported in
{r < 11M/4}, we partition it on the unit scale with respect to ṽ,

φ =
∑
j∈Z

χ(ṽ − j)φ,

where χ is a suitable smooth compactly supported bump function. Commuting the cut-
offs with �g one easily obtains the square summability relation

∑
j∈N

‖χ(ṽ − j)φ‖2
H1 + ‖�g(χ(ṽ − j)φ)‖2

L2 + E[χ(ṽ − j)φ](0)

� ‖φ‖2
H1 + ‖�gφ‖2

L2 + E[φ](0),
where the energy term on the left is nonzero only for finitely many j . Since each of
the functions χ(ṽ− j)φ have compact support, they satisfy the Strichartz estimates due
to the local theory; see [32,39,47]. The above square summability with respect to j
guarantees that the local estimates can be added up.

II. The estimate near the photon sphere. For φ supported in {5M/2 < r < 5M} we need
to show that

‖∇φ‖2
L p
ṽ

H−ρ,q � E[φ](0) + ‖φ‖2
L E ps

+ ‖�gφ‖2
L E∗

ps
.

We use again the Regge-Wheeler coordinates. Then the operator �g is replaced by L RW .
The potential V can be neglected due to the straightforward bound

‖Vφ‖L E∗
ps

� ‖φ‖L E ps .

Indeed, for φ at spherical frequency λ we have

‖Vφ‖L E∗
ps

� | ln(2 + λ)| 1
2 ‖φ‖L2 � λ| ln(2 + λ)|− 1

2 ‖φ‖L2 � ‖φ‖L E ps .

We introduce the auxiliary function

ψ = A−1
ps φ.

By the definition of the L E ps norm we have

‖ψ‖H1 � ‖φ‖L E ps . (4.51)

We also claim that

‖L RWψ‖L2 � ‖φ‖L E ps + ‖L RWφ‖L2 . (4.52)

Since A−1
ps is L2 bounded, this is a consequence of the commutator bound

[A−1
ps , L RW ] : L E ps → L2,

or equivalently

[A−1
ps , L RW ]Aps : H1 → L2. (4.53)
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It suffices to consider the first term in the symbol calculus, as the remainder belongs to
O P Sδ1,δ , mapping H δ to L2 for all δ > 0. The symbol of the first term is

q(ξ, r∗, λ) = {a−1
ps (λ), ξ

2 + r−3(r − 2M)λ2}aps(λ),

and a-priori we have q ∈ S1+δ
1,δ . For a better estimate we compute the Poisson bracket

q(ξ, r∗, λ) = a−1
ps (λ)γy(y, ln λ)

4ξr∗ − 2ξ∂r∗(r−3(r − 2M))

r∗2 + λ−2ξ2
,

where y = r∗2 + λ−2ξ2. The first two factors on the right are bounded. The third is
bounded by λ since ∂r∗(r−3(r − 2M)) vanishes at r∗ = 0. In addition, q is supported in
|ξ | � λ. Hence we obtain q ∈ λS0

1−δ,δ . Then the commutator bound (4.53) follows.
Given (4.51) and (4.52), we argue as in the first case, namely we localize ψ to time

intervals of unit length and then apply the local Strichartz estimates. By summing over
these strips we obtain

‖∇ψ‖L p H−ρ,q � ‖φ‖L E ps + ‖L RWφ‖L2

for all sharp Strichartz pairs (ρ, p, q).
To return to φ we invert A−1

ps ,

φ = Apsψ + (1 − Aps A−1
ps )φ.

The second term is much more regular,

‖∇(1 − Aps A−1
ps )φ‖L2 H1−δ � ‖φ‖L E ps , δ > 0;

therefore it satisfies all the Strichartz estimates simply by Sobolev embeddings.
For the main term Apsψ we take advantage of the fact that we only seek to prove

the nonsharp Strichartz estimates for φ. The nonsharp Strichartz estimates for ψ are
obtained from the sharp ones via Sobolev embeddings,

‖∇ψ‖H−ρ2,q2 � ‖∇ψ‖H−ρ1,q1 ,
3

q 2
+ ρ2 = 3

q 1
+ ρ1, ρ1 < ρ2.

To obtain the nonsharp estimates for φ instead, we need a slightly stronger form of the
above bound, namely

Lemma 4.13. Assume that 1 < q1 < q2 < ∞. Then

‖Apsu‖H−ρ2,q2 � ‖u‖H−ρ1,q1 ,
3

q 2
+ ρ2 = 3

q 1
+ ρ1. (4.54)

Proof. We need to prove that the operator

B = Opw(ξ2 + λ2 + 1)−
ρ2
2 Aps Opw(ξ2 + λ2 + 1)

ρ1
2

maps Lq1 into Lq2 . The principal symbol of B is

b0(r
∗, ξ, λ) = (ξ2 + λ2 + 1)

ρ1−ρ2
2 aps(r

∗, ξ, λ),



Strichartz Estimates on Schwarzschild Black Hole Backgrounds 75

and by the pdo calculus the remainder is easy to estimate,

B − bw0 ∈ O P Sρ1−ρ2−1+δ
1,0 , δ > 0.

The conclusion of the lemma will follow from the Hardy-Littlewood-Sobolev inequality
if we prove a suitable pointwise bound on the kernel K of bw0 , namely

|K (r∗
1 , ω1, r

∗
2 , ω2)| � (|r∗

1 − r∗
2 ||ω1 − ω2|2)−1+ 1

q1
− 1

q2 . (4.55)

For fixed r∗ we consider a smooth dyadic partition of unity in frequency as follows:

1 = χ{|ξ |>λ} +
∑

µ dyadic

χ{λ≈µ}

(
χ{|ξ |�ν0} +

µ∑
ν=ν0

χ{|ξ |≈ν}

)
,

where ν0 = ν0(λ, r∗) is given by

ln ν0(λ, r
∗) = ln λ + max{ln r∗,−√

ln λ}.
This leads to a similar decomposition for b0, namely

b0 = b00 +
∑
µ

(
bµ,<ν0 +

µ∑
ν=ν0

bµν

)
.

In the region |ξ | � λ the symbol b0 is of class Sρ1−ρ2 , which yields a kernel bound for
b00 of the form

|K00(r
∗
1 , ω1, r

∗
2 , ω2)| � (|r∗

1 − r∗
2 | + |ω1 − ω2|)−3−ρ1+ρ2 .

The symbols of bµν are supported in {|ξ | ≈ ν, λ ≈ µ}, are smooth on the same scale
and have size ln(ν−1µ)µρ2−ρ1 . Hence their kernels satisfy bounds of the form

|Kµ,ν(r∗
1 , ω1, r

∗
2 , ω2)| � ln(ν−1µ)µρ1−ρ2ν(|r∗

1 − r∗
2 |ν + 1)−Nµ2(|ω1 − ω2|µ + 1)−N ,

and similarly for Kµ,<ν0 . Then (4.55) follows after summation. ��
III. The estimate near infinity. Let us first recall the setup from [29]. We fix a
Littlewood-Paley dyadic decomposition of frequency space in R

3,

1 =
∞∑

k=−∞
Sk(D), supp sk ⊂ {2k−1 < |ξ | < 2k+1}.

Functions u in R × R
3 which are localized to frequency 2k are measured in

‖u‖Xk = 2k/2‖u‖L2(A<−k )
+ sup

j≥−k
‖|x |−1/2u‖L2(A j )

, (4.56)

where

A j = R × {2 j ≤ |x | ≤ 2 j+1}, A< j = R × {|x | ≤ 2 j }.
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As in [29], by X0 we denote the space of functions in R × R
3 with norm

‖u‖2
X0 =

∞∑
k=−∞

‖Sku‖2
Xk
, (4.57)

and by Y 0 the dual norm

‖u‖2
Y 0 =

∞∑
k=−∞

‖Sku‖2
X

′
k
,

where X
′
k is the dual norm of Xk .

One can establish the following (see [29, Lemma 1])

Lemma 4.14. The following inequalities hold:

sup
j

2− j/2‖∇u‖L2(A j )
� ‖∇u‖X0 (4.58)

and its dual

‖u‖Y 0 � ‖u‖L E∗
M
. (4.59)

For small deviations from the Minkowski metric, one can also establish stronger
local energy estimates involving the X0 and Y 0 norms; more precisely, one can prove
(see [29, Theorem 4]):

Lemma 4.15. Let g̃ be a sufficiently small, long range perturbation of the Minkowski
metric. Then, for all solutions u to the inhomogeneous problem �g̃u = f , one has

‖∇u‖2
L∞

t L2
x

+ ‖∇u‖2
X0 � E[u](0) + ‖ f ‖2

Y 0+L1
t L2

x
.

We now return to proving our estimate. For φ supported in {r > 4M} we need to
show that

‖∇φ‖2
L p Ḣ−ρ,q � E[φ](0) + ‖φ‖2

L EM
+ ‖�gφ‖2

L E∗
M
. (4.60)

For large R we split φ into a near and a far part

φ = χ>Rφ + χ<Rφ,

and estimate

E[φ](0) + ‖φ‖2
L EM

+ ‖�gφ‖2
L E∗

M
� E[χ>Rφ](0) + ‖χ>Rφ‖2

L EM
+ ‖�g(χ>Rφ)‖2

L E∗
M

+ E[χ<Rφ](0) + ‖χ<Rφ‖2
H1 + ‖�g(χ<Rφ)‖2

L2 .

The term χ<Rφ has compact support in r and can be treated as in the first case (i.e. near
the event horizon). Hence without any restriction in generality we can restrict ourselves
to the case when φ is supported in {r > R}. But in this region the operator �g is a small
long range perturbation of �; therefore the results of [29] apply. More precisely, from
[29, Theorem 7(a)] we obtain

‖∇φ‖2
L p Ḣ−ρ,q � E[φ](0) + ‖∇φ‖2

X0 + ‖�gφ‖2
L E∗ .
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This does not directly imply (4.60), since the X0 norm is stronger than L EM . However,
we can apply Lemma 4.15 and (4.59) to obtain the bound

‖∇φ‖2
X0 � E[φ](0) + ‖�gφ‖2

L E∗
M
.

��
Proof of Proposition 4.12. We split f into

f = χeh f + χps f + χ∞ f

and construct the parametrix separately in the three regions.
I. The parametrix near the event horizon. We further partition the term χeh f into unit
intervals

χeh f =
∑

j

χ(ṽ − j)χeh f

with χ supported in [−1, 1], so that each component has compact support in the region

D j = {r0 ≤ r < 11M/4, j − 2 < ṽ < j + 2}.
Let ψ j be the forward solution to

�gψ j = χ(ṽ − j)χeh f.

Due to the local Strichartz estimates for variable coefficient wave equations, we obtain
the uniform bounds

‖∇ψ j‖L p1 H−ρ1,q1 (D j )
+‖∇ψ j‖L∞L2(D j )

+‖ψ j‖L∞L2(D j )
�‖χ(ṽ− j)χeh f ‖

L p′
2 Hρ2,q

′
2
.

Next we truncate ψ j using a cutoff function χ̃ (ṽ − j, r) which is supported in D j and
equals 1 in the support of χ(ṽ− j)χeh . Then the bound above also holds for the truncated
functions φ j = χ̃(ṽ − j, r)ψ j ,

‖∇φ j‖L p1 H−ρ1,q1 + ‖∇φ j‖L∞L2 + ‖φ j‖L∞L2(D j )
� ‖χ(ṽ − j)χeh f ‖

L p′
2 Hρ2,q

′
2
.

(4.61)

In addition,

�gφ j − χ(ṽ − j)χeh f = [�g, χ̃(ṽ − j, r)]ψ j ;
therefore

‖�gφ j − χ(ṽ − j)χeh f ‖L2 � ‖χ(ṽ − j)χeh f ‖
L p′

2 Hρ2,q
′
2
. (4.62)

Finally, by energy estimates we also obtain a bound for the energy of φ j on the future
space-like boundary of D j at r = r0,

‖∇φ j‖L2(D j ∩{r=r0}) + ‖φ j‖L2(D j ∩{r=r0}) � ‖χ(ṽ − j)χeh f ‖
L p′

2 Hρ2,q
′
2
. (4.63)

To conclude we set

Keh f =
∑

j

φ j .
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Summing up the bounds (4.61), (4.62) and (4.63) for φ j we obtain the desired bounds
for Keh , namely

sup
ṽ

E[Keh f ](ṽ) + E[Keh f ](�+
R) + ‖Keh f ‖2

H1 + ‖∇Keh f ‖2
L p1 H−ρ1,q1

� ‖χeh f ‖2

L p′
2 Hρ2,q

′
2
,

respectively the error estimate

‖�g Keh f − χeh f ‖L2 � ‖χeh f ‖
L p′

2 Hρ2,q
′
2
.

II. The parametrix near the photon sphere. We work in the Regge-Wheeler coordinates.
Arguing as in the previous case we produce a parametrix K̃ ps with the property that,
for each f supported in {5M/2 + ε < r < 5M − ε}, the function K̃ ps f is supported in
{5M/2 < r < 5M} and satisfies the bounds

sup
t

E[K̃ ps f ](t) + ‖K̃ ps f ‖2
H1

x,t
+ ‖∇ K̃ ps f ‖2

L p1 H−ρ1,q1 � ‖ f ‖2

L p′
2 Hρ2,q

′
2
,

and the error estimate

‖L RW K̃ ps f − f ‖L2 � ‖ f ‖
L p′

2 Hρ2,q
′
2
.

Then we define the localized parametrix near the photon sphere K ps as

K ps f = A−1
ps K̃ ps χ̃ps Aps(χps f ),

with χ̃ps = 1 in the support of χps and slightly larger support. Then we show that K ps
satisfies the required bounds.

We recall that (ρ2, p2, q2) is a nonsharp Strichartz pair. Then by (4.54) we can write

‖χ̃ps Aps(χps f )‖
L p′

3 Hρ3,q
′
3

� ‖χps f ‖
L p′

2 Hρ2,q
′
2

for some other Strichartz pair (ρ3, p3, q3) with p3 = p2 and q3 < q2. Since A−1
ps is L2

bounded, from the above bounds for K̃ ps we obtain

sup
t

E[K ps f ](t) + ‖K ps f ‖2
H1 � ‖χps f ‖2

L p′
2 Hρ2,q

′
2
.

By using (4.54) with Aps replaced by the weaker operator A−1
ps we also obtain the

L p1 H−ρ1,q1 bound for K ps f :

‖∇K ps f ‖2
L p1 H−ρ1,q1 � ‖∇ K̃ ps χ̃ps Aps(χps f )‖2

L p H−ρ,q � ‖χps f ‖2

L p′
2 Hρ2,q

′
2
,

where (ρ, p, q) is another Strichartz pair with p = p1 and q < q1.
It remains to consider the error estimate,

‖L RW K ps f − χps f ‖L E∗+L1
ṽ

L2 � ‖χps f ‖
L p′

2 Hρ2,q
′
2
, (4.64)
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for which we compute

L RW K ps f − χps f = [L RW , A−1
ps ]K̃ ps χ̃ps Aps(χps f )

+A−1
ps (L RW K̃ ps − I )χ̃ps Aps(χps f )

+(A−1
ps χ̃ps Aps − χ̃ps)(χps f ).

We consider each term in the above decomposition. For the first term, due to the H1

bound for K̃ , we need the commutator bound

[L RW , A−1
ps ] : H1 → L E∗

or equivalently

Aps[L RW , A−1
ps ] : H1 → L2,

which is almost identical to (4.53) and is proved in the same manner.
The bound for the second term is a direct consequence of the L2 error bound for K̃ .
Finally, for the last term we know that (A−1

ps Aps − I ) ∈ O P S−1+δ
1,0 ; therefore using

Sobolev embeddings we estimate

‖(A−1
ps χ̃ps Aps − χ̃ps)(χps f )‖

L p′
2 H

1
2

� ‖χps f ‖
L p′

2 Hρ2,q
′
2
.

This concludes the proof of (4.64) since

L p′
2 H

1
2 ⊂ L2 H

1
2 + L1 H

1
2 ⊂ L E∗

ps + L1L2.

III. The parametrix near infinity. We now consider the last component of f , namely
χ∞ f . For some large R we separate it into two parts,

χ∞ f = (χ∞ − χ>R) f + χ>R f.

The first part has compact support in r ; therefore we can handle it as in the first case (i.e.
near the event horizon), producing a parametrix K<R∞ . For the second part we modify
the metric g for r < R to a metric g̃ which is a small, long-range perturbation of �. We
let ψ∞ be the forward solution to

�g̃ψ∞ = χ>R f.

We consider a second cutoff function χ̃>R which is supported in r > R and equals 1 in
the support of χ>R . Then we define

K>R∞ f = χ̃>Rψ∞.

It remains to show that K>R∞ satisfies the appropriate bounds,

sup
t

E[K>R∞ f ](t) + ‖K>R∞ f ‖2
L EM

+ ‖∇K>R∞ f ‖2
L p1 Ḣ−ρ1,q1

� ‖χ>R f ‖2

L p′
2 Ḣρ2,q

′
2
,

respectively the error estimate

‖�g K>R∞ f − χ>R f ‖L E∗
M

� ‖χ>R f ‖
L p′

2 Ḣρ2,q
′
2
.

These are easily obtained by applying the following lemma to ψ∞:
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Lemma 4.16. Let f ∈ L p′
2 Ḣρ2,q ′

2 . Then the forward solution ψ to �g̃ψ = f satisfies
the bound

sup
t

E[ψ](t) + ‖ψ‖2
L EM

+ ‖∇ψ‖2
L p1 Ḣ−ρ1,q1

� ‖ f ‖2

L p′
2 Ḣρ2,q

′
2
. (4.65)

It remains to prove the lemma. This largely follows from [29, Theorem 6], but there is
an interesting technical issue that needs clarification. Precisely, [29, Theorem 6] shows
that we have the bound

sup
t

E[ψ](t) + ‖∇ψ‖2
X0 + ‖∇ψ‖2

L p1 Ḣ−ρ1,q1
� ‖ f ‖2

L p′
2 Ḣρ2,q

′
2
. (4.66)

By Lemma 4.14, we are left with proving that

sup
j∈Z

2− 3 j
2 ‖ψ‖L2(A j )

� ‖ f ‖
L p′

2 Ḣρ2,q
′
2
. (4.67)

We note that this does not follow from Lemma 4.14; this is a forbidden endpoint of
the Hardy inequality in [29, Lemma 1(b)].

However, the bound (4.67) can still be obtained, although in a roundabout way.
Precisely, from (4.66) we have

sup
t

E[ψ](t) � ‖ f ‖2

L p′
2 Ḣρ2,q

′
2

(4.68)

for the forward in time evolution, and similarly for the backward in time problem.
On the other hand, a straightforward modification of the classical Morawetz estimates

(see e.g. [27]) for the wave equation shows that the solutions to the homogeneous wave
equation �g̃ψ = 0 satisfy

sup
j∈Z

2−3 j‖ψ‖2
L2(A j )

� E[ψ](0). (4.69)

Denote by 1t>s H(t, s) the forward fundamental solution for �g̃ and by H(t, s) its back-
ward extension to a solution to the homogeneous equation, �g̃ H(t, s) = 0. Combining
the bounds (4.68) and (4.69) shows that

sup
j

2−3 j
∥∥∥∥
∫

R

H(t, s) f (s)ds

∥∥∥∥
2

L2(A j )

� ‖ f ‖2

L p′
2 Ḣρ2,q

′
2
.

Since p′
2 < 2, by the Christ-Kiselev lemma [11], it follows that

sup
j

2−3 j
∥∥∥∥
∫ ∞

t
H(t, s) f (s)ds

∥∥∥∥
2

L2(A j )

� ‖ f ‖2

L p′
2 Ḣρ2,q

′
2
,

which is exactly (4.67). ��
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5. The Critical NLW

In this section we prove Theorem 1.5. We first consider (1.18) in the compact region
MC . We denote by ψ the solution to the homogeneous equation

�gψ = 0, ψ|�0 = φ0, K̃ψ|�0 = φ1,

and by T f the solution to the inhomogeneous problem

�g(T f ) = f, T F|�0 = 0, K̃ T f|�0 = 0.

Then we can rewrite the nonlinear equation (1.18) in the form

φ = ψ ± T (φ5). (5.70)

We define Sobolev spaces in MC by restricting to MC functions in the same
Sobolev space which are compactly supported in a larger open set. By the local Strichartz
estimates we have

‖ψ‖
H

1
2 ,4(MC )

� E[φ](�0)

and

‖T f ‖
H

1
2 ,4(MC )

� ‖ f ‖
H

1
2 ,

4
3 (MC )

.

At the same time we have the multiplicative estimate

‖φ5‖
H

1
2 ,

4
3 (MC )

� ‖φ‖5

H
1
2 ,4(MC )

.

Then for small initial data we can use the contraction principle to solve (5.70) and obtain

a solution φ ∈ H
1
2 ,4(MC ). In addition, still by local Strichartz estimates, the solution

φ will have finite energy on any space-like surface, in particular on the forward and
backward space-like boundary of MC . Thus we obtain

E[φ](�−
R ) � E[φ](�0).

It remains to solve (1.18) in MR (and its other three symmetrical copies). Using the
(ṽ, r, ω) coordinates in MR we define ψ and T as above, but with Cauchy data on �−

R .
By the global Strichartz estimates in Theorem 1.4, for (s, p) as in the theorem we

have

‖ψ‖L p Ḣ s,p(MR)
� E[φ](�−

R )

and

‖T f ‖L p Ḣ s,p(MR)
� ‖ f ‖L1 L2 .

In particular we can take p = 5 which corresponds to s = 3
10 . By Sobolev embed-

dings we have

‖φ‖L5 L10 � ‖φ‖
Ḣ

3
10 ,5

;
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therefore

‖φ5‖L1 L2 � ‖φ‖5

Ḣ
3

10 ,5
.

Hence we can solve (5.70) using the contraction principle and obtain a solution φ ∈
Ḣ

3
10 ,5. This implies that φ5 ∈ L1L2, which yields all of the other Strichartz estimates,

as well as the energy bound on the forward boundary �+
R of MR . This concludes the

proof of the theorem.
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