24 research outputs found

    Targeted Inactivation of Cerberus Like-2 Leads to Left Ventricular Cardiac Hyperplasia and Systolic Dysfunction in the Mouse

    Get PDF
    Previous analysis of the Cerberus like 2 knockout (Cerl2(-/-)) mouse revealed a significant mortality during the first day after birth, mostly due to cardiac defects apparently associated with randomization of the left-right axis. We have however, identified Cerl2-associated cardiac defects, particularly a large increase in the left ventricular myocardial wall in neonates that cannot be explained by laterality abnormalities. Therefore, in order to access the endogenous role of Cerl2 in cardiogenesis, we analyzed the embryonic and neonatal hearts of Cerl2 null mutants that did not display a laterality phenotype. Neonatal mutants obtained from the compound mouse line Cer2(-/-)Fundacao para a Ciencia e Tecnologia (FCT); IBB/CBME [PEst-OE/EQB/LA0023/2011]; FCT [SFRH/BD/62081/2009]info:eu-repo/semantics/publishedVersio

    The Variant rs1867277 in FOXE1 Gene Confers Thyroid Cancer Susceptibility through the Recruitment of USF1/USF2 Transcription Factors

    Get PDF
    In order to identify genetic factors related to thyroid cancer susceptibility, we adopted a candidate gene approach. We studied tag- and putative functional SNPs in genes involved in thyroid cell differentiation and proliferation, and in genes found to be differentially expressed in thyroid carcinoma. A total of 768 SNPs in 97 genes were genotyped in a Spanish series of 615 cases and 525 controls, the former comprising the largest collection of patients with this pathology from a single population studied to date. SNPs in an LD block spanning the entire FOXE1 gene showed the strongest evidence of association with papillary thyroid carcinoma susceptibility. This association was validated in a second stage of the study that included an independent Italian series of 482 patients and 532 controls. The strongest association results were observed for rs1867277 (OR[per-allele] = 1.49; 95%CI = 1.30–1.70; P = 5.9×10−9). Functional assays of rs1867277 (NM_004473.3:c.−283G>A) within the FOXE1 5′ UTR suggested that this variant affects FOXE1 transcription. DNA-binding assays demonstrated that, exclusively, the sequence containing the A allele recruited the USF1/USF2 transcription factors, while both alleles formed a complex in which DREAM/CREB/αCREM participated. Transfection studies showed an allele-dependent transcriptional regulation of FOXE1. We propose a FOXE1 regulation model dependent on the rs1867277 genotype, indicating that this SNP is a causal variant in thyroid cancer susceptibility. Our results constitute the first functional explanation for an association identified by a GWAS and thereby elucidate a mechanism of thyroid cancer susceptibility. They also attest to the efficacy of candidate gene approaches in the GWAS era

    Development of the Myocardial Interstitium

    No full text
    The space between cardiac myocytes is commonly referred-to as the cardiac interstitium (CI). The CI is a unique, complex and dynamic microenvironment in which multiple cell types, extracellular matrix molecules, and instructive signals interact to crucially support heart homeostasis and promote cardiac responses to normal and pathologic stimuli. Despite the biomedical and clinical relevance of the CI, its detailed cellular structure remains to be elucidated. In this review, we will dissect the organization of the cardiac interstitium by following its changing cellular and molecular composition from embryonic developmental stages to adulthood, providing a systematic analysis of the biological components of the CI. The main goal of this review is to contribute to our understanding of the CI roles in health and disease. Anat Rec, 302:58-68, 2019. © 2018 Wiley Periodicals, Inc

    Characterization of epicardial-derived cardiac interstitial cells: differentiation and mobilization of heart fibroblast progenitors

    Get PDF
    The non-muscular cells that populate the space found between cardiomyocyte fibers are known as 'cardiac interstitial cells' (CICs). CICs are heterogeneous in nature and include different cardiac progenitor/stem cells, cardiac fibroblasts and other cell types. Upon heart damage CICs soon respond by initiating a reparative response that transforms with time into extensive fibrosis and heart failure. Despite the biomedical relevance of CICs, controversy remains on the ontogenetic relationship existing between the different cell kinds homing at the cardiac interstitium, as well as on the molecular signals that regulate their differentiation, maturation, mutual interaction and role in adult cardiac homeostasis and disease. Our work focuses on the analysis of epicardial-derived cells, the first cell type that colonizes the cardiac interstitium. We present here a characterization and an experimental analysis of the differentiation potential and mobilization properties of a new cell line derived from mouse embryonic epicardium (EPIC). Our results indicate that these cells express some markers associated with cardiovascular stemness and retain part of the multipotent properties of embryonic epicardial derivatives, spontaneously differentiating into smooth muscle, and fibroblast/myofibroblast-like cells. Epicardium-derived cells are also shown to initiate a characteristic response to different growth factors, to display a characteristic proteolytic expression profile and to degrade biological matrices in 3D in vitro assays. Taken together, these data indicate that EPICs are relevant to the analysis of epicardial-derived CICs, and are a god model for the research on cardiac fibroblasts and the role these cells play in ventricular remodeling in both ischemic or non/ischemic myocardial disease

    Origin of congenital coronary arterio-ventricular fistulae from anomalous epicardial and myocardial development

    No full text
    Posté sur bioRxiv le 14 janvier 2022.Abstract Aims In this work we investigated the embryonic origin of coronary arterio-ventricular connections, known as coronary artery fistulas (CAF), a congenital heart disease associated to postnatal and adult changes in systemic hemodynamics that may cause cardiac ischemia. Methods and results we have used different animal models (mouse and avian embryos) to experimentally model CAF morphogenesis. Conditional Itga4 (alpha 4 integrin) epicardial deletion in mice and cryocauterisation of chick and quail embryonic hearts disrupted epicardial development and ventricular wall growth, two essential events in coronary embryogenesis. Additional transcriptomics and in vitro analyses were performed to better understand how arterio-ventricular connections are originated in the embryonic heart. Our results show myocardial discontinuities in the developing heart of mutant mice presenting epicardial defects and avian embryos submitted to a physical cryodamage of the ventricle. These ventricular discontinuities promote the formation of endocardial pouch-like structures resembling human CAF. The structure of these CAF-like anomalies was compared with histopathological data from a human CAF, showing histomorphological and immunochemical similarities. Both human and mutant mouse hearts showed similar anomalies in the compaction of the ventricular myocardium. In vitro experiments showed the abnormal contact between the epicardium and the endocardium promote the precocious differentiation of epicardial cells to smooth muscle. Conclusion Our work suggests that myocardial discontinuities in the embryonic ventricular wall are a causative of CAF. These discontinuities would promote the early contact of the endocardium with epicardial-derived coronary progenitors at the cardiac surface, leading to ventricular endocardial extrusion, precocious differentiation of coronary smooth muscle cells, and the formation of pouch-like aberrant coronary-like structures in direct connection with the ventricular lumen. Translational perspective Congenital coronary artery fistulas (CAFs) lead to complications such as myocardial hypertrophy, endocarditis, heart dilatation and failure. Unfortunately, and despite their clinical relevance, the origins these congenital anomalies remain unknown. In this work, we provide information on the developmental mechanisms involved in the formation of CAFs that is relevant for their early diagnosis and prevention
    corecore