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Abstract

Solving the inverse problem of nanoparticle characterization has the potential to advance

science and benefit society. While considerable progress has been made within a framework

based on the scattering of surface plasmon-polaritons, an aspect not heretofore considered is

the quantification of uncertainty in the estimation of a nanoparticle characteristic. Therefore,

the present article offers a technique by which an investigator may augment an estimate of a

nanoparticle characteristic with a companion “credible interval”. Analogous to the familiar

confidence interval but arising from within the Bayesian statistical paradigm, a credible interval

allows the investigator to make a statement such as “the nanoparticle diameter lies between 36

and 48 nm with 95% probability” instead of merely “the nanoparticle diameter is estimated to

be 42 nm”. Our technique may even be applied outside of the surface plasmon-polariton

scattering framework, as long as the investigator specifies his/her prior beliefs about the

nanoparticle characteristic and indicates which potential outcomes are likely or unlikely in

whatever experiment he/she designs to estimate the nanoparticle characteristic. Two numer-

ical studies illustrate the implementation and performance of our technique in constructing

ranges of likely values for nanoparticle diameters and agglomeration levels respectively.

Key words: Bayesian; compound estimation; confidence interval; inverse problem; scatter-

ing; sufficient statistic; surface plasmon-polariton.

1 Introduction

Nanoparticle characterization is an interesting and challenging inverse problem from both basic

and applied perspectives. While there exist several well-established statistical approaches for

addressing an inverse problem, such as logistic regression, classification trees, and discriminant

analysis (Ripley, 1996; Hastie, Tibshirani, and Friedman, 2001; Fernandez, 2003), many of
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these approaches are geared toward a particular structure for the inverse problem, namely that

the value of a categorical outcome variable is to be inferred from a collection of quantitative

predictor variables. However, nanoparticle characterization may entail a rather different

structure, in which the value of a quantitative outcome variable is to be inferred from one

or more predictor functions.

For example, an investigator may wish to infer the average diameter in a collection of

nanoparticles based on their “scattering profile”. (If the nanoparticles are homogeneously sized,

then one may speak of their diameter unambiguously. However, if the nanoparticles are not

homogeneously sized, then one may use their average diameter to summarize the distribution

of their sizes. For instance, if the nanoparticle diameters follow a lognormal distribution with

parameters µ = 2 and σ = 1 [Casella and Berger, 2002], then their average diameter is 12.2 nm.)

As described in detail elsewhere (Videen et al, 2005; Venkata et al, 2007), a scattering profile

quantifies how the nanoparticles disperse surface plasmon-polaritons (SPPs) as a function

of the angle from the experimental apparatus at which measurements are taken. One may

artificially convert such a quantitative outcome variable into a categorical outcome variable

(by asking whether the average diameter is above or below some threshold) and change such a

predictor function into quantitative predictor variables (by sampling the scattering profile upon

a coarse grid of angles), thus permitting application of well-established statistical approaches.

Alternatively and preferably, one may seek a statistical approach specifically intended for the

natural structure of the inverse problem.

Recently, Charnigo et al (2011) provided such an approach. Actually, they showed how to

use not only a scattering profile but also one or more of its derivatives to estimate a quantitative

nanoparticle characteristic, such as the average diameter in a collection of nanoparticles or the

agglomeration level, defined as the percentage of single (versus agglomerated) nanoparticles.

Their approach does not require the human operator to make any subjective judgments based
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on visual perceptions of scattering profiles (or their derivatives) and avoids ad-hoc aspects of

top-flight methods for characterizing small (but larger-than-nanosize) particles (Agarwal and

Mengüç, 1991; Mengüç and Manickavasagam, 1993). Their numerical studies suggested that,

with allowance for both systematic error and stochastic noise in data acquisition, their approach

might yield typical errors as small as 2.01 nm and 5.65 percent in estimating nanoparticle

diameter and agglomeration level respectively.

Yet, a crucial question remains: How can an investigator describe his/her uncertainty

about a quantitative nanoparticle characteristic? Numbers such as 2.01 nm and 5.65 percent

are square roots of average squared differences between the estimated and actual values of

the characteristics. These numbers can only be calculated if the investigator knows the actual

values. While such knowledge is available to those conducting numerical studies to evaluate an

approach for characterizing nanoparticles, such knowledge is not generally available in a “real

world” setting. So, while an investigator employing the approach of Charnigo et al (2011) may

be able to assert that “the estimated nanoparticle diameter is 42 nm”, he/she may not be able

to declare that “with 95% confidence, the actual nanoparticle diameter is between 36 and 48

nm”.

The goal of the present article, therefore, is to provide a technique for answering the

crucial question above. Importantly, our technique can be applied when there are multiple

sources contributing to the uncertainty about a nanoparticle characteristic. Such sources may

include both the ill-posedness of the mathematical inverse problem (i.e., the possibility that

nanoparticles with different characteristics may behave similarly) and practical difficulties in

an experimental setting (e.g., the potential for systematic error and stochastic noise in data

acquisition). While we envisage pairing our technique with the nanoparticle characterization

approach of Charnigo et al (2011), our technique is actually rather general. Indeed, there are

only three requirements for its use.
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First, an investigator must identify the characteristic of interest and specify his/her prior

beliefs about what values are likely or unlikely for that characteristic (Step 1 in Section 3).

The investigator may also adopt essentially neutral prior beliefs, in a sense to be made precise

later. Second, the investigator must identify an experimental framework from which data will

be acquired (Step 2). Although we exemplify our technique in the SPP-scattering framework of

Videen et al (2005) and Venkata et al (2007), our technique is not restricted to that framework.

Third, the investigator must specify which potential outcomes from the experiment are likely

or unlikely in relation to the value of the characteristic of interest (Step 3). Fulfilling this third

requirement may necessitate some auxiliary experimentation, as described later.

Once these three requirements are met, the investigator ascertains what values are likely

or unlikely for the characteristic of interest given the experimental results (Step 4) and then

constructs a range of likely values for the characteristic (Step 5). This range is similar to a

confidence interval but has a slightly different interpretation due to its connection with the

Bayesian statistical paradigm (Gelman et al, 1995; Casella and Berger, 2002). As such, we

refer to this range as a “credible interval” instead of as a confidence interval. In summary,

our technique allows an investigator to make a statement such as “with 95% probability, the

actual nanoparticle diameter is between 36 and 48 nm”.

As indicated above, we illustrate our technique in the SPP-scattering framework, which

entails analysis of the scattering Mueller matrix elements providing the change of intensity

and polarization state of the scattered SPPs. Importantly, our technique is not limited to

that framework. Other frameworks to which our technique is potentially applicable include,

for example, particle sizing using time-resolved laser-induced incandescence (Daun et al, 2007)

and particle characterization via lidar (Muller et al, 2011; Nishizawa et al, 2011). Our technique

is also potentially applicable to problems in biomedicine, such as optical tomography (Arridge,

1999; Gu et al, 2009) and fluorescence tomography (Kim et al, 2010). However, for concreteness
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and because our research team has a particular interest in nanoparticle characterization via

the SPP-scattering framework, we maintain that perspective for the balance of this article.

Indeed, we envisage that nanoparticle characterization may have profound impacts on

science and society during the next decade. Nanoparticles may allow for the engineering of

structures and devices that possess unique and unprecedented optical, electrical, thermal, or

structural properties. In particular, bottom-up fabrication processes would ideally require a

robust framework for characterizing nanoparticles nonintrusively and in real time. Metallic

nanoparticles may be used to increase the efficiency of photovoltaic cells (Catchpole and

Polman, 2008; Atwater and Polman, 2010). Materials comprised of sub-wavelength inclusions,

called metamaterials, may lead to unprecedented optical properties such as negative refractive

indices. Recently, materials made of dielectric nanoparticles have been investigated to fabri-

cate in a simple manner isotropic metamaterials with engineered electrical permittivity and

magnetic permeability (Zhao et al, 2009; Cai and Shalaev, 2010). Moreover, nanoparticles may

play a key role in nanoscale-gap thermophotovoltaic (nano-TPV) power generation, where a

cell converts thermal radiation from a terrestrial source into electricity (Whale, 1997; DiMatteo

et al, 2001; Laroche et al, 2006; Park et al, 2008; Francoeur et al, 2011). Francoeur et al (2011)

demonstrated that viable and highly efficient nano-TPV power generators are possible only if

the near-field radiative spectrum can be finely tuned at selected wavelengths. Nanoparticles

coated on the source or on the cell may allow such a fine tuning of near-field thermal emission

and absorption.

In the aforementioned applications of nanoparticles, and in numerous others, nanoparticle

characteristics such as shapes, sizes, and agglomeration levels need to be controlled precisely to

achieve the desired properties. As such, we believe that the inverse problem of characterizing

nanoparticles nonintrusively and in real time is worth solving and, therefore, being able to

quantify uncertainty about a nanoparticle characteristic represents a useful methodological
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advance.

The rest of this article is organized as follows. Section 2 describes some statistical concepts

relevant to the construction of credible intervals for a characteristic of interest such as average

nanoparticle diameter or percentage of single nanoparticles. Section 3 presents our five-step

technique for constructing credible intervals. Section 4 describes two numerical studies that

were performed to assess our technique, in terms of both the lengths of the intervals and the

relative frequencies with which the intervals contained the actual value of the characteristic of

interest. Section 5 summarizes this article’s contributions and highlights some opportunities

for future research. Additional details regarding the numerical studies appear in the Appendix.

A glossary of notation is provided in Table 1.

2 Statistical Concepts

We describe some statistical concepts relevant to the construction of credible intervals for

nanoparticle characteristics. While Section 2 of this article is intended to make the present

work self-contained, a reader desiring more details may consult Sections 4.1, 9.2.4, and 6.2.1

of Casella and Berger (2002) along with Sections 1.3 and 2.3 of Gelman et al (1995). Also, to

help the reader keep track of the notation introduced in Section 2 of this article, we provide a

glossary in Table 1.

2.1 Probability Density Function

Suppose that Y = (Y1, Y2, . . . , Yn)T is an n-dimensional vector of random variables governed

by a probability density function f(y;u). The interpretation of f(y;u) is that the probability

of Y falling inside A, a subset of n-dimensional space R
n, is obtained by integrating f(y;u)
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over A, P (Y ∈ A) =
∫
A f(y;u) dy. In accord with this interpretation, we must have

f(y;u) ≥ 0 and

∫

Rn

f(y;u) dy = 1. (1)

The mathematical form of f(y;u) is sometimes treated as known, but the parameter u is

usually regarded as unknown and is thus estimated from the realized values of Y1, Y2, . . . , Yn.

(If we observe that Y1 = 24, for instance, then 24 is called the “realized value” of Y1.) To

distinguish the random variables from their realized values, we denote the latter by lower case

symbols y1, y2, . . . , yn (or, collectively, by y) and refer to them as “data”.

One example of a probability density function is

f(y;u) = (2π)−n/2 exp

[
−

n∑

i=1

(yi − u)2/2

]
. (2)

Random variables Y1, Y2, . . . , Yn governed by (2) are mutually uncorrelated and are normally

distributed with mean u and unit standard deviation. In this example, an estimate of u is the

“sample mean” ȳ :=
∑n

i=1 yi/n.

2.2 Bayesian Credible Interval

In a Bayesian statistical paradigm, the parameter u in the probability density function f(y;u)

is regarded as not only unknown but also random. Our belief about the probabilistic behavior

of u before observing the data is summarized by a prior probability density function, denoted

pr(u). The interpretation of pr(u) is that P (u ∈ B) =
∫
B pr(u) du, where B is a subset of the

real numbers R.

Bayes’ Theorem provides a mechanism for updating our belief about the probabilistic

behavior of u after observing the data. More specifically, Bayes’ Theorem leads us to define a

posterior probability density function as

po(u;y) :=
pr(u) f(y;u)∫

R
pr(v) f(y; v) dv

. (3)
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The interpretation of po(u;y) is that P (u ∈ B | Y = y) =
∫
B po(u;y) du. (The left side of

the preceding equality may be read as “the probability that u falls inside B given that the

realization of Y is y”.)

A 95% Bayesian credible interval (sometimes also called a posterior interval) is analogous to

the familiar 95% confidence interval. However, while the familiar confidence interval provides

a range of plausible values for u when u is treated as unknown but non-random, a Bayesian

credible interval provides a range of likely values for u when u is regarded as unknown and

random.

More specifically, a 95% Bayesian credible interval I is a closed subset of R satisfying

∫

I
po(u;y) du = 0.95. (4)

In words, (4) says that I captures u with probability 95% after we observe the data. Note,

however, that I is not uniquely determined by (4).

On the other hand, assuming (as is typically true) that po(u;y) is continuous and has a

single local maximum with respect to its primary argument, adding a second constraint

inf
u∈I

po(u;y) ≥ sup
u/∈I

po(u;y) (5)

does uniquely determine I. (Above, “inf” and “sup” stand for infimum and supremum, which

are defined as the greatest lower bound and the least upper bound of their respective sets. As

such, infimum and supremum generalize the concepts of minimum and maximum.) In words,

(5) says that I accumulates its 95% probability from likely values of u rather than from unlikely

values.

Figure 1 exemplifies a 95% Bayesian credible interval. Satisfaction of (4) corresponds to

the shaded area under po(u;y) equaling 0.95. Adherence to (5) is represented by the presence

of shading at u values for which po(u;y) > 0.08 and the absence of shading at u values for

which po(u;y) ≤ 0.08.
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2.3 Sufficient Statistic and Dimension Reduction

The probability density function f(y;u) can sometimes be decomposed into a product of the

form g(t(y);u) h(y), where t(y) is of lower dimension than y. Note that h(y) is not permitted

to depend on u, while g(t(y);u) is allowed to depend on y only through t(y). We refer to such

t(y) as a sufficient statistic.

For example, with f(y;u) as in (2), we can take t(y) := ȳ, g(t(y);u) := exp[nȳu − nu2/2],

and h(y) := (2π)−n/2 exp[−
∑n

i=1 y2
i /2] to see that the sample mean ȳ is a sufficient statistic.

The nomenclature “sufficient” conveys that t(y) is sufficient for estimating u in the sense

that t(y) contains all of the information in y that is relevant to estimating u. Indeed, the

posterior probability density function (3) can be expressed as

po(u;y) =
pr(u) g(t(y);u) h(y)∫

R
pr(v) g(t(y); v) h(y) dv

=
pr(u) g(t(y);u)∫

R
pr(v) g(t(y); v) dv

, (6)

revealing that (3) — and, hence, a Bayesian credible interval for u derived from (3) — will

depend on the data y only through the sufficient statistic t(y). In effect, then, a sufficient

statistic t(y) reduces the dimension of the data y.

3 Methodology

We now present our approach to obtaining credible intervals for nanoparticle characteristics.

For ease of exposition, we present our approach in five steps. As with Section 2, notation

introduced herein is recorded in a glossary (Table 1).

Step 1: Define a prior probability density function for the characteristic of interest. Let

u denote a quantitative characteristic of interest describing a collection of nanoparticles. For

instance, u may be the average diameter of the nanoparticles. In this case, if an investigator’s

prior belief is that the average diameter is somewhere between 5 nm and 100 nm but that no
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values in this range are more likely candidates than others for the average diameter, then the

investigator may define the prior probability density function pr(u) to be 1/(100 − 5) = 1/95

for u ∈ [5, 100] and 0 for u /∈ [5, 100].

A prior probability density function that is constant when nonzero is called “noninforma-

tive” (Cf. Section 2.8 of Gelman et al, 1995). Choosing pr(u) to be noninformative represents

an essentially neutral stance for an investigator since pr(u) then factors out of either (3) or (6).

In this case, the credible interval is determined only by the data y or the sufficient statistic t(y).

Step 2: Specify an experimental framework for acquiring the data. Let Y denote a vector

of random variables representing potential outcomes from an experiment designed to aid in

nanoparticle characterization. For example, suppose that the experimental paradigm of Videen

et al (2005) and Venkata et al (2007) is employed. In this case, the nanoparticles are placed

on a metallic film coated on a high refractive index substrate. Elliptically polarized radiation

is directed to the interface between the substrate and the metallic film, yielding evanescent

waves at the substrate-metal interface. These evanescent waves tunnel through the metallic

film and excite surface plasmon-polaritons (SPPs) at the metal-air interface. The SPPs are, in

turn, scattered by the nanoparticles. At each of numerous angles in the far field, the change

of intensity and polarization state of the scattered SPPs is recorded. One then defines the

components of Y to be normalized entries from the 4 × 4 scattering Mueller matrix derived

from the information recorded in the far field (Bohren and Huffman, 1998). For example,

if information is recorded at far field angles between 2 and 178 degrees in increments of 1

degree, then Y is a vector of length 177 whose ith component Yi is a normalized entry from

the scattering Mueller matrix based on the information recorded at a far field angle of (i + 1)

degrees for i ∈ {1, 2, . . . , 177}. (The process of normalizing entries from the scattering Mueller

matrix is described in the last paragraph of Section 2 in Charnigo et al (2007), while Figure 1
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in Charnigo et al (2011) displays a visual schematic of the experimental paradigm.)

Step 3: Identify likely and unlikely potential outcomes from the experiment. Ideally, an

investigator would be able to specify a probability density function f(y;u) identifying which

potential outcomes from the experiment were likely or unlikely in relation to the characteristic

of interest. However, the correct mathematical form of f(y;u) might not be apparent from

physical principles. At least conceptually, there are three possible avenues by which the

investigator might address this difficulty.

Avenue 1: Nonparametric estimation of the probability density function. In

this first avenue, the investigator would not speculate about the correct mathematical form

of f(y;u). Indeed, as the investigator proceeded to estimate f(y;u), no assumption would be

made other than (1).

Toward estimating f(y;u), the investigator could conduct auxiliary experiments using dif-

ferent collections of nanoparticles for which the investigator knew the characteristic of interest.

For example, if the characteristic of interest were average diameter, then the investigator could

run M (a positive integer) auxiliary experiments using nanoparticles with average diameter

known to equal 5 nm. This would yield M auxiliary data sets from which the investigator could

estimate f(y; 5) using a nonparametric density estimation method (Loader, 1999; Devroye and

Lugosi, 2001), which would not make any assumption other than (1). (Above, the substitution

of 5 for u in f(y;u) indicates that the probability density function is being estimated based

on nanoparticles for which the average diameter is known to equal 5 nm.)

Continuing, the investigator could then run M more auxiliary experiments using nanoparti-

cles with average diameter known to equal 10 nm. This would yield M more auxiliary data sets

from which the investigator could estimate f(y; 10) using a nonparametric density estimation

method. The investigator could likewise estimate f(y; 15), f(y; 20), and so forth. Interpolation
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could be used to complete the estimation of f(y;u) for any value of u not represented in the

auxiliary experiments. For instance, an estimate of f(y; 6) could be defined as 1/5 the estimate

of f(y; 10) plus 4/5 the estimate of f(y; 5).

While defensible conceptually, this avenue suffers from the practical difficulty that, at

any fixed value of u, f(y;u) is a function with domain a subset of n-dimensional space

R
n. Adequately estimating such a function using a nonparametric density estimation method

would require M to greatly exceed n. Thus, unless n were quite small, thousands of auxiliary

experiments would be required at any fixed value of u.

Avenue 2: Parametric estimation of the probability density function. The

investigator might be willing to assume that f(y;u) could be approximated by a probability

density function of known mathematical form. One example would be the n-dimensional

normal probability density function with n × 1 mean vector µ(u) and symmetric, positive

definite n × n covariance matrix Σ(u),

(2π)−n/2Det[Σ(u)]−1/2 exp[−(y − µ(u))T Σ(u)−1(y − µ(u))/2], (7)

where Det[·] returns the determinant of a matrix. (Expression (2) is a special case of expression

(7) in which every component of µ(u) is restricted to equal u and Σ(u) is taken to be an identity

matrix.)

The components of µ(u) and Σ(u) could then be estimated from auxiliary experiments

using different collections of nanoparticles for which the investigator knew the characteristic

of interest. For example, if the characteristic of interest were average diameter, then the

investigator could run M auxiliary experiments using nanoparticles with average diameter

known to equal 5 nm. This would yield M auxiliary data sets from which the investigator

could estimate the components of µ(5) and Σ(5) by a parametric statistical technique such as

the method of moments (Cf. Section 7.2.1 of Casella and Berger, 2002). (Here the substitution

of 5 for u in µ(u) and Σ(u) indicates estimation based on nanoparticles for which the average
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diameter is known to equal 5 nm.) The investigator could likewise estimate µ(10), Σ(10),

µ(15), Σ(15), and so forth. Interpolation could be used to estimate the components of µ(u)

and Σ(u) for any value of u not represented in the auxiliary experiments.

This second avenue involves a tradeoff between realism and practicality. If no restrictions

were imposed a priori on µ(u) and Σ(u) (other than symmetry and positive definiteness of

the latter), then a realistic approximation to f(y;u) might be possible. However, there would

be on the order of n2/2 components to estimate. This would not provide a viable alternative

to the first avenue, since again thousands of auxiliary experiments would be required at any

fixed value of u. On the other hand, imposing restrictions on µ(u) and Σ(u) could drastically

reduce the number of components to estimate. The number of required auxiliary experiments

would then also be reduced. Yet, such restrictions might preclude a realistic approximation to

f(y;u).

Avenue 3: Dimension reduction followed by parametric estimation. Not knowing

the mathematical form of f(y;u) impedes the identification of a sufficient statistic t(y).

However, an investigator may identify a quantity t̃(y) that he/she is willing to treat like a

sufficient statistic in that he/she will rely on t̃(y) to obtain credible intervals for nanoparticle

characteristics. Thus, the investigator will still be reducing the dimension of the data y.

For example, if the characteristic of interest were average diameter and one employed the

experimental paradigm of Videen et al (2005) and Venkata et al (2007), then one might put

t̃(y) := (log D(y; 10), log D(y; 50), log D(y; 90))T , where (8)

D(y; c) := 0.9362

∫ 180
0 [M33(θ;y) − M33;c(θ)]2 dθ

∫ 180
0 M33(θ;y)2 dθ

+ 0.0466

∫ 180
0 [M ′

33(θ;y) − M ′

33;c(θ)]2 dθ
∫ 180
0 M ′

33(θ;y)2 dθ

+0.0172

∫ 180
0 [M ′′

33(θ;y) − M ′′

33;c(θ)]2 dθ
∫ 180
0 M ′′

33(θ;y)2 dθ
. (9)

Above, M33(θ;y) represents an estimate of the normalized entry from the third row and

third column of the scattering matrix, as a function of the far field angle θ, for nanoparticles of
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unknown average diameter from which data y are generated. Note that M33(θ;y) is, in essence,

a smooth connection of the dots formed by plotting y1, . . . , yn against their corresponding far

field angles. Figure 2 displays a visual schematic of this smoothing, which is based on the

compound estimation procedure of Charnigo and Srinivasan (2011a, 2011b).

Continuing, M33;c(θ) is analogous to M33(θ;y) but pertains to nanoparticles of known

average diameter c. The primes denote differentiation with respect to θ. The coefficients

0.9362, 0.0466, and 0.0172 were identified as optimal for estimating average diameter in a

numerical study by Charnigo et al (2011). More specifically, the root mean square error in

estimating average diameter by arg minc D(y; c) was smallest when D(y; c) was defined with

these coefficients, assuming low stochastic noise in the process generating the data y.

The rationale for (8) is that small D(y; 10) but large D(y; 50) and D(y; 90) will suggest

that the unknown average diameter may be close to 10 nm, small D(y; 50) but large D(y; 10)

and D(y; 90) will suggest that the unknown average diameter may be close to 50 nm, medium

D(y; 10) and D(y; 50) but large D(y; 90) will suggest that the unknown average diameter may

be close to 30 nm, and so forth. Thus, D(y; 10), D(y; 50), and D(y; 90) are potentially quite

informative for estimating the unknown average diameter.

Once t̃(y) has been chosen, the investigator must specify g(t̃(y);u) for use in the formula

po(u;y) ≈
pr(u) g(t̃(y);u)∫

R
pr(v) g(t̃(y); v) dv

, (10)

which modifies formula (6) above only in that g(t(y);u) has been replaced by g(t̃(y);u). One

possibility is to assign g(t̃(y);u) to have the form

(2π)−dim[t̃(y)]/2Det[Λ(u)]−1/2 exp[−(t̃(y) − ν(u))T Λ(u)−1(t̃(y) − ν(u))/2], (11)

where dim[·] returns the dimension of a vector, ν(u) is a dim[t̃(y)]× 1 mean vector, and Λ(u)

is a symmetric, positive definite dim[t̃(y)] × dim[t̃(y)] covariance matrix.

The components of ν(u) and Λ(u) could then be estimated from auxiliary experiments

using different collections of nanoparticles for which the investigator knew the characteristic of
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interest. If t̃(y) were chosen as in (8), so that dim[t̃(y)] = 3, then even without imposing any

restrictions on ν(u) and Λ(u) (other than symmetry and positive definiteness of the latter) there

would be only nine components to estimate. That could be accomplished with a comparatively

modest number of auxiliary experiments, rendering this third avenue more feasible than the

first two. As such, we pursue this third avenue in our numerical studies (Section 4).

Step 4: Conduct the experiment and obtain the posterior probability density function for the

characteristic of interest. When the investigator applies the experimental framework from Step

2 to a collection of nanoparticles with unknown characteristic, the investigator will acquire data

y and, presuming pursuit of the third avenue in Step 3, the dimension-reduced quantity t̃(y).

Then, using the prior probability density function pr(u) specified in Step 1, the investigator

may obtain the (approximate) posterior probability density function po(u;y) via formula (10).

Step 5: Derive the credible interval for the characteristic of interest. Once the (approxi-

mate) posterior probability density function po(u;y) has been obtained, a(n approximate) 95%

Bayesian credible interval may be derived by meeting requirements (4) and (5) simultaneously.

One computational procedure for doing so follows.

First, express C := {u ∈ R : pr(u) > 0} as a finite union of numerous short intervals,

C = [a0, a1]∪ [a1, a2]∪ . . .∪ [ak−1, ak] for some positive integer k. These short intervals should

conform to a tolerable level of rounding for the endpoints of the credible interval. For example,

if the characteristic of interest is average diameter and the investigator is willing to round the

endpoints of the credible interval to the nearest nm, then with C = [5, 100] the investigator

may take k := 95 and aj := j + 5 for j ∈ {0, 1, . . . , k}.

Next, put Nj := pr(aj) g(t̃(y); aj) for j ∈ {0, 1, . . . , k}. Observe that Nj is the numerator

of (10) evaluated at u = aj. Also, let τ be a permutation of {0, 1, . . . , k} such that Nτ [0] ≥
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Nτ [1] ≥ . . . ≥ Nτ [k]. In words, τ sorts N0, N1, . . . , Nk in order from largest to smallest. To

illustrate this sorting, we again consider Figure 1. Let k and aj be as in the last line of

the preceding paragraph. We have τ [0] = 23 in accord with the numerator of the posterior

probability density function (and, hence, the posterior probability density function itself) being

maximized at u = a23 = 28. We also have τ [1] = 24, τ [2] = 22, and so forth.

Then, identify the smallest nonnegative integer m such that

∑m
j=0 Nτ [j]

∑k
j=0 Nj

≥ 0.95. (12)

The credible interval is the smallest interval containing {aτ [0], aτ [1], . . . , aτ [m]}. Note that

condition (12) corresponds to requirement (4), while sorting via τ addresses requirement (5).

4 Numerical Studies

We describe two numerical studies that were conducted to evaluate our approach to construct-

ing credible intervals, in terms of both the lengths of the intervals and the relative frequencies

with which the intervals contained the actual value of the nanoparticle characteristic of interest.

The first numerical study pertained to the estimation of nanoparticle diameter, while the

second entailed the estimation of agglomeration level.

4.1 Credible Intervals for Nanoparticle Diameter

Our first numerical study was performed to assess our approach to obtaining credible intervals

for nanoparticle diameter in a collection of homogeneously sized nanoparticles, allowing for

both systematic error and stochastic noise in data acquisition. The study design is described

in detail below, in parallel with the five steps of Section 3, after which we present our findings.
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Step 1. Here u represents nanoparticle diameter. We specified a noninformative prior

probability density function pr(u) := 1/95 for u ∈ [5, 100] and 0 for u /∈ [5, 100].

Step 2. We used the Venkata et al (2007) Fortran implementation of the Videen et al

(2005) and Venkata et al (2007) experimental paradigm (along with the rnorm function in the

R statistical software package) to generate data sets y11,u,rep, y12,u,rep, y33,u,rep, and y34,u,rep

for u ∈ {5, 10, . . . , 100} and rep ∈ {1, 2, . . . , 140}. Each data set, representing a realized

experimental outcome, contained normalized entries from the scattering matrix corresponding

to far field angles of 2, 3, . . . , 178 degrees. Each data set was subsequently (Step 5) used to

construct a credible interval for nanoparticle diameter.

The underlying physical attributes of the nanoparticles and experimental apparatus were

as follows: radiation beam with wavelength 514.5 nm (argon-ion laser) and 23-degree angle

of incidence; prism and substrate made of sapphire with refractive index 1.77304; substrate

coated with 20 nm gold film having complex refractive index 0.50 + 1.86i; gold spherical

nanoparticles having complex refractive index 0.50+1.86i; 50 percent single nanoparticles and

50 percent agglomerated nanoparticles. Detailed assumptions about agglomeration patterns

are documented in the Appendix; however, knowledge of that material is not necessary for the

reader to understand what follows.

The 11, 12, 33, and 34 subscripts in our notation identify the row and column of the

scattering matrix from which entries were taken. Previous work (Francoeur, Venkata, and

Mengüç, 2007; Manickavasagam and Mengüç, 1997) suggests that entries from these rows and

columns may be most useful for nanoparticle characterization.

The u index ranging through {5, 10, . . . , 100} indicates that some of the data sets were gen-

erated corresponding to nanoparticles with diameter 5 nm, some were generated corresponding

to nanoparticles with diameter 10 nm, and so forth.
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The rep index ranging through {1, 2, . . . , 140} indicates that there were 140 (= 10 × 14)

“repetitions” of data generation at each nanoparticle diameter. More specifically, there were 10

repetitions corresponding to each of the following 14 systematic errors: (1) 24-degree angle of

incidence; (2) 22-degree angle of incidence; (3) 25-degree angle of incidence; (4) 21-degree angle

of incidence; (5) +1 degree offset in measurement angle; (6) -1 degree offset in measurement

angle; (7) 3-degree solid angle in far field measurement; (8) 21-degree angle of incidence,

+1 degree offset in measurement angle; (9) 25-degree angle of incidence, -1 degree offset in

measurement angle; (10) incident beam spread over a solid angle (23 and 24 degrees); (11)

incident beam spread over a solid angle (23 and 24 degrees), 3-degree solid angle in far field

measurement; (12) incident beam spread over a solid angle (22, 23, and 24 degrees), 2-degree

solid angle in far field measurement; (13) incident beam spread over a solid angle (22 and 23

degrees), +1 degree offset in measurement angle; and, (14) incident beam spread over a solid

angle (22 and 23 degrees), -1 degree offset in measurement angle.

The 10 repetitions corresponding to any particular systematic error differed among them-

selves in that they entailed various realizations of stochastic noise. More specifically, each

repetition was defined through the addition of stochastic noise from a Gaussian distribution

having mean 0 and standard deviation equal to 3% of the standard deviation of the scattering

matrix entries, as calculated prior to the addition of stochastic noise.

Step 3. As noted in Section 3, we pursued the third avenue for identifying likely and

unlikely potential outcomes: dimension reduction followed by parametric estimation.

Let y denote any one of the data sets y33,u,rep, u ∈ {5, 10, . . . , 100} and rep ∈ {1, 2, . . . , 140},

containing entries from the third row and third column of the scattering matrix. We employed

the compound estimation procedure of Charnigo and Srinivasan (2011a, 2011b) to convert y

to a smooth curve M33(θ;y), as illustrated in Figure 2. Implementation details for compound
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estimation are documented in the Appendix; however, knowledge of that material is not

necessary for the reader to understand what follows.

We then applied the Venkata et al (2007) Fortran implementation three more times to

generate entries from the scattering matrix for nanoparticles with diameters 10, 50, and 90

nm respectively, without any systematic errors or stochastic noise. Compound estimation was

employed to convert these entries to smooth curves M33(θ; 10), M33(θ; 50), and M33(θ; 90).

We defined t̃(y), D(y; c), and g(t̃(y);u) as in (8), (9), and (11) respectively. Since the

components of ν(u) and Λ(u) in (11) had to be estimated, we generated auxiliary data sets

yaux
33,u,rep, u ∈ {5, 10, . . . , 100} and rep ∈ {1, 2, . . . , 70}. The auxiliary data sets yaux

33,u,rep were

generated in the same manner as the data sets y33,u,rep from which credible intervals were

to be constructed, except that the auxiliary data sets yaux
33,u,rep were fewer in number: at each

nanoparticle diameter, there were only 5 repetitions corresponding to each of the 14 systematic

errors. The components of ν(u) and Λ(u) were estimated from the auxiliary data sets yaux
33,u,rep

by the parametric statistical technique of method of moments.

The above three paragraphs pertain to estimation of nanoparticle diameter based on entries

from the third row and third column of the scattering matrix. For entries from other rows

and columns, we proceeded similarly except that the coefficients 0.9362, 0.0466, 0.0172 in (9)

were modified to accord with the results of Charnigo et al (2011). More specifically, we used

coefficients 0.8808, 0, 0.1192 when estimating nanoparticle diameter based on entries from

the first row and first column, coefficients 0.4994, 0.4994, 0.0012 for the first row and second

column, and coefficients 0.8808, 0.1192, 0 for the third row and fourth column.

Step 4. For each data set y33,u,rep, u ∈ {5, 10, . . . , 100} and rep ∈ {1, 2, . . . , 140}, we

calculated a corresponding dimension-reduced quantity t̃(y33,u,rep) and, via formula (10), a

corresponding posterior probability density function po(u;y33,u,rep). We likewise obtained
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po(u;y11,u,rep), po(u;y12,u,rep), and po(u;y34,u,rep) for u ∈ {5, 10, . . . , 100} and rep ∈ {1, 2, . . . , 140}.

Step 5. From each posterior probability density function po(u;y33,u,rep), u ∈ {5, 10, . . . , 100}

and rep ∈ {1, 2, . . . , 140}, we obtained a 95% Bayesian credible interval Iy33,u,rep
. The com-

putational procedure described in Section 3 was used with k := 95 and aj := j + 5 for

j ∈ {0, 1, . . . , k}. We similarly acquired Iy11,u,rep
, Iy12,u,rep

, and Iy34,u,rep
for u ∈ {5, 10, . . . , 100}

and rep ∈ {1, 2, . . . , 140}.

The findings from this numerical study appear in Figure 3. The circular symbols in panel (a)

show (1/140)
∑140

rep=1[sup Iy11,5,rep
− inf Iy11,5,rep

], (1/140)
∑140

rep=1[sup Iy11,10,rep
− inf Iy11,10,rep

],

and so forth. In words, these are the averaged (over 140 repetitions) lengths of the credible

intervals Iy11,u,rep
corresponding to actual nanoparticle diameters of 5 nm, to actual nanopar-

ticle diameters of 10 nm, and so forth. The square, diamond, and triangular symbols pertain

to Iy12,u,rep
, Iy33,u,rep

, and Iy34,u,rep
respectively.

The credible intervals Iy33,u,rep
tend to be narrower than Iy11,u,rep

and Iy12,u,rep
at all

diameters and narrower than Iy34,u,rep
at diameters less than 75 nm. Averaging over the

20 actual nanoparticle diameters as well as the 140 repetitions at each diameter, we find that

the mean length of the 2800 credible intervals Iy33,u,rep
is 3.53 nm, compared to 7.77, 8.94, and

6.84 for Iy11,u,rep
, Iy12,u,rep

, and Iy34,u,rep
respectively.

The circular symbols in panel (b) of Figure 3 depict (1/140)
∑140

rep=1 I[5 ∈ Iy11,5,rep
],

(1/140)
∑140

rep=1 I[10 ∈ Iy11,10,rep
], and so forth, where I is an indicator function that equals 1 if

its argument is a true statement and 0 otherwise. In words, these are the relative frequencies

with which the credible intervals Iy11,u,rep
capture the actual nanoparticle diameters (i.e.,

contain the number 5 when the actual nanoparticle diameters are 5 nm, the number 10 when the

actual nanoparticle diameters are 10 nm, and so forth). The square, diamond, and triangular
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symbols pertain to Iy12,u,rep
, Iy33,u,rep

, and Iy34,u,rep
respectively.

Except for Iy12,u,rep
at diameters between 75 and 85 nm, all capture rates are at least

90%. Averaging over the 20 actual nanoparticle diameters as well as the 140 repetitions at

each diameter, we find that the overall capture rate for Iy33,u,rep
is 98.8% compared to 95.8%,

95.0%, and 97.5% for Iy11,u,rep
, Iy12,u,rep

, and Iy34,u,rep
respectively. Since the intervals were

constructed to have 95% credibility, these overall capture rates are satisfactory.

To summarize, entries from the third row and third column of the scattering matrix appear

most useful for characterizing nanoparticles of unknown diameter, although other entries may

also be suitable for this purpose.

4.2 Credible Intervals for Agglomeration Level

We performed a second numerical study to assess our approach to acquiring credible intervals

for agglomeration level in a collection of homogeneously sized nanoparticles.

The design of the first numerical study was largely retained, with agglomeration level

replacing nanoparticle diameter as the nanoparticle characteristic of interest. However, since

agglomeration level can range from 0 to 100 percent, some minor modifications were made to

the study design. For instance, we put pr(u) := 1/100 for u ∈ [0, 100] and 0 for u /∈ [0, 100], and

actual agglomeration levels in the data sets y11,u,rep, y12,u,rep, y33,u,rep, and y34,u,rep were taken

from among {0, 5, . . . , 100} rather than from among {5, 10, . . . , 100}. Meanwhile, nanoparticle

diameter was fixed at 50 nm.

Also, in accord with the results of Charnigo et al (2011), the coefficients in quantity (9)

were set to 1, 0, 0 when estimating agglomeration level based on entries from the first row and

first column of the scattering matrix, to 0.0024, 0.9503, 0.0473 for the first row and second

column, to 0, 1, 0 for the third row and third column, and to 1, 0, 0 for the third row and

fourth column.
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The findings from this numerical study appear in Figure 4. As shown in panel (a), the

credible intervals Iy11,u,rep
tend to be much wider than Iy12,u,rep

, Iy33,u,rep
, and Iy34,u,rep

at

agglomeration levels above 5 percent. Averaging over all 21 actual agglomeration levels as

well as the 140 repetitions at each agglomeration level, we find that the mean length of the

2940 credible intervals Iy11,u,rep
is 56.3 percent compared to 17.1, 15.1, and 16.7 percent for

Iy12,u,rep
, Iy33,u,rep

, and Iy34,u,rep
respectively. The extreme width of the credible intervals

Iy11,u,rep
suggests that entries from the first row and first column of the scattering matrix are

not useful for characterizing nanoparticles of unknown agglomeration level.

As depicted in panel (b), the capture rates for Iy33,u,rep
fall below 90% at agglomeration

levels between 10 and 65 percent as well as between 80 and 90 percent, while the capture

rates for Iy34,u,rep
fall below 80% at agglomeration levels between 55 and 85 percent. The

overall capture rates are 94.7%, 93.9%, 86.8%, and 83.8% for Iy11,u,rep
, Iy12,u,rep

, Iy33,u,rep
, and

Iy34,u,rep
respectively. The 94.7% and 93.9% are acceptable, whereas the 86.8% and 83.8%

are undesirably low. This finding suggests that the statistical model implicit in specification

(11) may not be realistic when characterizing nanoparticles of unknown agglomeration level

based on entries from the third row and third column or third row and fourth column of the

scattering matrix. On the other hand, the statistical model appears adequate for entries from

the first row and second column of the scattering matrix.

To summarize, entries from the first row and second column of the scattering matrix appear

most useful for characterizing nanoparticles of unknown agglomeration level. While entries

from the third row and third column or third row and fourth column have some ability to

characterize nanoparticles of unknown agglomeration level, they are not ideal for this purpose

due to their lower-than-anticipated capture rates.
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5 Discussion

We have presented a technique for quantifying uncertainty about a nanoparticle characteristic

when that characteristic is to be inferred from experimental data. Our technique yields

a “credible interval”, which is the Bayesian statistical paradigm’s analogue to the familiar

confidence interval. For example, a credible interval of 36 to 48 nm for a nanoparticle diameter

indicates that, given the experimental data, there is a 95% chance of the nanoparticle diameter

falling between 36 and 48 nm.

While we have illustrated our technique within the SPP-scattering framework of Videen

et al (2005) and Venkata et al (2007) involving the scattering Mueller matrix elements, our

technique can also be applied with other frameworks as mentioned in Section 1. The perfor-

mance of our technique with other frameworks will, of course, depend on the extent to which

nanoparticles with different characteristics exhibit different behaviors in those frameworks. For

instance, if nanoparticles of diameter 10 nm exhibit almost the same behavior as nanoparticles

of diameter 50 nm in a particular framework, then applying our technique with that framework

may yield rather wide credible intervals for nanoparticle diameter. Thus, selecting a framework

that is sensitive to the nanoparticle characteristic of interest is desirable.

Once the investigator has selected such a framework, he/she can employ our technique by

specifying each of two key ingredients, namely pr(u) and f(y;u). The former key ingredient

reflects the investigator’s prior beliefs about the characteristic, while the latter expresses which

potential outcomes from the experiment are likely or unlikely. If the investigator does not wish

to impose any prior beliefs other than that the characteristic must fall within some interval,

then he/she may simply choose pr(u) to be constant on that interval. We have also shown how

to apply our technique in the absence of an obvious specification for f(y;u). In this case, the

investigator may perform auxiliary experiments to estimate a function g(t̃(y);u) that replaces

f(y;u) in the derivation of the credible interval.
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Our first numerical study demonstrated that, within the SPP-scattering framework, entries

from the third row and third column of the scattering matrix could be used to construct credible

intervals of average length 3.53 nm for the diameter in a collection of homogeneously sized

nanoparticles, without the invocation of informative prior beliefs. Our second numerical study

revealed that entries from the first row and second column of the scattering matrix could be

employed to acquire credible intervals of average length 17.1 percent for the agglomeration

level. Moreover, 98.8% and 93.9% of these credible intervals captured their targets (i.e., actual

nanoparticle diameters or actual agglomeration levels), in approximate concordance with their

nominal 95% probability levels.

A desirable extension of our technique will entail developing a credible set for a vector of

nanoparticle characteristics. For instance, an investigator may wish to make assertions about

nanoparticle diameter and agglomeration level simultaneously. Merely defining the credible

set for these two characteristics to be the rectangle formed from their respective 95% credible

intervals will not suffice: the probability of both characteristics falling within such a rectangle

will be somewhat less than 95% and perhaps as low as 90%. To circumvent this difficulty,

one may consider forming a rectangle from 97.5% credible intervals, in effect implementing a

Bonferroni correction. However, there is no guarantee that the resulting rectangle will respect

the two-dimensional analogue to (5). In other words, some points inside the rectangle may

be less likely than some points outside. Allowing for a possibly non-rectangular confidence

set is one among several challenges in extending our technique to a vector of nanoparticle

characteristics. As such, we leave this extension to future research.
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Appendix

This Appendix provides additional details regarding the numerical studies of Section 4.

Detailed assumptions for agglomeration patterns. Agglomerated nanoparticles were as-

sumed to arise from four equally likely geometric configurations: triangles (60% three particles

with one particle on top of the other two, 30% six particles with the previous three-particle

configuration on top of three other particles, 10% ten particles with the previous six-particle

configuration on top of four other particles), squares (60% four particles with a layer of two

particles on top of another layer of two particles, 30% nine particles with three layers of three

particles each, 10% sixteen particles with four layers of four particles each), vertical chains with

particles on top of each other (60% two particles, 30% three particles, 10% four particles), and

horizontal chains with particles next to but not on top of each other (60% two particles,

30% three particles, 10% four particles). Visual illustrations of these configurations appear in

Figure 1 of Charnigo et al (2007).

Implementation details for compound estimation. The compound estimation procedure

of Charnigo and Srinivasan (2011a, 2011b) was applied with local fitting degree J = 7, 27

centering points, and convolution parameter β = 12 following filtration and extrapolation pre-

processing with extrapolation parameter κ = 0.2 and convolution parameter β = 120. Local

constant and slope estimates were obtained using smoothing splines of degree 7 with 12 knots

in the interval [0, 180]. Coefficents of higher-order local fits were calculated using inductive

estimates with bandwidth parameters h2 = h3 = 1/150 and h4 = h5 = h6 = h7 = 1/30.
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Table 1: Below is a glossary of notation introduced in

this manuscript. The column “Definition” supplies a brief

definition, while the column “Location” identifies the location

in the manuscript where the notation is introduced.

Notation Definition Location

Y = (Y1, . . . , Yn)T random variables representing potential experimental outcomes §2.1, ¶1

f(y;u) probability density function identifying likely/unlikely outcomes §2.1, ¶1

R
n n-dimensional space §2.1, ¶1

A generic subset of R
n §2.1, ¶1

u parameter representing nanoparticle characteristic of interest §2.1, ¶2

y = (y1, . . . , yn)T realized values of random variables (“data”) §2.1, ¶2

ȳ sample mean §2.1, ¶3

pr(u) prior probability density function for u §2.2, ¶1

R real numbers §2.2, ¶1

B generic subset of R §2.2, ¶1

po(u;y) posterior probability density function for u §2.2, ¶2

I generic credible interval for u §2.2, ¶4

inf, sup infimum (greatest lower bound), supremum (least upper bound) §2.2, ¶5

t(y) sufficient statistic §2.3, ¶1

g(t(y);u) part of f(y;u) that depends on u §2.3, ¶1

h(y) part of f(y;u) that does not depend on u §2.3, ¶1

M number of auxiliary data sets §3.3.1 ¶2

µ(u) mean vector in normal approximation to f(y;u) §3.3.2 ¶1

Σ(u) covariance matrix in normal approximation to f(y;u) §3.3.2 ¶1
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Det determinant of a matrix §3.3.2 ¶1

t̃(y) dimension-reduced quantity treated like a sufficient statistic §3.3.3 ¶1

D(y; c) discrepancy between M33(θ;y) and M33;c(θ) §3.3.3 ¶2

θ far field angle in scattering experiment §3.3.3 ¶3

M33(θ;y) estimated scattering matrix entry (nanoparticle characteristic unknown) §3.3.3 ¶3

M33;c(θ) estimated scattering matrix entry (nanoparticle characteristic known) §3.3.3 ¶4

M ′

33(θ;y) derivative of M33(θ;y) with respect to θ §3.3.3 ¶4

M ′

33;c(θ) derivative of M33;c(θ) with respect to θ §3.3.3 ¶4

g(t̃(y);u) proxy for g(t(y);u) §3.3.3 ¶6

ν(u) mean vector in normal approximation to g(t̃(y);u) §3.3.3 ¶6

Λ(u) covariance matrix in normal approximation to g(t̃(y);u) §3.3.3 ¶6

dim dimension of a vector §3.3.3 ¶6

C set of possible values for nanoparticle characteristic of interest §3.3.5 ¶2

a0, a1, . . . , ak endpoints of small intervals constituting C §3.3.5 ¶2

N0, N1, . . . , Nk numerator of po(u;y) evaluated at small interval endpoints §3.3.5 ¶3

τ permutation that sorts N0, N1, . . . , Nk §3.3.5 ¶3

m number of small intervals constituting credible interval §3.3.5 ¶4

y33,u,rep data sets generated for numerical study §4.1.2 ¶1

11, 12, 33, 34 identifiers of row and column in scattering matrix §4.1.2 ¶3

rep number of data sets generated for numerical study §4.1.2 ¶5

yaux
33,u,rep auxiliary data sets generated for numerical study §4.1.3 ¶4

t̃(y33,u,rep) dimension-reduced quantity from data set y33,u,rep §4.1.4 ¶1

po(u;y33,u,rep) posterior probability density function from data set y33,u,rep §4.1.4 ¶1

Iy33,u,rep
credible interval from data set y33,u,rep §4.1.5 ¶1

I indicator function §4.1 ¶4
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Figure 1:
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Example of 95% Bayesian Credible Interval

The curve is a posterior probability density function po(u;y). The shaded area under po(u;y) from

u = 16 to u = 45 equals 95%, and thus u = 16 to u = 45 defines a 95% Bayesian credible interval.
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Figure 2:
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Smoothing the  scattering matrix entries

The points indicate the scattering matrix entries y1, y2, . . . , y35 corresponding to far field angles of

5, 10, . . . , 175. (We chose a sparse grid of far field angles to make this plot legible.) The curve,

denoted M33(θ;y) in the text, is a smoothed version of the scattering matrix entries.
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Figure 3:
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(a) Evaluating Credible Intervals for Nanoparticle Diameter (Average Length)
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(b) Evaluating Credible Intervals for Nanoparticle Diameter (Capture Rate)

M11
M12
M33
M34

Panel (a) shows the average length of the 140 credible intervals constructed in our first numerical

study at each nanoparticle diameter (5, 10, . . . , 100 nm) and row/column combination of the

scattering matrix (11, 12, 33, 34) from which entries were taken to define data sets. Panel (b)

depicts the fraction of the 140 credible intervals that captured the actual nanoparticle diameter.
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Figure 4:
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(a) Evaluating Credible Intervals for Agglomeration Level (Average Length)
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(b) Evaluating Credible Intervals for Agglomeration Level (Capture Rate)

M11
M12
M33
M34

Panel (a) shows the average length of the 140 credible intervals constructed in our second numerical

study at each agglomeration level (0, 5, . . . , 100 percent) and row/column combination of the

scattering matrix (11, 12, 33, 34) from which entries were taken to define data sets. Panel (b)

depicts the fraction of the 140 credible intervals that captured the actual agglomeration level.
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