181 research outputs found

    Local density of electromagnetic states within a nanometric gap formed between two thin films supporting surface phonon polaritons

    Get PDF
    We present a detailed physical analysis of the near-field thermal radiation spectrum emitted by a silicon carbide (SiC) film when another nonemitting SiC layer is brought in close proximity. This is accomplished via the calculation of the local density of electromagnetic states (LDOS) within the gap formed between the two thin films. An analytical expression for the LDOS is derived, showing explicitly that (i) surface phonon polariton (SPhP) coupling between the layers leads to four resonant modes, and (ii) near-field thermal radiation emission is enhanced due to the presence of the nonemitting film. We study the impact of the interfilm separation gap, the distance where the fields are calculated, and the thickness of the nonemitting layer on the spectral distribution of the LDOS. Results show that for an interfilm gap of 10 nm, the near-field spectrum emitted around the SPhP resonance can increase more than an order of magnitude as compared to a single emitting thin layer. Interfilm SPhP coupling also induces a loss of spectral coherence of resonance, mostly affecting the low frequency modes. The effect of the nonemitting film can be observed on LDOS profiles when the distance where the fields are calculated is close to the interfilm gap. As the LDOS is calculated closer to the emitter, the near-field spectrum is dominated by SPhPs with small penetration depths that do not couple with the modes associated with the nonemitting film, such that thermal emission is similar to what is observed for a single emitting layer. Spectral distribution of LDOS is also significantly modified by varying the thickness of the nonemitting film relative to the thickness of the emitting layer, due to an increasing mismatch between the cross-coupled SPhP modes. The results presented here show clearly that the resonant modes of thermal emission by a polar crystal can be enhanced and tuned, between the transverse and longitudinal optical phonon frequencies, by simply varying the structure of the system. This analysis provides the physical grounds to tune near-field thermal radiation emission via multilayered structures, which can find application in nanoscale-gap thermophotovoltaic power generation.publisher versio

    Access regulation and the transition from copper to fiber networks in telecoms

    Get PDF
    In this paper we study the impact of different forms of access obligations on firms' incentives to migrate from the legacy copper network to ultra-fast broadband infrastructures. We analyze three different kinds of regulatory interventions: geographical regulation of access to copper networks-where access prices are differentiated depending on whether or not an alternative fiber network has been deployed; access obligations on fiber networks and its interplay with wholesale copper prices; and, finally, a mandatory switch-off of the legacy copper network-to foster the transition to the higher quality fiber networks. Trading-off the different static and dynamic goals, the paper provides guidelines and suggestions for policy makers' decision

    Multiagent cooperation for solving global optimization problems: an extendible framework with example cooperation strategies

    Get PDF
    This paper proposes the use of multiagent cooperation for solving global optimization problems through the introduction of a new multiagent environment, MANGO. The strength of the environment lays in itsflexible structure based on communicating software agents that attempt to solve a problem cooperatively. This structure allows the execution of a wide range of global optimization algorithms described as a set of interacting operations. At one extreme, MANGO welcomes an individual non-cooperating agent, which is basically the traditional way of solving a global optimization problem. At the other extreme, autonomous agents existing in the environment cooperate as they see fit during run time. We explain the development and communication tools provided in the environment as well as examples of agent realizations and cooperation scenarios. We also show how the multiagent structure is more effective than having a single nonlinear optimization algorithm with randomly selected initial points

    Credible intervals for nanoparticle characteristics

    Get PDF
    Solving the inverse problem of nanoparticle characterization has the potential to advance science and benefit society. While considerable progress has been made within a framework based on the scattering of surface plasmon-polaritons, an aspect not heretofore considered is the quantification of uncertainty in the estimation of a nanoparticle characteristic. Therefore, the present article offers a technique by which an investigator may augment an estimate of a nanoparticle characteristic with a companion “credible interval”. Analogous to the familiar confidence interval but arising from within the Bayesian statistical paradigm, a credible interval allows the investigator to make a statement such as “the nanoparticle diameter lies between 36 and 48 nm with 95% probability” instead of merely “the nanoparticle diameter is estimated to be 42 nm”. Our technique may even be applied outside of the surface plasmon-polariton scattering framework, as long as the investigator specifies his/her prior beliefs about the nanoparticle characteristic and indicates which potential outcomes are likely or unlikely in whatever experiment he/she designs to estimate the nanoparticle characteristic. Two numerical studies illustrate the implementation and performance of our technique in constructing ranges of likely values for nanoparticle diameters and agglomeration levels, respectively.NSFpre-prin

    Credible intervals for nanoparticle characteristics

    Get PDF
    Solving the inverse problem of nanoparticle characterization has the potential to advance science and benefit society. While considerable progress has been made within a framework based on the scattering of surface plasmon-polaritons, an aspect not heretofore considered is the quantification of uncertainty in the estimation of a nanoparticle characteristic. Therefore, the present article offers a technique by which an investigator may augment an estimate of a nanoparticle characteristic with a companion “credible interval”. Analogous to the familiar confidence interval but arising from within the Bayesian statistical paradigm, a credible interval allows the investigator to make a statement such as “the nanoparticle diameter lies between 36 and 48 nm with 95% probability” instead of merely “the nanoparticle diameter is estimated to be 42 nm”. Our technique may even be applied outside of the surface plasmon-polariton scattering framework, as long as the investigator specifies his/her prior beliefs about the nanoparticle characteristic and indicates which potential outcomes are likely or unlikely in whatever experiment he/she designs to estimate the nanoparticle characteristic. Two numerical studies illustrate the implementation and performance of our technique in constructing ranges of likely values for nanoparticle diameters and agglomeration levels, respectively.NSFpre-prin

    Mammary tuberculosis – importance of recognition and differentiation from that of a breast malignancy: report of three cases and review of the literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While tuberculosis of the breast is an extremely uncommon entity seen in western populations, it accounts for up to 3% of all treatable breast lesions in developing countries.</p> <p>Case presentations</p> <p>We reviewed three female cases of mammary tuberculosis that were diagnosed and treated in Turkey during the same calendar year. All three patients presented with a painful breast mass. In all cases, fine needle aspiration was nondiagnostic for mammary tuberculosis. However, the diagnosis of mammary tuberculosis was confirmed by histopathologic evaluation at the time of open surgical biopsy. All three patients were treated with antituberculous therapy for six months. At the end of the treatment period, each patient appeared to be clinically and radiologically without evidence of residual disease.</p> <p>Conclusion</p> <p>The diagnosis of mammary tuberculosis rests on the appropriate clinical suspicion and the histopathologic findings of the breast lesion. Its recognition and differentiation from that of a breast malignancy is absolutely necessary. Antituberculous chemotherapy, initiated immediately upon diagnosis, forms the mainstay of treatment for mammary tuberculosis.</p

    Higher Dimensional Cylindrical or Kasner Type Electrovacuum Solutions

    Full text link
    We consider a D dimensional Kasner type diagonal spacetime where metric functions depend only on a single coordinate and electromagnetic field shares the symmetries of spacetime. These solutions can describe static cylindrical or cosmological Einstein-Maxwell vacuum spacetimes. We mainly focus on electrovacuum solutions and four different types of solutions are obtained in which one of them has no four dimensional counterpart. We also consider the properties of the general solution corresponding to the exterior field of a charged line mass and discuss its several properties. Although it resembles the same form with four dimensional one, there is a difference on the range of the solutions for fixed signs of the parameters. General magnetic field vacuum solution are also briefly discussed, which reduces to Bonnor-Melvin magnetic universe for a special choice of the parameters. The Kasner forms of the general solution are also presented for the cylindrical or cosmological cases.Comment: 16 pages, Revtex. Text and references are extended, Published versio

    Pricing multiple exercise American options by linear programming

    Get PDF
    We consider the problem of computing the lower hedging price of American options of the call and put type written on a non-dividend paying stock in a non-recombinant tree model with multiple exercise rights. We prove using a simple argument that an optimal exercise policy for an option with h exercise rights is to delay exercise until the last h periods. The result implies that the mixedinteger programming model for computing the lower hedging price and the optimal exercise and hedging policy has a linear programming relaxation that is exact, i.e., the relaxation admits an optimal solution where all variables required to be integral have integer values. © Springer International Publishing Switzerland 2017
    corecore