146 research outputs found

    Clinical intervals and diagnostic characteristics in a cohort of prostate cancer patients in Spain: a multicentre observational study

    Get PDF
    Background: Little is known about the healthcare process for patients with prostate cancer, mainly because hospital-based data are not routinely published. The main objective of this study was to determine the clinical characteristics of prostate cancer patients, the diagnostic process and the factors that might influence intervals from consultation to diagnosis and from diagnosis to treatment. Methods: We conducted a multicentre, cohort study in seven hospitals in Spain. Patients' characteristics and diagnostic and therapeutic variables were obtained from hospital records and patients' structured interviews from October 2010 to September 2011. We used a multilevel logistic regression model to examine the association between patient care intervals and various variables influencing these intervals (age, BMI, educational level, ECOG, first specialist consultation, tumour stage, PSA, Gleason score, and presence of symptoms) and calculated the odds ratio (OR) and the interquartile range (IQR). To estimate the random inter-hospital variability, we used the median odds ratio (MOR). Results: 470 patients with prostate cancer were included. Mean age was 67.8 (SD: 7.6) years and 75.4 % were physically active. Tumour size was classified as T1 in 41.0 % and as T2 in 40 % of patients, their median Gleason score was 6.0 (IQR:1.0), and 36.1 % had low risk cancer according to the D'Amico classification. The median interval between first consultation and diagnosis was 89 days (IQR:123.5) with no statistically significant variability between centres. Presence of symptoms was associated with a significantly longer interval between first consultation and diagnosis than no symptoms (OR:1.93, 95%CI 1.29-2.89). The median time between diagnosis and first treatment (therapeutic interval) was 75.0 days (IQR:78.0) and significant variability between centres was found (MOR:2.16, 95%CI 1.45-4.87). This interval was shorter in patients with a high PSA value (p = 0.012) and a high Gleason score (p = 0.026). Conclusions: Most incident prostate cancer patients in Spain are diagnosed at an early stage of an adenocarcinoma. The period to complete the diagnostic process is approximately three months whereas the therapeutic intervals vary among centres and are shorter for patients with a worse prognosis. The presence of prostatic symptoms, PSA level, and Gleason score influence all the clinical intervals differently

    Phytoplankton evolution during the creation of a biofloc system for shrimp culture

    Full text link
    [EN] Microalgae play a key role in the dynamics of biofloc technology aquaculture systems. Some phytoplankton groups, such as diatoms, are desired for their high nutritional value and contribution to water quality. Other groups, such as cyanobacteria, are undesired because of their low nutritional value and capacity of producing toxins. So, monitoring the phytoplankton community structure and succession is key for managing biofloc systems. However, research on phytoplankton in these systems is scarce and mostly done by microscopy. The primary objective of this research was to estimate phytoplankton community structure in shrimp biofloc system water samples, using high-performance liquid chromatography methods and CHEMTAX software. The major groups present in our system were diatoms, euglenophytes, cyanobacteria and chlorophytes, while dinoflagellates were only remarkable at the initial period. We observed a clear dominance of diatoms all along the 5 months that comprised a complete biofloc system culture. The characteristic succession of autotrophic processes by heterotrophs of the biofloc systems, was observed by the reduction of net primary production. Light intensity played a key role in determining the phytoplankton composition and abundance. Algal pigment analyses using high-performance liquid chromatography and subsequent CHEMTAX analysis in water samples was useful for estimating the phytoplankton community structure in the biofloc systems. However, we found some limitations when the biofloc system was in heterotrophic mode. Under these conditions, some dinoflagellates and cyanobacteria behaved as heterotrophs and lost or decreased their biomarkers pigments. So, further research is needed to increase knowledge on the accuracy of high-performance liquid chromatography /CHEMTAX under these conditions.Financial support for this research was provided by Conselleria d’Educació, Investigació, Cultura i Esport of the Generalitat Valenciana, through the program VALi+D, fle number ACIF/2014/244. We would like to express our deepest thanks to Professor Luis Henrique da Silva Poersch of FURG (Universidade Federal do Rio Grande) and Ivan Vidal (Langostinos el Real) for his support. Finally, the authors wish to thank Le Gouessant and Michaël Metz for providing the commercial feed.Llario-Sempere, F.; Rodilla, M.; Escrivá-Perales, J.; Falco, S.; Sebastiá-Frasquet, M. (2018). Phytoplankton evolution during the creation of a biofloc system for shrimp culture. International Journal of Environmental Science and Technology. 1-12. https://doi.org/10.1007/s13762-018-1655-5S112Ahmed A, Kurian S, Gauns M, Chndrasekhararao AV, Mulla A, Naik B, Naik H, Naqvi SWA (2016) Spatial variability in phytoplankton community structure along the eastern Arabian Sea during the onset of south-west monsoon. Cont Shelf Res 119:30–39. https://doi.org/10.1016/j.csr.2016.03.005Avnimelech Y (1999) Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture 176:227–235. https://doi.org/10.1016/S0044-8486(99)00085-XAvnimelech Y (2007) Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture 264:140–147. https://doi.org/10.1016/j.aquaculture.2006.11.025Avnimelech Y (2009) Biofloc technology. A practical guide book. The World Aquaculture Society, Baton RougeAzim ME, Little DC (2008) The biofloc technology (BFT) in indoor tanks: water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture 283:29–35. https://doi.org/10.1016/j.aquaculture.2008.06.036Ballester ELC, Abreu PC, Cavalli RO, Emerenciano M, de Abreu L, Wasielesky WJ (2010) Effect of practical diets with different protein levels on the performance of Farfantepenaeus paulensis juveniles nursed in a zero exchange suspended microbial flocs intensive system. Aquac Nutr 16:163–172. https://doi.org/10.1111/j.1365-2095.2009.00648.xBaloi M, Arantes R, Schveitzer R, Magnotti C, Vinatea L (2013) Performance of Pacific white shrimp Litopenaeus vannamei raised in biofloc systems with varying levels of light exposure. Aquac Eng 52:39–44. https://doi.org/10.1016/j.aquaeng.2012.07.003Baumgarten MGZ, Wallner-Kersanach M, Niencheski LFH (2010) Manual de análises em oceanografia química. Furg, Rio GrandeBecerra-Dórame MJ, Martínez-Córdova LR, Martínez-Porchas M, Lopez-Elías JA (2011) Evaluation of autotrophic and heterotrophic microcosm- based systems on the production response of Litopenaeus vannamei intensively nursed without Artemia and with zero water exchange. Isr J Aquac Bamidgeh 63:7Brito LO, dos Santos IGS, de Abreu JL, de Araújo MT, Severi W, Gàlvez AO (2016) Effect of the addition of diatoms (Navicula spp.) and rotifers (Brachionus plicatilis) on water quality and growth of the Litopenaeus vannamei postlarvae reared in a biofloc system. Aquac Res 47:3990–3997. https://doi.org/10.1111/are.12849Campa-Córdova AI, Núñez-Vázquez EJ, Luna-González A, Romero-Geraldo MJ, Ascencio F (2009) Superoxide dismutase activity in juvenile Litopenaeus vannamei and Nodipecten subnodosus exposed to the toxic dinoflagellate Prorocentrum lima. Comp Biochem Physiol C Toxicol Pharmacol 149:317–322. https://doi.org/10.1016/j.cbpc.2008.08.006Casé M, Leça EE, Leitão SN, SantAnna EE, Schwamborn R, de Moraes Junior AT (2008) Plankton community as an indicator of water quality in tropical shrimp culture ponds. Mar Pollut Bull 56:1343–1352. https://doi.org/10.1016/j.marpolbul.2008.02.008Chen YC (2001) Immobilized microalga Scenedesmus quadricauda (Chlorophyta, Chlorococcales) for long-term storage and for application for water quality control in fish culture. Aquaculture 195:71–80. https://doi.org/10.1016/S0044-8486(00)00540-8Correia ES, Wilkenfeld JS, Morris TC, Wei L, Prangnell DI, Samocha TM (2014) Intensive nursery production of the Pacific white shrimp Litopenaeus vannamei using two commercial feeds with high and low protein content in a biofloc-dominated system. Aquac Eng 59:48–54. https://doi.org/10.1016/j.aquaeng.2014.02.002Duarte CM, Marrasé C, Vaqué D, Estrada M (1990) Counting error and the quantitative analysis of phytoplankton communities. J Plankton Res 12:295–304. https://doi.org/10.1093/plankt/12.2.295Ebeling J, Timmons M, Bisogni J (2006) Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture 257:346–358. https://doi.org/10.1016/j.aquaculture.2006.03.019El-Dahhar AA, Salama M, Elebiary EH (2015) Effect of energy to protein ratio in biofloc technology on water quality, survival and growth of mullet (Mugil cephalus). J Arab Aquac Soc 10:15–32. https://doi.org/10.12816/0026633Emerenciano MGC, Martínez-Córdova LR, Martínez-Porchas M, Miranda-Baeza A (2017) Biofloc technology (BFT): a tool for water quality management. In: Tutu H (ed) water quality. InTech, Rijeka. https://doi.org/10.5772/66416Figueroa F, Niell F, Figueiras F, Villarino M (1998) Diel migration of phytoplankton and spectral light field in the Ria de Vigo (NW Spain). Mar Biol 130:491–499Gaona CAP, Poersch LH, Krummenauer D, Foes GK, Wasielesky WJ (2011) The effect of solids removal on water quality, growth and survival of Litopenaeus vannamei in a biofloc technology culture system. Int J Recirc Aquac. https://doi.org/10.21061/ijra.v12i1.1354Garrido JL, Airs RL, Rodríguez F, Van Heukelem L, Zapata M (2011) New HPLC separation techniques. In: Roy S, Llewellyn CA, Egeland ES, Johnsen G (eds) Phytoplankton pigments: characterization, chemotaxonomy, and applications in oceanography. University Press, Cambridge, pp 165–194Ge H, Li J, Chang Z, Chen P, Shen M, Zhao F (2016) Effect of microalgae with semicontinuous harvesting on water quality and zootechnical performance of white shrimp reared in the zero water exchange system. Aquac Eng 72–73:70–76. https://doi.org/10.1016/j.aquaeng.2016.04.006Godoy LC, Odebrecht C, Ballester E, Martins TG, Wasielesky WJ (2012) Effect of diatom supplementation during the nursery rearing of Litopenaeus vannamei (Boone, 1931) in a heterotrophic culture system. Aquac Int 20:559–569. https://doi.org/10.1007/s10499-011-9485-1Grasshoff K (1976) Methods of seawater analysis. Verlag Chemie: Weinstei, New YorkGreen BW, Schrader KK, Perschbacher PW (2014) Effect of stocking biomass on solids, phytoplankton communities, common off-flavors, and production parameters in a channel catfish biofloc technology production system. Aquac Res 45:1442–1458. https://doi.org/10.1111/are.12096Gris B, Sforza E, Morosinotto T, Bertucco A, La Rocca N (2017) Influence of light and temperature on growth and high-value molecules productivity from Cyanobacterium aponinum. J Appl Phycol 29:1781–1790. https://doi.org/10.1007/s10811-017-1133-3Higgins HW, Wright SW, Schlüter L (2011) Quantitative interpretation of chemotaxonomic pigment data. In: Roy S, Llewellyn CA, Egeland ES, Johnsen G (eds) Phytoplankton pigments: characterization, chemotaxonomy, and applications in oceanography. Cambridge University Press, Cambridge, pp 257–313Hooker S, Firestone E, Claustre H, Ras J (2001) The first SeaWiFS HPLC analysis round-robin experiment (SeaHARRE-1). https://ntrs.nasa.gov/search.jsp?R=20010072242 . Accessed 19 July 2017Horabun T (1997) Relationships between water quality and phytoplankton in the Bangpakong river. http://agris.fao.org/agris-search/search.do?recordID=TH2000001898 . Accessed 19 July 2017Ismael AA (2003) Succession of heterotrophic and mixotrophic dinoflagellates as well as autotrophic microplankton in the harbour of Alexandria, Egypt. J Plankton Res 25:193–202. https://doi.org/10.1093/plankt/25.2.193Jeffrey SW, Sielicki M, Haxo FT (1975) Chloroplast pigment patterns in dinoflagellates. J Phycol 11:374–384. https://doi.org/10.1111/j.1529-8817.1975.tb02799.xJeong HJ, Yoo YD, Kim JS, Seong KA, Kang NS, Kim TH (2010) Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci J 45:65–91. https://doi.org/10.1007/s12601-010-0007-2Jory DE, Cabrera TR, Dugger DM, Fegan D, Lee PG, Lawrence L, Jackson C, Mcintosh R, Castañeda J, International B, Park H, Hwy N, Pierce F (2001) A global review of shrimp feed management: status and perspectives. Aquaculture 318:104–152Ju ZY, Forster I, Conquest L, Dominy W, Kuo WC, Horgen FD (2008) Determination of microbial community structures of shrimp floc cultures by biomarkers and analysis of floc amino acid profiles. Aquac Res 39:118–133. https://doi.org/10.1111/j.1365-2109.2007.01856.xKingston MB (1999) Effect of light on vertical migration and photosynthesis of Euglena proxima (euglenophyta). J Phycol 35:245–253. https://doi.org/10.1046/j.1529-8817.1999.3520245.xLatasa M, Scharek R, Vidal M, Vila-Reixach G (2010) Preferences of phytoplankton groups for waters of different trophic status in the northwestern Mediterranean Sea. Mar Ecol Prog Ser 40:27–42. https://doi.org/10.3354/meps08559Li Y, Swift E, Buskey EJ (1996) Photoinhibition of mechanically stimulable bioluminescence in the heterotrophic dinoflagellate Protoperidinium depressum (pyrrophyta). J Phycol 32:974–982. https://doi.org/10.1111/j.0022-3646.1996.00974.xLi A, Stoecker D, Adolf J (1999) Feeding, pigmentation, photosynthesis and growth of the mixotrophic dinoflagellate Gyrodinium galatheanum. Aquat Microb Ecol 19:163–176. https://doi.org/10.3354/ame019163Lin YC, Chen JC (2001) Acute toxicity of ammonia on Litopenaeus vannamei (Boone) juveniles at different salinity levels. J Exp Mar Biol Ecol 259:109–119. https://doi.org/10.1016/S0022-0981(01)00227-1Lin YC, Chen JC (2003) Acute toxicity of nitrite on Litopenaeus vannamei (Boone) juveniles at different salinity levels. Aquaculture 224:93–201. https://doi.org/10.1016/S0044-8486(03)00220-5Lohscheider JN, Strittmatter M, Küpper H, Adamska I, Heaney S, Cunningham C (2011) Vertical distribution of epibenthic freshwater cyanobacterial Synechococcus spp. Strains depends on their ability for photoprotection. PLoS ONE. https://doi.org/10.1371/journal.pone.0020134Lukwambe B, Qiuqian L, Wu J, Zhang D, Wang K, Zheng Z (2015) The effects of commercial microbial agents (probiotics) on phytoplankton community structure in intensive white shrimp (Litopenaeus vannamei) aquaculture ponds. Aquac Int 23:1443–1455. https://doi.org/10.1007/s10499-015-9895-6Mackey MD, Mackey DJ, Higgins HW, Wright SW (1996) CHEMTAX—a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar Ecol Prog Ser 144:265–283Maicá PF, de Borba MR, Wasielesky WJ (2012) Effect of low salinity on microbial floc composition and performance of Litopenaeus vannamei (Boone) juveniles reared in a zero-water-exchange super-intensive system. Aquac Res 43:361–370. https://doi.org/10.1111/j.1365-2109.2011.02838.xManan H, Moh JHZ, Kasan NA, Suratman S, Ikhwanuddin M (2016) Identification of biofloc microscopic composition as the natural bioremediation in zero water exchange of Pacific white shrimp, Penaeus vannamei, culture in closed hatchery system. Appl Water Sci. https://doi.org/10.1007/s13201-016-0421-4Marinho YF, Brito LO, Campos S, Severi W, Andrade HA, Galvez AO (2016) Effect of the addition of Chaetoceros calcitrans, Navicula sp. and Phaeodactylum tricornutum (diatoms) on phytoplankton composition and growth of Litopenaeus vannamei (Boone) postlarvae reared in a biofloc system. Aquac Res 48:4155–4164. https://doi.org/10.1111/are.13235Martins TG, Odebrecht C, Jensen LV, D’Oca MG, Wasielesky WJ (2016) The contribution of diatoms to bioflocs lipid content and the performance of juvenile Litopenaeus vannamei (Boone, 1931) in a BFT culture system. Aquac Res 47:1315–1326. https://doi.org/10.1111/are.12592Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36. https://doi.org/10.1016/S0003-2670(00)88444-5Natrah FMI, Bossier P, Sorgeloos P, Yusoff FM, Defoirdt T (2014) Significance of microalgal-bacterial interactions for aquaculture. Rev Aquac 6:48–61. https://doi.org/10.1111/raq.12024Niemi G, Wardrop D, Brooks R, Anderson S, Brady V, Paerl H, Rakocinski C, Brouwer M, Levinson B, McDonald M (2004) Rationale for a new generation of indicators for coastal waters. Environ Health Perspect 112:979–986. https://doi.org/10.1289/ehp.6903Paerl H, Tucker C (1995) Ecology of blue-green algae in aquaculture ponds. J World Aquac 26:109–131. https://doi.org/10.1111/j.1749-7345.1995.tb00235.xPérez-Linares J, Ochoa JL, GagoMartínez A (2008) Effect of PSP toxins in white leg shrimp Litopenaeus vannamei Boone, 1931. J Food Sci 73:T69–T73. https://doi.org/10.1111/j.1750-3841.2008.00710.xPérez-Morales A, Band-Schmidt CJ, Martínez-Díaz SF (2017) Mortality on zoea stage of the Pacific white shrimp Litopenaeus vannamei caused by Cochlodinium polykrikoides (Dinophyceae) and Chattonella spp. (Raphidophyceae). Mar Biol 164:57. https://doi.org/10.1007/s00227-017-3083-3Ray AJ, Dillon KS, Lotz JM (2011) Water quality dynamics and shrimp (Litopenaeus vannamei) production in intensive, mesohaline culture systems with two levels of biofloc management. Aquac Eng 45:127–136. https://doi.org/10.1016/j.aquaeng.2011.09.001Schlüter L, Lauridsen T, Krogh G (2006) Identification and quantification of phytoplankton groups in lakes using new pigment ratios–a comparison between pigment analysis by HPLC and microscopy. Freshwater 51:1474–1485. https://doi.org/10.1111/j.1365-2427.2006.01582.x/fullSchlüter L, Behl S, Striebel M, Stibor H (2016) Comparing microscopic counts and pigment analyses in 46 phytoplankton communities from lakes of different trophic state. Freshw Biol 61:1627–1639. https://doi.org/10.1111/fwb.12803Schrader KK, Green BW, Perschbacher PW (2011) Development of phytoplankton communities and common off-flavors in a biofloc technology system used for the culture of channel catfish (Ictalurus punctatus). Aquac Eng 45:118–126. https://doi.org/10.1016/j.aquaeng.2011.08.004Sebastiá M, Rodilla M (2013) Nutrient and phytoplankton analysis of a Mediterranean Coastal area. Environ Manage 51:225–240. https://doi.org/10.1007/s00267-012-9986-3Sebastiá M, Rodilla M, Sanchis J, Altur V (2012) Influence of nutrient inputs from a wetland dominated by agriculture on the phytoplankton community in a shallow harbour at the Spanish Mediterranean coast. Agric Ecosyst Environ 152:10–20. https://doi.org/10.1016/j.agee.2012.02.006Seoane S, Garmendia M, Revilla M, Borja Á, Franco J, Orive E, Valencia V (2011) Phytoplankton pigments and epifluorescence microscopy as tools for ecological status assessment in coastal and estuarine waters, within the Water Framework. Mar Pollut 62:1484–1497. https://doi.org/10.1016/j.marpolbul.2011.04.010Sinden A, Sinang SC (2016) Cyanobacteria in aquaculture systems: linking the occurrence, abundance and toxicity with rising temperatures. Int J Environ Sci Technol 13:2855–2862. https://doi.org/10.1007/s13762-016-1112-2Sospedra J, Niencheski LFH, Falco S, Andrade CF, Attisano KK, Rodilla M (2017) Identifying the main sources of silicate in coastal waters of the Southern Gulf of Valencia (Western Mediterranean Sea). Oceanologia. https://doi.org/10.1016/j.oceano.2017.07.004Strickland J (1960) Measuring the production of marine phytoplankton. Bull Fish Res Bd Canada 122:172Ter Braak CJF (1994) Canonical community ordination. Part I: basic theory and linear methods. Écoscience 1:127–140. https://doi.org/10.1080/11956860.1994.11682237Ter Braak C, Smilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). http://library.wur.nl/WebQuery/wurpubs/wever/341885 . Accessed 19 July 2017Utermohl M (1985) Zur Vervollkommnung der quantitative Phytoplankton-Methodik. Limnologie 9:1–38Van Wyk P, Scarpa J (1999) Water quality requirements and management. In: Institution Harbor Branch Oceanographic (ed) Farming marine shrimp in recirculating freshwater systems. Florida Department of Agriculture and Consumer Services, Florida, pp 128–138Vinatea L, Gálvez AO, Browdy CL, Stokes A, Venero J, Haveman J, Lewis BL, Lawson A, Shuler A, Leffler JW (2010) Photosynthesis, water respiration and growth performance of Litopenaeus vannamei in a super-intensive raceway culture with zero water exchange: interaction of water quality variables. Aquac Eng 42:17–24. https://doi.org/10.1016/j.aquaeng.2009.09.001Wright S, Jeffrey S, Mantoura R (1991) Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Mar Ecol Prog Ser 77:186–196Yu H, Jia S, Dai Y (2009) Growth characteristics of the cyanobacterium Nostoc flagelliforme in photoautotrophic, mixotrophic and heterotrophic cultivation. J Appl Phycol 21:127–133. https://doi.org/10.1007/s10811-008-9341-5Yusoff FM, Zubaidah MS, Matias HB, Kwan TS (2002) Phytoplankton succession in intensive marine shrimp culture ponds treated with a commercial bacterial product. Aquac Res 33:269–278. https://doi.org/10.1046/j.1355-557x.2002.00671.

    Differential Response of High-Elevation Planktonic Bacterial Community Structure and Metabolism to Experimental Nutrient Enrichment

    Get PDF
    Nutrient enrichment of high-elevation freshwater ecosystems by atmospheric deposition is increasing worldwide, and bacteria are a key conduit for the metabolism of organic matter in these oligotrophic environments. We conducted two distinct in situ microcosm experiments in a high-elevation lake (Emerald Lake, Sierra Nevada, California, USA) to evaluate responses in bacterioplankton growth, carbon utilization, and community structure to short-term enrichment by nitrate and phosphate. The first experiment, conducted just following ice-off, employed dark dilution culture to directly assess the impact of nutrients on bacterioplankton growth and consumption of terrigenous dissolved organic matter during snowmelt. The second experiment, conducted in transparent microcosms during autumn overturn, examined how bacterioplankton in unmanipulated microbial communities responded to nutrients concomitant with increasing phytoplankton-derived organic matter. In both experiments, phosphate enrichment (but not nitrate) caused significant increases in bacterioplankton growth, changed particulate organic stoichiometry, and induced shifts in bacterial community composition, including consistent declines in the relative abundance of Actinobacteria. The dark dilution culture showed a significant increase in dissolved organic carbon removal in response to phosphate enrichment. In transparent microcosms nutrient enrichment had no effect on concentrations of chlorophyll, carbon, or the fluorescence characteristics of dissolved organic matter, suggesting that bacterioplankton responses were independent of phytoplankton responses. These results demonstrate that bacterioplankton communities in unproductive high-elevation habitats can rapidly alter their taxonomic composition and metabolism in response to short-term phosphate enrichment. Our results reinforce the key role that phosphorus plays in oligotrophic lake ecosystems, clarify the nature of bacterioplankton nutrient limitation, and emphasize that evaluation of eutrophication in these habitats should incorporate heterotrophic microbial communities and processes

    The striking geographical pattern of gastric cancer mortality in Spain: environmental hypotheses revisited

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gastric cancer is decreasing in most countries. While socioeconomic development is the main factor to which this decline has been attributed, enormous differences among countries and within regions are still observed, with the main contributing factors remaining elusive. This study describes the geographic distribution of gastric cancer mortality at a municipal level in Spain, from 1994-2003.</p> <p>Methods</p> <p>Smoothed relative risks of stomach cancer mortality were obtained, using the Besag-York-Molliè autoregressive spatial model. Maps depicting relative risk (RR) estimates and posterior probabilities of RR being greater than 1 were plotted.</p> <p>Results</p> <p>From 1994-2003, 62184 gastric cancer deaths were registered in Spain (7 percent of all deaths due to malignant tumors). The geographic pattern was similar for both sexes. RRs displayed a south-north and coast-inland gradient, with lower risks being observed in Andalusia, the Mediterranean coastline, the Balearic and Canary Islands and the Cantabrian seaboard. The highest risk was concentrated along the west coast of Galicia, broad areas of the Castile & Leon Autonomous community, the province of Cáceres in Extremadura, Lleida and other areas of Catalonia.</p> <p>Conclusion</p> <p>In Spain, risk of gastric cancer mortality displays a striking geographic distribution. With some differences, this persistent and unique pattern is similar across the sexes, suggesting the implication of environmental exposures from sources, such as diet or ground water, which could affect both sexes and delimited geographic areas. Also, the higher sex-ratios found in some areas with high risk of smoking-related cancer mortality in males support the role of tobacco in gastric cancer etiology.</p

    Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production

    Get PDF
    Additional file 15. Summary of whole genome sequencing statistics

    Worldwide trends in the burden of asthma symptoms in school-aged children: Global Asthma Network Phase I cross-sectional study

    Get PDF
    Background: Asthma is the most common chronic disease in children globally. The Global Asthma Network (GAN) Phase I study aimed to determine if the worldwide burden of asthma symptoms is changing. Methods: This updated cross-sectional study used the same methods as the International study of Asthma and Allergies in Childhood (ISAAC) Phase III. Asthma symptoms were assessed from centres that completed GAN Phase I and ISAAC Phase I (1993–95), ISAAC Phase III (2001–03), or both. We included individuals from two age groups (children aged 6–7 years and adolescents aged 13–14 years) who self-completed written questionnaires at school. We estimated the 10-year rate of change in prevalence of current wheeze, severe asthma symptoms, ever having asthma, exercise wheeze, and night cough (defined by core questions in the questionnaire) for each centre, and we estimated trends across world regions and income levels using mixed-effects linear regression models with region and country income level as confounders. Findings: Overall, 119 795 participants from 27 centres in 14 countries were included: 74 361 adolescents (response rate 90%) and 45 434 children (response rate 79%). About one in ten individuals of both age groups had wheeze in the preceding year, of whom almost half had severe symptoms. Most centres showed a change in prevalence of 2 SE or more between ISAAC Phase III to GAN Phase I. Over the 27-year period (1993–2020), adolescents showed a significant decrease in percentage point prevalence per decade in severe asthma symptoms (–0·37, 95% CI –0·69 to –0·04) and an increase in ever having asthma (1·25, 0·67 to 1·83) and night cough (4·25, 3·06 to 5·44), which was also found in children (3·21, 1·80 to 4·62). The prevalence of current wheeze decreased in low-income countries (–1·37, –2·47 to –0·27], in children and –1·67, –2·70 to –0·64, in adolescents) and increased in lower-middle-income countries (1·99, 0·33 to 3·66, in children and 1·69, 0·13 to 3·25, in adolescents), but it was stable in upper-middle-income and high-income countries. Interpretation: Trends in prevalence and severity of asthma symptoms over the past three decades varied by age group, country income, region, and centre. The high worldwide burden of severe asthma symptoms would be mitigated by enabling access to effective therapies for asthma. Funding: International Union Against Tuberculosis and Lung Disease, Boehringer Ingelheim New Zealand, AstraZeneca Educational Grant, National Institute for Health Research, UK Medical Research Council, European Research Council, and Instituto de Salud Carlos III

    Anaerobic digestion and gasification of seaweed

    Get PDF
    The potential of algal biomass as a source of liquid and gaseous biofuels is a highly topical theme, with over 70 years of sometimes intensive research and considerable financial investment. A wide range of unit operations can be combined to produce algal biofuel, but as yet there is no successful commercial system producing such biofuel. This suggests that there are major technical and engineering difficulties to be resolved before economically viable algal biofuel production can be achieved. Both gasification and anaerobic digestion have been suggested as promising methods for exploiting bioenergy from biomass, and two major projects have been funded in the UK on the gasification and anaerobic digestion of seaweed, MacroBioCrude and SeaGas. This chapter discusses the use of gasification and anaerobic digestion of seaweed for the production of biofuel

    Testing a global standard for quantifying species recovery and assessing conservation impact

    Get PDF
    Recognizing the imperative to evaluate species recovery and conservation impact, in 2012 the International Union for Conservation of Nature (IUCN) called for development of a “Green List of Species” (now the IUCN Green Status of Species). A draft Green Status framework for assessing species’ progress toward recovery, published in 2018, proposed 2 separate but interlinked components: a standardized method (i.e., measurement against benchmarks of species’ viability, functionality, and preimpact distribution) to determine current species recovery status (herein species recovery score) and application of that method to estimate past and potential future impacts of conservation based on 4 metrics (conservation legacy, conservation dependence, conservation gain, and recovery potential). We tested the framework with 181 species representing diverse taxa, life histories, biomes, and IUCN Red List categories (extinction risk). Based on the observed distribution of species’ recovery scores, we propose the following species recovery categories: fully recovered, slightly depleted, moderately depleted, largely depleted, critically depleted, extinct in the wild, and indeterminate. Fifty-nine percent of tested species were considered largely or critically depleted. Although there was a negative relationship between extinction risk and species recovery score, variation was considerable. Some species in lower risk categories were assessed as farther from recovery than those at higher risk. This emphasizes that species recovery is conceptually different from extinction risk and reinforces the utility of the IUCN Green Status of Species to more fully understand species conservation status. Although extinction risk did not predict conservation legacy, conservation dependence, or conservation gain, it was positively correlated with recovery potential. Only 1.7% of tested species were categorized as zero across all 4 of these conservation impact metrics, indicating that conservation has, or will, play a role in improving or maintaining species status for the vast majority of these species. Based on our results, we devised an updated assessment framework that introduces the option of using a dynamic baseline to assess future impacts of conservation over the short term to avoid misleading results which were generated in a small number of cases, and redefines short term as 10 years to better align with conservation planning. These changes are reflected in the IUCN Green Status of Species Standard
    corecore