40 research outputs found

    The olfactive responses of Tetranychus urticae natural enemies in citrus depend on plant genotype, prey presence, and their diet specialization

    Get PDF
    [EN] Sour orange, Citrus aurantium, displays higher constitutive and earlier inducible direct defenses against the two-spotted spider mite, Tetranychus urticae, than Cleopatra mandarin, Citrus reshni. Moreover, herbivore-induced plant volatiles (HIPVs) produced by sour orange upon infestation can induce resistance in Cleopatra mandarin but not vice versa. Because the role of these HIPVs in indirect resistance remains ignored, we have carried out a series of behavioral assays with three predatory mites with different levels of specialization on this herbivore, from strict entomophagy to omnivory. We have further characterized the volatile blend associated with T. urticae, which interestingly includes the HIPV methyl salicylate, as well as that produced by induced Cleopatra mandarin plants. Although a preference for less defended plants with presumably higher prey densities (i.e., C. reshni) was expected, this was not always the case. Because predators' responses changed with diet width, with omnivore predators responding to both HIPVs and prey-related odors and specialized ones mostly to prey, our results reveal that these responses depend on plant genotype, prey presence and predator diet specialization. As the different volatile blends produced by infested sour orange, induced Cleopatra mandarin and T. urticae itself are attractive to T. urticae natural enemies but not to the herbivore, they may provide clues to develop new more sustainable tools to manipulate these agriculturally relevant species.The research leading to these results was partially funded by the Spanish Ministry of Economy and Competitiveness (AGL2014-55616-C3; AGL2015-64990-2R). The authors thank M. Piquer (UJI) for technical assistance. MC received a pre-doctoral fellowship from the Spanish Ministry of Economy and Competitiveness (BES-2015-074570), and MP was the recipient of a research fellowship from INIA, Spain (subprogram DOC INIA-CCAA).Cabedo López, M.; Cruz-Miralles, J.; Vacas, S.; Navarro-Llopis, V.; Pérez-Hedo, M.; Flors, V.; Jaques, JA. (2019). The olfactive responses of Tetranychus urticae natural enemies in citrus depend on plant genotype, prey presence, and their diet specialization. Journal of Pest Science. 92(3):1165-1177. https://doi.org/10.1007/s10340-019-01107-7S1165117792

    Patient information after hospitalization improves humanistic care in intensive care units

    Get PDF
    Introduction The purpose of the study was to assess the prognosis value of pro-adrenomedullin (pADM), C-reactive protein (CRP) and procalcitonin (PCT), lactate (LT), albumin (ALB), cholesterol (CHOL), white blood cell (WBC) and severity score in patients with severe sepsis or septic shock. Methods A prospective, observational study in adult patients with severe sepsis or septic shock in a polyvalent ICU. Demographics, severity scores (APACHE II and SOFA) and all of the biomarkers were studied within 24+ hours from septic shock onset. Descriptive and comparative statistical analysis was performed using the statistical software packages SPSS v.15 and MedCalc® 9.2.1.0. Conclusion The protein pADM, LT and ALB showed good prognosis accuracy when measured on admission of septic patients to the ICU.Ye

    Valorización de un aceite residual de alta acidez generado en las industrias de reciclaje de aceites de desecho de cocinas

    Get PDF
    A sludge fraction is obtained from the industries which recycle cooking oil and this sludge contains a large amount of oil with an extremely high acidity ( > 60%). In this work, we propose a scheme for methyl ester production from this residual oil consisting of the esterification of the free fatty acids followed by the transesterification of the remaining triglycerides. Esterifications were carried out with different methanol:oil molar ratios, and various catalysts in different weight ratios. The results revealed that homogeneous catalysts produced higher yields than heterogeneous ones in the esterification reaction. With the aim of improving the process, a previous triglyceride hydrolysis was assayed using lipases from Candida rugosa. Finally, the 3-stage process was performed under the most favorable conditions for each stage obtaining 84% wt. fatty acid methyl esters, which shows the potential of this residual oil as a source of biodiesel.En las industrias de recogida y reciclado de aceites de fritura usados se obtiene una fracción de lodos que contiene un gran porcentaje de aceite con un extremadamente alto índice de acidez ( > 60%). En este trabajo proponemos un esquema de producción de ésteres metílicos basado en la esterificación de los ácidos grasos libres seguida de la transesterificación de los triglicéridos remanentes. Las esterificaciones se llevaron a cabo usando diferentes relaciones molares metanol:aceite y diversos catalizadores en diferentes concentraciones en peso. Los resultados ilustraron que los catalizadores homogéneos alcanzaron mayores rendimientos en la esterificación que los catalizadores heterogéneos. Para mejorar el proceso, se probó una hidrólisis previa con lipasas de Candida rugosa. Finalmente, se llevó a cabo el proceso con las 3 etapas, en las condiciones más favorables de cada una de ellas, obteniendo un 84% en peso de ésteres metílicos, lo que muestra el potencial de este aceite residual como fuente de biodiésel

    Magnetic fields inferred by Solar Orbiter: A comparison between SO/PHI-HRT and SDO/HMI

    Full text link
    The High Resolution Telescope (HRT) of the Polarimetric and Helioseismic Imager on board the Solar Orbiter spacecraft (SO/PHI) and the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) both infer the photospheric magnetic field from polarised light images. SO/PHI is the first magnetograph to move out of the Sun--Earth line and will provide unprecedented access to the Sun's poles. This provides excellent opportunities for new research wherein the magnetic field maps from both instruments are used simultaneously. We aim to compare the magnetic field maps from these two instruments and discuss any possible differences between them. We used data from both instruments obtained during Solar Orbiter's inferior conjunction on 7 March 2022. The HRT data were additionally treated for geometric distortion and degraded to the same resolution as HMI. The HMI data were re-projected to correct for the 33^{\circ} separation between the two observatories. SO/PHI-HRT and HMI produce remarkably similar line-of-sight magnetograms, with a slope coefficient of 0.970.97, an offset below 11 G, and a Pearson correlation coefficient of 0.970.97. However, SO/PHI-HRT infers weaker line-of-sight fields for the strongest fields. As for the vector magnetic field, SO/PHI-HRT was compared to both the 720720-second and 9090-second HMI vector magnetic field: SO/PHI-HRT has a closer alignment with the 9090-second HMI vector. In the weak signal regime (<600< 600 G), SO/PHI-HRT measures stronger and more horizontal fields than HMI, very likely due to the greater noise in the SO/PHI-HRT data. In the strong field regime (600\gtrsim 600 G), HRT infers lower field strengths but with similar inclinations (a slope of 0.920.92) and azimuths (a slope of 1.021.02). The slope values are from the comparison with the HMI 9090-second vector.Comment: 10 pages, 5 figures, accepted for publication in A&A; manuscript is a part of Astronomy & Astrophysics special issue: Solar Orbiter First Results (Nominal Mission Phase

    Stereoscopic disambiguation of vector magnetograms: first applications to SO/PHI-HRT data

    Full text link
    Spectropolarimetric reconstructions of the photospheric vector magnetic field are intrinsically limited by the 180^\circ-ambiguity in the orientation of the transverse component. So far, the removal of such an ambiguity has required assumptions about the properties of the photospheric field, which makes disambiguation methods model-dependent. The basic idea is that the unambiguous line-of-sight component of the field measured from one vantage point will generally have a non-zero projection on the ambiguous transverse component measured by the second telescope, thereby determining the ``true'' orientation of the transverse field. Such an idea was developed and implemented in the Stereoscopic Disambiguation Method (SDM), which was recently tested using numerical simulations. In this work we present a first application of the SDM to data obtained by the High Resolution Telescope (HRT) onboard Solar Orbiter during the March 2022 campaign, when the angle with Earth was 27 degrees. The method is successfully applied to remove the ambiguity in the transverse component of the vector magnetogram solely using observations (from HRT and from the Helioseismic and Magnetic Imager), for the first time. The SDM is proven to provide observation-only disambiguated vector magnetograms that are spatially homogeneous and consistent. A discussion about the sources of error that may limit the accuracy of the method, and of the strategies to remove them in future applications, is also presented.Comment: 32 pages, 12 figures, accepted in A&A on 09/07/202

    Intensity contrast of solar network and faculae close to the solar limb, observed from two vantage points

    Full text link
    The brightness of faculae and network depends on the angle at which they are observed and the magnetic flux density. Close to the limb, assessment of this relationship has until now been hindered by the increasingly lower signal in magnetograms. This preliminary study aims at highlighting the potential of using simultaneous observations from different vantage points to better determine the properties of faculae close to the limb. We use data from the Solar Orbiter/Polarimetric and Helioseismic Imager (SO/PHI), and the Solar Dynamics Observatory/Helioseismic and Magnetic Imager (SDO/HMI), recorded at 60\sim60^\circ angular separation of their lines of sight at the Sun. We use continuum intensity observed close to the limb by SO/PHI and complement it with the co-observed BLOSB_{\rm LOS} from SDO/HMI, originating closer to disc centre (as seen by SDO/HMI), thus avoiding the degradation of the magnetic field signal near the limb. We derived the dependence of facular brightness in the continuum on disc position and magnetic flux density from the combined observations of SO/PHI and SDO/HMI. Compared with a single point of view, we were able to obtain contrast values reaching closer to the limb and to lower field strengths. We find the general dependence of the limb distance at which the contrast is maximum on the flux density to be at large in line with single viewpoint observations, in that the higher the flux density is, the closer the turning point lies to the limb. There is a tendency, however, for the maximum to be reached closer to the limb when determined from two vantage points. We note that due to the preliminary nature of this study, these results must be taken with caution. Our analysis shows that studies involving two viewpoints can significantly improve the detection of faculae near the solar limb and the determination of their brightness contrast relative to the quiet Sun

    The ratio of horizontal to vertical displacement in solar oscillations estimated from combined SO/PHI and SDO/HMI observations

    Full text link
    In order to make accurate inferences about the solar interior using helioseismology, it is essential to understand all the relevant physical effects on the observations. One effect to understand is the (complex-valued) ratio of the horizontal to vertical displacement of the p- and f-modes at the height at which they are observed. Unfortunately, it is impossible to measure this ratio directly from a single vantage point, and it has been difficult to disentangle observationally from other effects. In this paper we attempt to measure the ratio directly using 7.5 hours of simultaneous observations from the Polarimetric and Helioseismic Imager on board Solar Orbiter and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. While image geometry problems make it difficult to determine the exact ratio, it appears to agree well with that expected from adiabatic oscillations in a standard solar model. On the other hand it does not agree with a commonly used approximation, indicating that this approximation should not be used in helioseismic analyses. In addition, the ratio appears to be real-valued.Comment: Accepted for publication in Astronomy & Astrophysics. 8 pages, 8 figure

    Coronal voids and their magnetic nature

    Full text link
    Context. Extreme ultraviolet (EUV) observations of the quiet solar atmosphere reveal extended regions of weak emission compared to the ambient quiescent corona. The magnetic nature of these coronal features is not well understood.Aims. We study the magnetic properties of the weakly emitting extended regions, which we name coronal voids. In particular, we aim to understand whether these voids result from a reduced heat input into the corona or if they are associated with mainly unipolar and possibly open magnetic fields, similar to coronal holes. Methods. We defined the coronal voids via an intensity threshold of 75% of the mean quiet-Sun (QS) EUV intensity observed by the high- resolution EUV channel (HRIEUV) of the Extreme Ultraviolet Imager on Solar Orbiter. The line-of-sight magnetograms of the same solar region recorded by the High Resolution Telescope of the Polarimetric and Helioseismic Imager allowed us to compare the photospheric magnetic field beneath the coronal voids with that in other parts of the QS.Results. The coronal voids studied here range in size from a few granules to a few supergranules and on average exhibit a reduced intensity of 67% of the mean value of the entire field of view. The magnetic flux density in the photosphere below the voids is 76% (or more) lower than in the surrounding QS. Specifically, the coronal voids show much weaker or no network structures. The detected flux imbalances fall in the range of imbalances found in QS areas of the same size. Conclusions. We conclude that coronal voids form because of locally reduced heating of the corona due to reduced magnetic flux density in the photosphere. This makes them a distinct class of (dark) structure, different from coronal holes

    Coronal voids and their magnetic nature

    Get PDF
    Context: Extreme ultraviolet (EUV) observations of the quiet solar atmosphere reveal extended regions of weak emission compared to the ambient quiescent corona. The magnetic nature of these coronal features is not well understood. // Aims: We study the magnetic properties of the weakly emitting extended regions, which we name coronal voids. In particular, we aim to understand whether these voids result from a reduced heat input into the corona or if they are associated with mainly unipolar and possibly open magnetic fields, similar to coronal holes. // Methods: We defined the coronal voids via an intensity threshold of 75% of the mean quiet-Sun (QS) EUV intensity observed by the high-resolution EUV channel (HRIEUV) of the Extreme Ultraviolet Imager on Solar Orbiter. The line-of-sight magnetograms of the same solar region recorded by the High Resolution Telescope of the Polarimetric and Helioseismic Imager allowed us to compare the photospheric magnetic field beneath the coronal voids with that in other parts of the QS. // Results: The coronal voids studied here range in size from a few granules to a few supergranules and on average exhibit a reduced intensity of 67% of the mean value of the entire field of view. The magnetic flux density in the photosphere below the voids is 76% (or more) lower than in the surrounding QS. Specifically, the coronal voids show much weaker or no network structures. The detected flux imbalances fall in the range of imbalances found in QS areas of the same size. // Conclusions: We conclude that coronal voids form because of locally reduced heating of the corona due to reduced magnetic flux density in the photosphere. This makes them a distinct class of (dark) structure, different from coronal holes

    Spectropolarimetric investigation of magnetohydrodynamic wave modes in the photosphere: First results from PHI on board Solar Orbiter

    Get PDF
    This is an Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Context. In November 2021, Solar Orbiter started its nominal mission phase. The remote-sensing instruments on board the spacecraft acquired scientific data during three observing windows surrounding the perihelion of the first orbit of this phase. Aims. The aim of the analysis is the detection of magnetohydrodynamic (MHD) wave modes in an active region by exploiting the capabilities of spectropolarimetric measurements. Mthods. The High Resolution Telescope (HRT) of the Polarimetric and Helioseismic Imager (SO/PHI) on board the Solar Orbiter acquired a high-cadence data set of an active region. This is studied in the paper. B-ω and phase-difference analyses are applied on line-of-sight velocity and circular polarization maps and other averaged quantities. Results. We find that several MHD modes at different frequencies are excited in all analysed structures. The leading sunspot shows a linear dependence of the phase lag on the angle between the magnetic field and the line of sight of the observer in its penumbra. The magnetic pore exhibits global resonances at several frequencies, which are also excited by different wave modes. Conclusions. The SO/PHI measurements clearly confirm the presence of magnetic and velocity oscillations that are compatible with one or more MHD wave modes in pores and a sunspot. Improvements in modelling are still necessary to interpret the relation between the fluctuations of different diagnostics. © The Authors 2023.Solar Orbiter is a space mission of international collaboration between ESA and NASA, operated by ESA. We are grateful to the ESA SOC and MOC teams for their support. The German contribution to SO/PHI is funded by the BMWi through DLR and by MPG central funds. The Spanish contribution is funded by AEI/MCIN/10.13039/501100011033/ (RTI2018-096886-C5, PID2021-125325OB-C5, PCI2022-135009-2) and ERDF “A way of making Europe”; “Center of Excellence Severo Ochoa” awards to IAA-CSIC (SEV-2017-0709, CEX2021-001131-S); and a Ramón y Cajal fellowship awarded to DOS. The French contribution is funded by CNES. The authors wish to acknowledge scientific discussions with the Waves in the Lower Solar Atmosphere (WaLSA; https://WaLSA.team) team, which has been supported by the Research Council of Norway (project no. 262622), The Royal Society (award no. Hooke18b/SCTM), and the International Space Science Institute (ISSI Team 502).Peer reviewe
    corecore