21 research outputs found

    Deconstructing compassionate conservation

    Get PDF
    Compassionate conservation focuses on 4 tenets: first, do no harm; individuals matter; inclusivity of individual animals; and peaceful coexistence between humans and animals. Recently, compassionate conservation has been promoted as an alternative to conventional conservation philosophy. We believe examples presented by compassionate conservationists are deliberately or arbitrarily chosen to focus on mammals; inherently not compassionate; and offer ineffective conservation solutions. Compassionate conservation arbitrarily focuses on charismatic species, notably large predators and megaherbivores. The philosophy is not compassionate when it leaves invasive predators in the environment to cause harm to vastly more individuals of native species or uses the fear of harm by apex predators to terrorize mesopredators. Hindering the control of exotic species (megafauna, predators) in situ will not improve the conservation condition of the majority of biodiversity. The positions taken by so-called compassionate conservationists on particular species and on conservation actions could be extended to hinder other forms of conservation, including translocations, conservation fencing, and fertility control. Animal welfare is incredibly important to conservation, but ironically compassionate conservation does not offer the best welfare outcomes to animals and is often ineffective in achieving conservation goals. Consequently, compassionate conservation may threaten public and governmental support for conservation because of the limited understanding of conservation problems by the general public

    On the need for rigorous welfare and methodological reporting for the live capture of large carnivores: A response to de Araujo et al. (2021)

    Get PDF
    1.De Araujo et al. (Methods in Ecology and Evolution, 2021, https://doi.org/10.1111/2041-210X.13516) described the development and application of a wire foot snare trap for the capture of jaguars Panthera onca and cougars Puma concolor. Snares are a commonly used and effective means of studying large carnivores. However, the article presented insufficient information to replicate the work and inadequate consideration and description of animal welfare considerations, thereby risking the perpetuation of poor standards of reporting. 2.Appropriate animal welfare assessments are essential in studies that collect data from animals, especially those that use invasive techniques, and are key in assisting researchers to choose the most appropriate capture method. It is critical that authors detail all possible associated harms and benefits to support thorough review, including equipment composition, intervention processes, general body assessments, injuries (i.e. cause, type, severity) and post-release behaviour. We offer a detailed discussion of these shortcomings. 3.We also discuss broader but highly relevant issues, including the capture of non-target animals and the omission of key methodological details. The level of detail provided by authors should allow the method to be properly assessed and replicated, including those that improve trap selectivity and minimize or eliminate the capture of non-target animals. 4.Finally, we discuss the central role that journals must play in ensuring that published research conforms to ethical, animal welfare and reporting standards. Scientific studies are subject to ever-increasing scrutiny by peers and the public, making it more important than ever that standards are upheld and reviewed. 5. We conclude that the proposal of a new or refined method must be supported by substantial contextual discussion, a robust rationale and analyses and comprehensive documentation

    Partage au sommet de la chaîne alimentaire : comment la hyène tachetée s'adapte à la présence de lions ? : coexistence des prédateurs apicaux dans une savane arborée

    No full text
    Being at the top of the food chain, apex predators have the potential to influence the whole community structure through food webs, even within their own guild. In Africa, lions (Panthera leo) and spotted hyaenas (Crocuta crocuta, hyaenas hereafter) are the largest and most numerous predators, with hyaenas often thought to be subordinate to the larger lion Never the less, our understanding of their interactions is limited, even more in wooded ecosystems. This work focuses on identifying the mechanisms allowing for hyaenas and lions to coexist, such as resource and habitat partitioning. The main hypothesis is that hyaenas should avoid lions both spatially and temporally. A literature review shows that despite the high potential for exploitative and interference competition (high range and diet overlaps), hyaenas are present at nearly all sites occupied by lions and their densities are positively correlated. I collected data on hyaena and lion ecology, through direct observations and GPS collars, during 2.5 years of fieldwork in Hwange National Park (HNP), Zimbabwe. HNP is characteristic of a semi-arid dystrophic wooded savanna dominated by elephants (Loxodonta africana). In HNP, hyaena ecology is largely influenced by the location of artificial waterholes, elephant carcasses and lions. Hyaenas select for habitats where prey are abundant and locations close to artificial waterholes, as do lions. Hyaenas only spatially avoid lions in extreme conditions of vulnerability and risk. Elephant carcasses are a major source of food for hyaenas and their used increased during a period of increased intraguild competition with lions, which lead to switch in hyaena foraging strategy from active hunting to scavenging. The presence of large carcasses is probably promoting coexistence between the two large carnivores. Encounters with lions at carcasses are common and can occur during several consecutives nights with the two predators staying in the vicinity of each other. However, when not related to food, encounters are very short with both predators often moving away after being in contact. In stark contrast with the classical hypothesis, hyaenas in HNP do not show a general pattern of lion avoidance. Interactions between these two species are complex and hyaenas appear to respond to lion presence is reactive rather than predictive and very dynamic. Even though lions are their main competitors, in some circumstances hyaenas stay in their vicinity, as they can also be a source of food through scavenging and kleptoparatism. These results bring some light on the mechanisms of interaction and coexistence between large carnivores as well as the impact on management decisions on their ecology that could prove useful for planning their conservationÉtant au somment de la chaîne alimentaire, les grands prédateurs ont la capacité d'influencer le fonctionnement des écosystèmes, y compris au sein de leur guilde. En Afrique, les lions (Panthera leo) et les hyènes tachetées (Crocuta crocuta, hyènes ci-après) sont les plus gros et les plus nombreux prédateurs, et les hyènes sont souvent considérées comme subordonnées aux lions. Néanmoins, notre compréhension de leurs interactions est très limitée, d'autant plus dans les milieux boisés. Ce travail vise à identifier les mécanismes permettant la coexistence des hyènes et des lions. L'hypothèse principale est que les hyènes évitent les lions à la fois dans l'espace et dans le temps. Une revue de la littérature montre que malgré leur fort potentiel pour la compétition d'exploitation (régimes alimentaires similaires) et d'interférence (kleptoparasitisme et prédation), les lions partagent la quasi-totalité de leur distribution avec les hyènes et leurs densités sont positivement corrélées. J'ai collecté des données sur l'écologie des hyènes et des lions durant 2.5 ans à partir d'observations directes et de colliers GPS dans le Parc National de Hwange (PNH), au Zimbabwe. PNH est caractéristique d'une savane dystrophique arborée semi-aride dominée par l'éléphant (Loxodonta africana). L'écologie de la hyène y est largement influencée par la localisation des points d'eau artificiels, des carcasses d'éléphants et des lions. Les hyènes sélectionnent les habitats riches en proies et près des points d'eau, tout comme le font les lions qu'elles n'évitent que dans des conditions extrêmes de vulnérabilité et de risques. Les carcasses d'éléphants représentent une ressource alimentaire majeure pour les hyènes qui en ont augmenté leur utilisation en réponse à une augmentation de la compétition avec les lions. La disponibilité de ces carcasses facilite probablement la coexistence entre les deux carnivores. Les rencontres avec les lions autour de carcasses sont communes et les deux espèces peuvent rester à proximité pendant plusieurs nuits consécutives. En revanche, les rencontres non liées aux carcasses sont de très courte durée et les deux prédateurs s'éloignent rapidement l'un de l'autre. Contrairement à l'hypothèse classique, les hyènes n'évitent pas les lions de manière systématique. Les interactions entre les deux espèces sont complexes et les hyènes répondent aux lions de manière dynamique et réactive plutôt que prédictive. Bien que les lions soient leur plus grand compétiteur, les hyènes restent à proximité dans certaines circonstances, car ils représentent une source alimentaire grâce au charognage et au kleptoparasitisme. Ces résultats apportent de nouvelles connaissances sur les mécanismes de coexistence et d'interactions entre grands carnivores ainsi que sur l'impact potentiel des décisions de gestion sur leur écologie qui peuvent être utiles pour leur conservatio

    Sharing the top : how do spotted hyaenas cope with lions ? : apex predator coexistence in a wooded savana

    No full text
    Étant au somment de la chaîne alimentaire, les grands prédateurs ont la capacité d'influencer le fonctionnement des écosystèmes, y compris au sein de leur guilde. En Afrique, les lions (Panthera leo) et les hyènes tachetées (Crocuta crocuta, hyènes ci-après) sont les plus gros et les plus nombreux prédateurs, et les hyènes sont souvent considérées comme subordonnées aux lions. Néanmoins, notre compréhension de leurs interactions est très limitée, d'autant plus dans les milieux boisés. Ce travail vise à identifier les mécanismes permettant la coexistence des hyènes et des lions. L'hypothèse principale est que les hyènes évitent les lions à la fois dans l'espace et dans le temps. Une revue de la littérature montre que malgré leur fort potentiel pour la compétition d'exploitation (régimes alimentaires similaires) et d'interférence (kleptoparasitisme et prédation), les lions partagent la quasi-totalité de leur distribution avec les hyènes et leurs densités sont positivement corrélées. J'ai collecté des données sur l'écologie des hyènes et des lions durant 2.5 ans à partir d'observations directes et de colliers GPS dans le Parc National de Hwange (PNH), au Zimbabwe. PNH est caractéristique d'une savane dystrophique arborée semi-aride dominée par l'éléphant (Loxodonta africana). L'écologie de la hyène y est largement influencée par la localisation des points d'eau artificiels, des carcasses d'éléphants et des lions. Les hyènes sélectionnent les habitats riches en proies et près des points d'eau, tout comme le font les lions qu'elles n'évitent que dans des conditions extrêmes de vulnérabilité et de risques. Les carcasses d'éléphants représentent une ressource alimentaire majeure pour les hyènes qui en ont augmenté leur utilisation en réponse à une augmentation de la compétition avec les lions. La disponibilité de ces carcasses facilite probablement la coexistence entre les deux carnivores. Les rencontres avec les lions autour de carcasses sont communes et les deux espèces peuvent rester à proximité pendant plusieurs nuits consécutives. En revanche, les rencontres non liées aux carcasses sont de très courte durée et les deux prédateurs s'éloignent rapidement l'un de l'autre. Contrairement à l'hypothèse classique, les hyènes n'évitent pas les lions de manière systématique. Les interactions entre les deux espèces sont complexes et les hyènes répondent aux lions de manière dynamique et réactive plutôt que prédictive. Bien que les lions soient leur plus grand compétiteur, les hyènes restent à proximité dans certaines circonstances, car ils représentent une source alimentaire grâce au charognage et au kleptoparasitisme. Ces résultats apportent de nouvelles connaissances sur les mécanismes de coexistence et d'interactions entre grands carnivores ainsi que sur l'impact potentiel des décisions de gestion sur leur écologie qui peuvent être utiles pour leur conservationBeing at the top of the food chain, apex predators have the potential to influence the whole community structure through food webs, even within their own guild. In Africa, lions (Panthera leo) and spotted hyaenas (Crocuta crocuta, hyaenas hereafter) are the largest and most numerous predators, with hyaenas often thought to be subordinate to the larger lion Never the less, our understanding of their interactions is limited, even more in wooded ecosystems. This work focuses on identifying the mechanisms allowing for hyaenas and lions to coexist, such as resource and habitat partitioning. The main hypothesis is that hyaenas should avoid lions both spatially and temporally. A literature review shows that despite the high potential for exploitative and interference competition (high range and diet overlaps), hyaenas are present at nearly all sites occupied by lions and their densities are positively correlated. I collected data on hyaena and lion ecology, through direct observations and GPS collars, during 2.5 years of fieldwork in Hwange National Park (HNP), Zimbabwe. HNP is characteristic of a semi-arid dystrophic wooded savanna dominated by elephants (Loxodonta africana). In HNP, hyaena ecology is largely influenced by the location of artificial waterholes, elephant carcasses and lions. Hyaenas select for habitats where prey are abundant and locations close to artificial waterholes, as do lions. Hyaenas only spatially avoid lions in extreme conditions of vulnerability and risk. Elephant carcasses are a major source of food for hyaenas and their used increased during a period of increased intraguild competition with lions, which lead to switch in hyaena foraging strategy from active hunting to scavenging. The presence of large carcasses is probably promoting coexistence between the two large carnivores. Encounters with lions at carcasses are common and can occur during several consecutives nights with the two predators staying in the vicinity of each other. However, when not related to food, encounters are very short with both predators often moving away after being in contact. In stark contrast with the classical hypothesis, hyaenas in HNP do not show a general pattern of lion avoidance. Interactions between these two species are complex and hyaenas appear to respond to lion presence is reactive rather than predictive and very dynamic. Even though lions are their main competitors, in some circumstances hyaenas stay in their vicinity, as they can also be a source of food through scavenging and kleptoparatism. These results bring some light on the mechanisms of interaction and coexistence between large carnivores as well as the impact on management decisions on their ecology that could prove useful for planning their conservatio

    Road avoidance responses determine the impact of heterogeneous road networks at a regional scale

    No full text
    Barrier effect is a road-related impact affecting several animal populations. It can be caused by behavioural responses towards roads (surface and/or gap avoidance), associated emissions (traffic-emissions avoidance) and/or circulating vehicles (vehicle avoidance). Most studies so far have described road-effect zones along major roads, without determining the actual factor inducing the behavioural response. The purpose of the present study was to assess the factors potentially causing road-effect zones in a heterogeneous road network (with variations in road width, road surface and traffic volume) and eventually to estimate the reduction of habitat quality imposed by roads within a protected area (Doñana Biosphere Reserve, Spain). As model species, we used two ungulates, red deer Cervus elaphus and wild boar Sus scrofa. We surveyed the presence of both species along 200-m transects. All transects started and were perpendicular to reference roads (those with a traffic volume above 10 cars per day), often intersecting unpaved minor roads with virtually no traffic. The presence probability of both species was mainly affected by the distance to the nearest road (in most cases unpaved roads without traffic), but also by the proximity to reference roads. Red deer presence was also affected by the traffic volume of the nearest reference road. At a regional scale, the overall road network within the protected area imposes a reduction in presence probability of 40% for red deer and 55% for wild boar. A road network optimization, decommissioning unused and unpaved roads, would re-establish almost entirely the potential habitat quality (91% for both species). Synthesis and applications. We found that both study species avoided roads regardless of their surface or traffic volume, suggesting a response due to gap avoidance which may be based on the association between linear infrastructures and the possibility of vehicles occurring along them. The overall behavioural response can substantially decrease habitat quality over large scales, including the conservation value of protected areas. For this reason, we recommend road network optimization by road decommissioning to mitigate the impact of roads at a regional scale, with potential positive effects at ecosystem level.This study was funded by the project 2008X0963 (Andalusian Ministry of Environment; Regional Government of Andalusia) and Land‐Rover España S.A. kindly lent two vehicles. MD was supported by JAE‐PRE fellowship from CSIC, SP by ICTS‐RBD project (ICTS‐2009‐39). ER was supported by the Spanish Ministry of Science and Innovation (projects CGL2009‐07301⁄BOS, CGL2012‐35931/BOS, cofounded with FEDER funds)

    Spatial and temporal variation in the use of supplementary food in an obligate termite specialist, the bat-eared fox

    No full text
    the bat-eared fox (Otocyon megalotis) is considered a termite specialist. However, studies of its diet have been limited to indirect methods, such as scat and stomach content analyses, resulting in intraspecific dietary variations due in part to methodological differences. Because diet plays a central role in the social dynamics of these canids, we hereby contribute further to our knowledge about their dietary habits. we present 2-year data of direct observations of foraging bouts of 19 habituated bat-eared foxes in the kalahari desert of South Africa, as well as data on seasonal variation in invertebrate prey communities obtained through pitfall and sweep net trapping. despite showing a diet breadth reflective of a specialised forager across all seasons, foxes exhibited substantial seasonal variation in diet breadth with a broader range of food categories utilised in summer compared to the other seasons. Supplementary food categories appear to not have been utilised opportunistically, but it is unclear what drove the preference for some food categories over others. A literature review indicated strong effects of local conditions on the utilisation of supplementary food across southern Africa. Our data support bat-eared foxes as obligate termite specialists but highlight that they appear to have the ability to show dietary flexibility based on both temporal and spatial variations in food abundance.keywords: diet breadth, food availability, Otocyon megalotis, seasonal variation, termite specialis

    Testing the Value of Citizen Science for Roadkill Studies: A Case Study from South Africa

    No full text
    Roads impact wildlife through a range of mechanisms from habitat loss and decreased landscape connectivity to direct mortality through wildlife-vehicle collisions (roadkill). These collisions have been rated amongst the highest modern risks to wildlife. With the development of “citizen science” projects, in which members of the public participate in data collection, it is now possible to monitor the impacts of roads over scales far beyond the limit of traditional studies. However, the reliability of data provided by citizen scientists for roadkill studies remains largely untested. This study used a dataset of 2,666 roadkill reports on national and regional roads in South Africa (total length ~170,000 km) over 3 years. We first compared roadkill data collected from trained road patrols operating on a major highway with data submitted by citizen scientists on the same road section (431 km). We found that despite minor differences, the broad spatial and taxonomic patterns were similar between trained reporters and untrained citizen scientists. We then compared data provided by two groups of citizen scientists across South Africa: (1) those working in the zoology/conservation sector (that we have termed “regular observers,” whose reports were considered to be more accurate due to their knowledge and experience), and (2) occasional observers, whose reports required verification by an expert. Again, there were few differences between the type of roadkill report provided by regular and occasional reporters; both types identified the same area (or cluster) where roadkill was reported most frequently. However, occasional observers tended to report charismatic and easily identifiable species more often than road patrols or regular observers. We conclude that citizen scientists can provide reliable data for roadkill studies when it comes to identifying general patterns and high-risk areas. Thus, citizen science has the potential to be a valuable tool for identifying potential roadkill hotspots and at-risk species across large spatial and temporal scales that are otherwise impractical and expensive when using standard data collection methodologies. This tool allows researchers to extract data and focus their efforts on potential areas and species of concern, with the ultimate goal of implementing effective roadkill-reduction measures

    Spatial and temporal variation in the use of supplementary food in an obligate termite specialist, the bat-eared fox

    No full text
    The bat-eared fox (Otocyon megalotis) is considered a termite specialist. However, studies of its diet have been limited to indirect methods, such as scat and stomach content analyses, resulting in intraspecific dietary variations due in part to methodological differences. Because diet plays a central role in the social dynamics of these canids, we hereby contribute further to our knowledge about their dietary habits. We present 2-year data of direct observations of foraging bouts of 19 habituated bat-eared foxes in the kalahari desert of South Africa, as well as data on seasonal variation in invertebrate prey communities obtained through pitfall and sweep net trapping. Despite showing a diet breadth reflective of a specialised forager across all seasons, foxes exhibited substantial seasonal variation in diet breadth with a broader range of food categories utilised in summer compared to the other seasons. Supplementary food categories appear to not have been utilised opportunistically, but it is unclear what drove the preference for some food categories over others. A literature review indicated strong effects of local conditions on the utilisation of supplementary food across southern Africa. Our data support bat-eared foxes as obligate termite specialists but highlight that they appear to have the ability to show dietary flexibility based on both temporal and spatial variations in food abundance.The Bat-Eared Fox Research Project was funded by the National Research Foundation (NRF) Thuthuka Grant (TTK1206041007) awarded to Prof. A. le Roux and NRF Grant No. 90491 awarded to Dr F Dalerum. F Dalerum was further supported by a grant from the Spanish Ministry of Economy and Competitiveness (RYC-13-14662). We thank the Kalahari Research Trust, Kuruman River Reserve and Kalahari Meerkat Project (supported by ERC Grant No. 294494 to T H Clutton-Brock since 1 July 2012) for logistical support and access to conduct work on the reserve.https://www.tandfonline.com/loi/tafz202020-05-20hj2019Zoology and Entomolog

    DataSheet2.PDF

    No full text
    <p>Roads impact wildlife through a range of mechanisms from habitat loss and decreased landscape connectivity to direct mortality through wildlife-vehicle collisions (roadkill). These collisions have been rated amongst the highest modern risks to wildlife. With the development of “citizen science” projects, in which members of the public participate in data collection, it is now possible to monitor the impacts of roads over scales far beyond the limit of traditional studies. However, the reliability of data provided by citizen scientists for roadkill studies remains largely untested. This study used a dataset of 2,666 roadkill reports on national and regional roads in South Africa (total length ~170,000 km) over 3 years. We first compared roadkill data collected from trained road patrols operating on a major highway with data submitted by citizen scientists on the same road section (431 km). We found that despite minor differences, the broad spatial and taxonomic patterns were similar between trained reporters and untrained citizen scientists. We then compared data provided by two groups of citizen scientists across South Africa: (1) those working in the zoology/conservation sector (that we have termed “regular observers,” whose reports were considered to be more accurate due to their knowledge and experience), and (2) occasional observers, whose reports required verification by an expert. Again, there were few differences between the type of roadkill report provided by regular and occasional reporters; both types identified the same area (or cluster) where roadkill was reported most frequently. However, occasional observers tended to report charismatic and easily identifiable species more often than road patrols or regular observers. We conclude that citizen scientists can provide reliable data for roadkill studies when it comes to identifying general patterns and high-risk areas. Thus, citizen science has the potential to be a valuable tool for identifying potential roadkill hotspots and at-risk species across large spatial and temporal scales that are otherwise impractical and expensive when using standard data collection methodologies. This tool allows researchers to extract data and focus their efforts on potential areas and species of concern, with the ultimate goal of implementing effective roadkill-reduction measures.</p

    DataSheet1.PDF

    No full text
    <p>Roads impact wildlife through a range of mechanisms from habitat loss and decreased landscape connectivity to direct mortality through wildlife-vehicle collisions (roadkill). These collisions have been rated amongst the highest modern risks to wildlife. With the development of “citizen science” projects, in which members of the public participate in data collection, it is now possible to monitor the impacts of roads over scales far beyond the limit of traditional studies. However, the reliability of data provided by citizen scientists for roadkill studies remains largely untested. This study used a dataset of 2,666 roadkill reports on national and regional roads in South Africa (total length ~170,000 km) over 3 years. We first compared roadkill data collected from trained road patrols operating on a major highway with data submitted by citizen scientists on the same road section (431 km). We found that despite minor differences, the broad spatial and taxonomic patterns were similar between trained reporters and untrained citizen scientists. We then compared data provided by two groups of citizen scientists across South Africa: (1) those working in the zoology/conservation sector (that we have termed “regular observers,” whose reports were considered to be more accurate due to their knowledge and experience), and (2) occasional observers, whose reports required verification by an expert. Again, there were few differences between the type of roadkill report provided by regular and occasional reporters; both types identified the same area (or cluster) where roadkill was reported most frequently. However, occasional observers tended to report charismatic and easily identifiable species more often than road patrols or regular observers. We conclude that citizen scientists can provide reliable data for roadkill studies when it comes to identifying general patterns and high-risk areas. Thus, citizen science has the potential to be a valuable tool for identifying potential roadkill hotspots and at-risk species across large spatial and temporal scales that are otherwise impractical and expensive when using standard data collection methodologies. This tool allows researchers to extract data and focus their efforts on potential areas and species of concern, with the ultimate goal of implementing effective roadkill-reduction measures.</p
    corecore