1,820 research outputs found

    C and L band fiber lasers enhanced by ultrafast laser inscribed artificial backscatter reflectors

    Get PDF
    This letter presents an experimental comparison between two linear-cavity erbium-doped fiber lasers (EDFL) assisted by two different artificial backscatter fiber-based reflectors. Both reflectors were inscribed by femtosecond laser direct writing, one of them within a single-mode fiber (SMF) and the other one within a multi-mode fiber (MMF). Although the erbium-doped fiber amplifier (EDFA) used in both structures was the same and both reflectors were manufactured under the same parameters, the reflection spectrum of each was clearly different due to their different physical properties. The first linear-cavity EDFL, consisting of an SMF-based reflector with 9µm core and 125µm cladding, resulted in a single laser emission line located in the C-band and centered at 1564.4 nm, exhibiting an optical signal-to-noise ratio (OSNR) of 52dB when pumped at 100mW. On the other hand, a single laser emission line with a similar OSNR but in L-band (centered at 1574.5nm) was obtained when using an MMF-based reflector with 50µm core and 125µm cladding.Ministerio de Educación, Cultura y Deporte (PhD grant FPU2018/02797); European Commission (Next generation EU/PTR); FEDER (A way to make Europe); MCIN/AEI/10.13039/501100011033 (PDC2021-121172-C21, PID2019-107270RB)

    Wavelength-switchable L-band fiber laser assisted by random reflectors

    Get PDF
    A wavelength-switchable L-band erbium-doped fiber laser (EDFL) assisted by an artificially controlled backscattering (ACB) fiber reflector is here presented. This random reflector was inscribed by femtosecond (fs) laser direct writing on the axial axis of a multimode fiber with 50 um core and 125 um cladding with a length of 17 mm. This microstructure was placed inside a surgical syringe to be positioned in the center of a high-precision rotation mount to accurately control its angle of rotation. Only by rotating this mount, three different output spectra were obtained: a single wavelength lasing centered at 1574.75 nm, a dual wavelength lasing centered at 1574.75 nm and 1575.75 nm, and a single wavelength lasing centered at 1575.5 nm. All of them showed an optical signal-to-noise ratio (OSNR) of around 60 dB when pumped at 300 mW.This work was financed by the program “José Castillejo para estancias de movilidad en el extranjero de jóvenes doctores”, funded by the Ministerio de Universidades of Spain (reference CAS21/00351); the Spanish AEI projects PID2019-107270RB, funded by MCIN/AEI/10.13039/501100011033 and FEDER “A way to make Europe”, and projects PDC2021-121172 and TED2021-130378B funded by MCIN/ AEI/10.13039/501100011033 and European Union “Next generation EU”/PTR. Finally, the work was also founded by the Ministerio de Educación, Cultura y Deporte of Spain (PhD grant FPU2018/02797)

    Mechanical characterization of the human thoracic descending aorta Experiments and modelling

    Get PDF
    This work presents experiments and modelling aimed at characterising the passive mechanical behaviour of the human thoracic descending aorta. To this end, uniaxial tension and pressurisation tests on healthy samples corresponding to newborn, young and adult arteries are performed. Then, the tensile measurements are used to calibrate the material parameters of the Holzapfel constitutive model. This model is found to adequately adjust the material behaviour in a wide deformation range; in particular, it captures the progressive stiffness increase and the anisotropy due to the stretching of the collagen fibres. Finally, the assessment of these material parameters in the modelling of the pressurisation test is addressed. The implication of this study is the possibility to predict the mechanical response of the human thoracic descending aorta under generalised loading states like those that can occur in physiological conditions and/or in medical device application

    Reproductive management strategies to reduce postpartum anestrus in dual-purpose cattle

    Get PDF
    Objective: Share technical aspects and recommendations to improve the reproductive and productive efficiency of dual-purpose cattle. Design/methodology/approach: A review of scientific publications was carried out to show the importance of some factors that limit reproduction, as well as management strategies to increase the reproductive potential in dual-purpose cows. Results: Strategic supplementation and selection of females with greater weight gain at weaning and at one year of age reduces the age at puberty. The duration of postpartum anestrus is reduced by weaning calves at a few days or weeks of age, restricting suckling to short periods of the day, delaying suckling, and exposing cows to a bull a few days after postpartum. On average, the combined effect of delayed suckling and exposure of cows to a bull reduces postpartum anestrus to less than 50 d and the calving-conception interval to 84 days. Milk production and calf weight gain also are improved without affecting postpartum weight changes in cows. Study limitations/implications: Extensive management of dual-purpose cattle reduces the intensive use of some reproductive biotechnologies commonly applied in other animal production systems. Findings/conclusions: Improvement in the reproductive efficiency of dual-purpose cattle can be achieved by reducing the age at puberty and postpartum anestrus by using reproductive management strategies and minor modifications to common management practices.Objective: To share technical aspects and recommendations to improve the reproductive and productive efficiency of dual-purpose cattle. Design/Methodology/Approach: A review of scientific articles published in journals was carried out to show the importance of some factors that limit reproduction, as well as to identify management strategies to increase the reproductive potential in dual-purpose cows. Results: The duration of postpartum anestrus is reduced by weaning calves at a few days or weeks of age, restricting suckling to short periods of the day, delaying suckling, and exposing cows to a bull during postpartum. On average, the combined effect of delayed suckling and exposure of cows to a bull reduces postpartum anestrus to less than 50 d and the calving-conception interval to 84 days. Milk production and calf weight gain also are improved without affecting postpartum weight changes in cows. Study Limitations/Implications: Extensive management of dual-purpose cattle reduces the intensive use of some reproductive biotechnologies commonly applied in other animal production systems. Findings/Conclusions: Improvement in the reproductive efficiency of dual-purpose cattle can be achieved by reducing the postpartum anestrus by using reproductive management strategies and minor modifications to common management practices

    Phenolic compounds reduce the fat content in caenorhabditis elegans by affecting lipogenesis, lipolysis, and different stress responses

    Get PDF
    Supplementation with bioactive compounds capable of regulating energy homeostasis is a promising strategy to manage obesity. Here, we have screened the ability of different phenolic compounds (myricetin, kaempferol, naringin, hesperidin, apigenin, luteolin, resveratrol, curcumin, and epicatechin) and phenolic acids (p-coumaric, ellagic, ferulic, gallic, and vanillic acids) regulating C. elegans fat accumulation. Resveratrol exhibited the strongest lipid-reducing activity, which was accompanied by the improvement of lifespan, oxidative stress, and aging, without affecting worm development. Whole-genome expression microarrays demonstrated that resveratrol affected fat mobilization, fatty acid metabolism, and unfolded protein response of the endoplasmic reticulum (UPRER), mimicking the response to calorie restriction. Apigenin induced the oxidative stress response and lipid mobilization, while vanillic acid affected the unfolded-protein response in ER. In summary, our data demonstrates that phenolic compounds exert a lipid-reducing activity in C. elegans through different biological processes and signaling pathways, including those related with lipid mobilization and fatty acid metabolism, oxidative stress, aging, and UPR-ER response. These findings open the door to the possibility of combining them in order to achieve complementary activity against obesity-related disorders

    High-pressure structural and elastic properties of Tl2O3

    Full text link
    The structural properties of Thallium (III) oxide (Tl2O3) have been studied both experimentally and theoretically under compression at room temperature. X-ray powder diffraction measurements up to 37.7 GPa have been complemented with ab initio total-energy calculations. The equation of state of Tl2O3 has been determined and compared to related compounds. It has been found experimentally that Tl2O3 remains in its initial cubic bixbyite-type structure up to 22.0 GPa. At this pressure, the onset of amorphization is observed, being the sample fully amorphous at 25.2 GPa. The sample retains the amorphous state after pressure release. To understand the pressure-induced amorphization process, we have studied theoretically the possible high-pressure phases of Tl2O3. Although a phase transition is theoretically predicted at 5.8 GPa to the orthorhombic Rh2O3-II-type structure and at 24.2 GPa to the orthorhombic alpha-Gd2S3-type structure, neither of these phases were observed experimentally, probably due to the hindrance of the pressure-driven phase transitions at room temperature. The theoretical study of the elastic behavior of the cubic bixbyite-type structure at high-pressure shows that amorphization above 22 GPa at room temperature might be caused by the mechanical instability of the cubic bixbyite-type structure which is theoretically predicted above 23.5 GPa. (C) 2014 AIP Publishing LLC.This study was supported by the Spanish government MEC under Grant Nos. MAT2010-21270-C04-01/03/04, MAT2013-46649-C4-1/2/3-P, and CTQ2009-14596-C02-01, by the Comunidad de Madrid and European Social Fund (S2009/PPQ-1551 4161893), by MALTA Consolider Ingenio 2010 project (CSD2007-00045), and by Generalitat Valenciana (GVA-ACOMP-2013-1012 and GVA-ACOMP-2014-243). We acknowledge Diamond Light Source for time on beamline I15 under proposal EE6517 and I15 beamline scientist for technical support. A.M. and P.R.-H. acknowledge computing time provided by Red Espanola de Supercomputacion (RES) and MALTA-Cluster. B.G.-D. and J.A.S. acknowledge financial support through the FPI program and Juan de la Cierva fellowship. J.R.-F. acknowledges the Alexander von Humboldt Foundation for a postdoctoral fellowship.Gomis, O.; Santamaría-Pérez, D.; Ruiz-Fuertes, J.; Sans, JA.; Vilaplana Cerda, RI.; Ortiz, HM.; García-Domene, B.... (2014). High-pressure structural and elastic properties of Tl2O3. Journal of Applied Physics. 116(13):133521-1-133521-9. https://doi.org/10.1063/1.4897241S133521-1133521-911613Papamantellos, P. (1968). Verfeinerung der Tl2O3-Struktur mittels Neutronenbeugung. Zeitschrift für Kristallographie, 126(1-3), 143-146. doi:10.1524/zkri.1968.126.1-3.143Otto, H. H., Baltrusch, R., & Brandt, H.-J. (1993). Further evidence for Tl3+ in Tl-based superconductors from improved bond strength parameters involving new structural data of cubic Tl2O3. Physica C: Superconductivity, 215(1-2), 205-208. doi:10.1016/0921-4534(93)90382-zBerastegui, P., Eriksson, S., Hull, S., Garcı́a Garcı́a, F. ., & Eriksen, J. (2004). Synthesis and crystal structure of the alkaline-earth thallates MnTl2O3+n (M=Ca,Sr). Solid State Sciences, 6(5), 433-441. doi:10.1016/j.solidstatesciences.2004.03.003Prewitt, C. T., Shannon, R. D., Rogers, D. B., & Sleight, A. W. (1969). C rare earth oxide-corundum transition and crystal chemistry of oxides having the corundum structure. Inorganic Chemistry, 8(9), 1985-1993. doi:10.1021/ic50079a033Patra, C. R., & Gedanken, A. (2004). Rapid synthesis of nanoparticles of hexagonal type In2O3 and spherical type Tl2O3 by microwave irradiation. New Journal of Chemistry, 28(8), 1060. doi:10.1039/b400206gSwitzer, J. A. (1986). The n-Silicon/Thallium(III) Oxide Heterojunction Photoelectrochemical Solar Cell. Journal of The Electrochemical Society, 133(4), 722. doi:10.1149/1.2108662Phillips, R. J., Shane, M. J., & Switzer, J. A. (1989). Electrochemical and photoelectrochemical deposition of thallium(III) oxide thin films. Journal of Materials Research, 4(4), 923-929. doi:10.1557/jmr.1989.0923Van Leeuwen, R. A., Hung, C.-J., Kammler, D. R., & Switzer, J. A. (1995). Optical and Electronic Transport Properties of Electrodeposited Thallium(III) Oxide Films. The Journal of Physical Chemistry, 99(41), 15247-15252. doi:10.1021/j100041a047Bhattacharya, R. N. (2010). Thallium-Oxide Superconductors. High Temperature Superconductors, 129-151. doi:10.1002/9783527631049.ch6Weaver, C. D., Harden, D., Dworetzky, S. I., Robertson, B., & Knox, R. J. (2004). A Thallium-Sensitive, Fluorescence-Based Assay for Detecting and Characterizing Potassium Channel Modulators in Mammalian Cells. Journal of Biomolecular Screening, 9(8), 671-677. doi:10.1177/1087057104268749Geserich, H. P. (1968). Optische und elektrische Messungen an dünnen Thallium(III)-Oxydschichten. Physica Status Solidi (b), 25(2), 741-751. doi:10.1002/pssb.19680250227Goto, A., Yasuoka, H., Hayashi, A., & Ueda, Y. (1992). NMR Study of Metallic Thallic Oxides; Tl2O3-δ. Journal of the Physical Society of Japan, 61(4), 1178-1181. doi:10.1143/jpsj.61.1178Glans, P.-A., Learmonth, T., Smith, K. E., Guo, J., Walsh, A., Watson, G. W., … Egdell, R. G. (2005). Experimental and theoretical study of the electronic structure of HgO andTl2O3. Physical Review B, 71(23). doi:10.1103/physrevb.71.235109Kehoe, A. B., Scanlon, D. O., & Watson, G. W. (2011). Nature of the band gap ofTl2O3. Physical Review B, 83(23). doi:10.1103/physrevb.83.233202SHUKLA, V. N., & WIRTZ, G. P. (1977). Electrical Conduction in Single-Crystal Thallic Oxide: I, Crystals «As-Grown» from the Vapor in Air. Journal of the American Ceramic Society, 60(5-6), 253-258. doi:10.1111/j.1151-2916.1977.tb14119.xSHUKLA, V. N., & WIRTZ, G. P. (1977). Electrical Conduction in Single-Crystal Thallic Oxide: II, Effects of Annealing at 923oK in Oxygen Pressures from 0.01 to 1 Atmosphere. Journal of the American Ceramic Society, 60(5-6), 259-261. doi:10.1111/j.1151-2916.1977.tb14120.xWIRTZ, G. P., YU, C. J., & DOSER, R. W. (1981). Defect Chemistry and Electrical Properties of Thallium Oxide Single Crystals. Journal of the American Ceramic Society, 64(5), 269-275. doi:10.1111/j.1151-2916.1981.tb09600.xYokoo, M., Kawai, N., Nakamura, K. G., Kondo, K., Tange, Y., & Tsuchiya, T. (2009). Ultrahigh-pressure scales for gold and platinum at pressures up to 550 GPa. Physical Review B, 80(10). doi:10.1103/physrevb.80.104114Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N., & Hausermann, D. (1996). Two-dimensional detector software: From real detector to idealised image or two-theta scan. High Pressure Research, 14(4-6), 235-248. doi:10.1080/08957959608201408Holland, T. J. B., & Redfern, S. A. T. (1997). Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61(404), 65-77. doi:10.1180/minmag.1997.061.404.07Kraus, W., & Nolze, G. (1996). POWDER CELL – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29(3), 301-303. doi:10.1107/s0021889895014920A. C. Larson and R. B. von Dreele , LANL Report No. 86–748, 2004.Toby, B. H. (2001). EXPGUI, a graphical user interface forGSAS. Journal of Applied Crystallography, 34(2), 210-213. doi:10.1107/s0021889801002242Hohenberg, P., & Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review, 136(3B), B864-B871. doi:10.1103/physrev.136.b864Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758-1775. doi:10.1103/physrevb.59.1758Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., … Burke, K. (2008). Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 100(13). doi:10.1103/physrevlett.100.136406Mujica, A., Rubio, A., Muñoz, A., & Needs, R. J. (2003). High-pressure phases of group-IV, III–V, and II–VI compounds. Reviews of Modern Physics, 75(3), 863-912. doi:10.1103/revmodphys.75.863Chetty, N., Muoz, A., & Martin, R. M. (1989). First-principles calculation of the elastic constants of AlAs. Physical Review B, 40(17), 11934-11936. doi:10.1103/physrevb.40.11934Baroni, S., de Gironcoli, S., Dal Corso, A., & Giannozzi, P. (2001). Phonons and related crystal properties from density-functional perturbation theory. Reviews of Modern Physics, 73(2), 515-562. doi:10.1103/revmodphys.73.515Le Page, Y., & Saxe, P. (2002). Symmetry-general least-squares extraction of elastic data for strained materials fromab initiocalculations of stress. Physical Review B, 65(10). doi:10.1103/physrevb.65.104104Beckstein, O., Klepeis, J. E., Hart, G. L. W., & Pankratov, O. (2001). First-principles elastic constants and electronic structure ofα−Pt2Siand PtSi. Physical Review B, 63(13). doi:10.1103/physrevb.63.134112Gomis, O., Sans, J. A., Lacomba-Perales, R., Errandonea, D., Meng, Y., Chervin, J. C., & Polian, A. (2012). Complex high-pressure polymorphism of barium tungstate. Physical Review B, 86(5). doi:10.1103/physrevb.86.054121He, D., & Duffy, T. S. (2006). X-ray diffraction study of the static strength of tungsten to69GPa. Physical Review B, 73(13). doi:10.1103/physrevb.73.134106Errandonea, D., Boehler, R., Japel, S., Mezouar, M., & Benedetti, L. R. (2006). Structural transformation of compressed solid Ar: An x-ray diffraction study to114GPa. Physical Review B, 73(9). doi:10.1103/physrevb.73.092106Klotz, S., Chervin, J.-C., Munsch, P., & Le Marchand, G. (2009). Hydrostatic limits of 11 pressure transmitting media. Journal of Physics D: Applied Physics, 42(7), 075413. doi:10.1088/0022-3727/42/7/075413Birch, F. (1978). Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300°K. Journal of Geophysical Research, 83(B3), 1257. doi:10.1029/jb083ib03p01257Angel, R. J. (2000). Equations of State. Reviews in Mineralogy and Geochemistry, 41(1), 35-59. doi:10.2138/rmg.2000.41.2Liu, D., Lei, W. W., Zou, B., Yu, S. D., Hao, J., Wang, K., … Zou, G. T. (2008). High-pressure x-ray diffraction and Raman spectra study of indium oxide. Journal of Applied Physics, 104(8), 083506. doi:10.1063/1.2999369Qi, J., Liu, J. F., He, Y., Chen, W., & Wang, C. (2011). Compression behavior and phase transition of cubic In2O3 nanocrystals. Journal of Applied Physics, 109(6), 063520. doi:10.1063/1.3561363García-Domene, B., Sans, J. A., Gomis, O., Manjón, F. J., Ortiz, H. M., Errandonea, D., … Segura, A. (2014). Pbca-Type In2O3: The High-Pressure Post-Corundum phase at Room Temperature. The Journal of Physical Chemistry C, 118(35), 20545-20552. doi:10.1021/jp5061599Angel, R. ., Mosenfelder, J. ., & Shaw, C. S. . (2001). Anomalous compression and equation of state of coesite. Physics of the Earth and Planetary Interiors, 124(1-2), 71-79. doi:10.1016/s0031-9201(01)00184-4Pereira, A. L. J., Gracia, L., Santamaría-Pérez, D., Vilaplana, R., Manjón, F. J., Errandonea, D., … Beltrán, A. (2012). Structural and vibrational study of cubic Sb2O3under high pressure. Physical Review B, 85(17). doi:10.1103/physrevb.85.174108Pereira, A. L. J., Errandonea, D., Beltrán, A., Gracia, L., Gomis, O., Sans, J. A., … Popescu, C. (2013). Structural study of α-Bi2O3under pressure. Journal of Physics: Condensed Matter, 25(47), 475402. doi:10.1088/0953-8984/25/47/475402Choudhury, N., & Chaplot, S. L. (2006). Ab initiostudies of phonon softening and high-pressure phase transitions ofα-quartzSiO2. Physical Review B, 73(9). doi:10.1103/physrevb.73.094304Yusa, H., Tsuchiya, T., Sata, N., & Ohishi, Y. (2008). Rh2O3(II)-type structures inGa2O3andIn2O3under high pressure: Experiment and theory. Physical Review B, 77(6). doi:10.1103/physrevb.77.064107Yusa, H., Tsuchiya, T., Tsuchiya, J., Sata, N., & Ohishi, Y. (2008). α-Gd2S3-type structure inIn2O3: Experiments and theoretical confirmation of a high-pressure polymorph in sesquioxide. Physical Review B, 78(9). doi:10.1103/physrevb.78.092107Gurlo, A., Dzivenko, D., Kroll, P., & Riedel, R. (2008). High-pressure high-temperature synthesis of Rh2O3-II-type In2O3polymorph. physica status solidi (RRL) - Rapid Research Letters, 2(6), 269-271. doi:10.1002/pssr.200802201Bekheet, M. F., Schwarz, M. R., Lauterbach, S., Kleebe, H.-J., Kroll, P., Stewart, A., … Gurlo, A. (2013). In situhigh pressure high temperature experiments in multi-anvil assemblies with bixbyite-type In2O3and synthesis of corundum-type and orthorhombic In2O3polymorphs. High Pressure Research, 33(3), 697-711. doi:10.1080/08957959.2013.834896Bekheet, M. F., Schwarz, M. R., Lauterbach, S., Kleebe, H.-J., Kroll, P., Riedel, R., & Gurlo, A. (2013). Orthorhombic In2O3: A Metastable Polymorph of Indium Sesquioxide. Angewandte Chemie International Edition, 52(25), 6531-6535. doi:10.1002/anie.201300644Biesterbos, J. W. M., & Hornstra, J. (1973). The crystal structure of the high-temperature, low-pressure form of Rh2O3. Journal of the Less Common Metals, 30(1), 121-125. doi:10.1016/0022-5088(73)90013-1Wang, L., Pan, Y., Ding, Y., Yang, W., Mao, W. L., Sinogeikin, S. V., … Mao, H. (2009). High-pressure induced phase transitions of Y2O3 and Y2O3:Eu3+. Applied Physics Letters, 94(6), 061921. doi:10.1063/1.3082082Husson, E., Proust, C., Gillet, P., & Itié, J. . (1999). Phase transitions in yttrium oxide at high pressure studied by Raman spectroscopy. Materials Research Bulletin, 34(12-13), 2085-2092. doi:10.1016/s0025-5408(99)00205-6Meyer, C., Sanchez, J. P., Thomasson, J., & Itié, J. P. (1995). Mössbauer and energy-dispersive x-ray-diffraction studies of the pressure-induced crystallographic phase transition inC-typeYb2O3. Physical Review B, 51(18), 12187-12193. doi:10.1103/physrevb.51.12187Guo, Q., Zhao, Y., Jiang, C., Mao, W. L., Wang, Z., Zhang, J., & Wang, Y. (2007). Pressure-Induced Cubic to Monoclinic Phase Transformation in Erbium Sesquioxide Er2O3. Inorganic Chemistry, 46(15), 6164-6169. doi:10.1021/ic070154gGuo, Q., Zhao, Y., Jiang, C., Mao, W. L., & Wang, Z. (2008). Phase transformation in Sm2O3 at high pressure: In situ synchrotron X-ray diffraction study and ab initio DFT calculation. Solid State Communications, 145(5-6), 250-254. doi:10.1016/j.ssc.2007.11.019Nishio-Hamane, D., Katagiri, M., Niwa, K., Sano-Furukawa, A., Okada, T., & Yagi, T. (2009). A new high-pressure polymorph of Ti2O3: implication for high-pressure phase transition in sesquioxides. High Pressure Research, 29(3), 379-388. doi:10.1080/08957950802665747Ovsyannikov, S. V., Wu, X., Shchennikov, V. V., Karkin, A. E., Dubrovinskaia, N., Garbarino, G., & Dubrovinsky, L. (2010). Structural stability of a golden semiconducting orthorhombic polymorph of Ti2O3under high pressures and high temperatures. Journal of Physics: Condensed Matter, 22(37), 375402. doi:10.1088/0953-8984/22/37/375402Ono, S., Funakoshi, K., Ohishi, Y., & Takahashi, E. (2005). In situx-ray observation of the phase transformation of Fe2O3. Journal of Physics: Condensed Matter, 17(2), 269-276. doi:10.1088/0953-8984/17/2/003Santillán, J., Shim, S.-H., Shen, G., & Prakapenka, V. B. (2006). High-pressure phase transition in Mn2O3: Application for the crystal structure and preferred orientation of the CaIrO3type. Geophysical Research Letters, 33(15). doi:10.1029/2006gl026423Yao, H., Ouyang, L., & Ching, W.-Y. (2007). Ab Initio Calculation of Elastic Constants of Ceramic Crystals. Journal of the American Ceramic Society, 90(10), 3194-3204. doi:10.1111/j.1551-2916.2007.01931.xBorn, M. (1940). On the stability of crystal lattices. I. Mathematical Proceedings of the Cambridge Philosophical Society, 36(2), 160-172. doi:10.1017/s0305004100017138Wallace, D. C. (1970). Thermoelastic Theory of Stressed Crystals and Higher-Order Elastic Constants. Solid State Physics, 301-404. doi:10.1016/s0081-1947(08)60010-7Wang, J., Yip, S., Phillpot, S. R., & Wolf, D. (1993). Crystal instabilities at finite strain. Physical Review Letters, 71(25), 4182-4185. doi:10.1103/physrevlett.71.4182Wang, J., Li, J., Yip, S., Phillpot, S., & Wolf, D. (1995). Mechanical instabilities of homogeneous crystals. Physical Review B, 52(17), 12627-12635. doi:10.1103/physrevb.52.12627Karki, B. B., Stixrude, L., & Wentzcovitch, R. M. (2001). High-pressure elastic properties of major materials of Earth’s mantle from first principles. Reviews of Geophysics, 39(4), 507-534. doi:10.1029/2000rg000088Krasilnikov, O. M., Belov, M. P., Lugovskoy, A. V., Mosyagin, I. Y., & Vekilov, Y. K. (2014). Elastic properties, lattice dynamics and structural transitions in molybdenum at high pressures. Computational Materials Science, 81, 313-318. doi:10.1016/j.commatsci.2013.08.038Reuss, A. (1929). Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik, 9(1), 49-58. doi:10.1002/zamm.19290090104Hill, R. (1952). The Elastic Behaviour of a Crystalline Aggregate. Proceedings of the Physical Society. Section A, 65(5), 349-354. doi:10.1088/0370-1298/65/5/307Wu, Z., Zhao, E., Xiang, H., Hao, X., Liu, X., & Meng, J. (2007). Crystal structures and elastic properties of superhardIrN2andIrN3from first principles. Physical Review B, 76(5). doi:10.1103/physrevb.76.054115Caracas, R., & Boffa Ballaran, T. (2010). Elasticity of (K,Na)AlSi3O8 hollandite from lattice dynamics calculations. Physics of the Earth and Planetary Interiors, 181(1-2), 21-26. doi:10.1016/j.pepi.2010.04.004Liu, Q.-J., Liu, Z.-T., & Feng, L.-P. (2011). First-Principles Calculations of Structural, Elastic and Electronic Properties of Tetragonal HfO2under Pressure. Communications in Theoretical Physics, 56(4), 779-784. doi:10.1088/0253-6102/56/4/31Pugh, S. F. (1954). XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 45(367), 823-843. doi:10.1080/14786440808520496Grimvall, G., Magyari-Köpe, B., Ozoliņš, V., & Persson, K. A. (2012). Lattice instabilities in metallic elements. Reviews of Modern Physics, 84(2), 945-986. doi:10.1103/revmodphys.84.945Sharma, S. M., & Sikka, S. K. (1996). Pressure induced amorphization of materials. Progress in Materials Science, 40(1), 1-77. doi:10.1016/0079-6425(95)00006-2Richet, P., & Gillet, P. (1997). Pressure-induced amorphization of minerals: a review. European Journal of Mineralogy, 9(5), 907-934. doi:10.1127/ejm/9/5/090

    Extracellular vesicles from pristane-treated CD38-deficient mice express an antiinflammatory neutrophil protein signature, which reflects the mild lupus severity elicited in these mice

    Get PDF
    In CD38-deficient (Cd38-/-) mice intraperitoneal injection of pristane induces a lupus-like disease, which is milder than that induced in WT mice, showing significant differences in the inflammatory and autoimmune processes triggered by pristane. Extracellular vesicles (EV) are present in all body fluids. Shed by cells, their molecular make-up reflects that of their cell of origin and/or tissue pathological situation. The aim of this study was to analyze the protein composition, protein abundance, and functional clustering of EV released by peritoneal exudate cells (PECs) in the pristane experimental lupus model, to identify predictive or diagnostic biomarkers that might discriminate the autoimmune process in lupus from inflammatory reactions and/or normal physiological processes. In this study, thanks to an extensive proteomic analysis and powerful bioinformatics software, distinct EV subtypes were identified in the peritoneal exudates of pristane-treated mice: 1) small EV enriched in the tetraspanin CD63 and CD9, which are likely of exosomal origin; 2) small EV enriched in CD47 and CD9, which are also enriched in plasma-membrane, membrane-associated proteins, with an ectosomal origin; 3) small EV enriched in keratins, ECM proteins, complement/coagulation proteins, fibrin clot formation proteins, and endopetidase inhibitor proteins. This enrichment may have an inflammation-mediated mesothelial-tomesenchymal transition origin, representing a protein corona on the surface of peritoneal exudate EV; 4) HDL-enriched lipoprotein particles. Quantitative proteomic analysis allowed us to identify an anti-inflammatory, Annexin A1- enriched pro-resolving, neutrophil protein signature, which was more prominent in EV from pristane-treated Cd38-/- mice, and quantitative differences in the protein cargo of the ECM-enriched EV from Cd38-/- vs WT mice. These differences are likely to be related with the distinct inflammatory outcome shown by Cd38-/- vs WT mice in response to pristane treatment. Our results demonstrate the power of a hypothesis-free and data-driven approach to transform the heterogeneity of the peritoneal exudate EV from pristanetreated mice in valuable information about the relative proportion of different EV in a given sample and to identify potential protein markers specific for the different small EV subtypes, in particular those proteins defining EV involved in the resolution phase of chronic inflammation.Proyecto del plan estatal, Ministerio de Ciencia e Innovacion PT13/0001/011CSIC PT17/0019/0010 PID2020-119567RB-I0
    corecore