22 research outputs found

    Prevalence and genetic diversity of Avipoxvirus in house sparrows in Spain

    Get PDF
    Avipoxvirus (APV) is a fairly common virus affecting birds that causes morbidity and mortality in wild and captive birds. We studied the prevalence of pox-like lesions and genetic diversity of APV in house sparrows (Passer domesticus) in natural, agricultural and urban areas in southern Spain in 2013 and 2014 and in central Spain for 8 months (2012±2013). Overall, 3.2% of 2,341 house sparrows visually examined in southern Spain had cutaneous lesions consistent with avian pox. A similar prevalence (3%) was found in 338 birds from central Spain. Prevalence was higher in hatch-year birds than in adults. We did not detect any clear spatial or temporal patterns of APV distribution. Molecular analyses of poxvirus-like lesions revealed that 63% of the samples were positive. Molecular and phylogenetic analyses of 29 DNA sequences from the fpv167 gene, detected two strains belonging to the canarypox clade (subclades B1 and B2) previously found in Spain. One of them appears predominant in Iberia and North Africa and shares 70% similarity to fowlpox and canarypox virus. This APV strain has been identified in a limited number of species in the Iberian Peninsula, Morocco and Hungary. The second one has a global distribution and has been found in numerous wild bird species around the world. To our knowledge, this represents the largest study of avian poxvirus disease in the broadly distributed house sparrow and strongly supports the findings that Avipox prevalence in this species in South and central Spain is moderate and the genetic diversity low.This study was funded by the Spanish Ministry of Science and Innovation (Project CGL2010-15734/BOS), the Spanish Ministry of Economy and Competitiveness (Project CGL2013-41642-P/BOS) and the Innovation and Development Agency of Andalusia (Spain) (P11-RNM-7038). Grants were awarded to JMP (Juan de la Cierva- JCI-2012-11868) and MAJM (FPIBES-2011-047609), Spanish Ministry of Economy and Competitiveness; RAJW (CEI-PICATA2012), CEI Campus of International Excellence; MM (FPU12/0568), Spanish Ministry of Education, Culture and Sports. RAJW was supported by the Craaford Foundation (grant 20160971) during the writing of this publication. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Protection of Spanish Ibex (Capra pyrenaica) against Bluetongue Virus Serotypes 1 and 8 in a Subclinical Experimental Infection

    Get PDF
    Many wild ruminants such as Spanish ibex (Capra pyrenaica) are susceptible to Bluetongue virus (BTV) infection, which causes disease mainly in domestic sheep and cattle. Outbreaks involving either BTV serotypes 1 (BTV-1) and 8 (BTV-8) are currently challenging Europe. Inclusion of wildlife vaccination among BTV control measures should be considered in certain species. In the present study, four out of fifteen seronegative Spanish ibexes were immunized with a single dose of inactivated vaccine against BTV-1, four against BTV-8 and seven ibexes were non vaccinated controls. Seven ibexes (four vaccinated and three controls) were inoculated with each BTV serotype. Antibody and IFN-gamma responses were evaluated until 28 days after inoculation (dpi). The vaccinated ibexes showed significant (P<0.05) neutralizing antibody levels after vaccination compared to non vaccinated ibexes. The non vaccinated ibexes remained seronegative until challenge and showed neutralizing antibodies from 7 dpi. BTV RNA was detected in the blood of non vaccinated ibexes from 2 to the end of the study (28 dpi) and in target tissue samples obtained at necropsy (8 and 28 dpi). BTV-1 was successfully isolated on cell culture from blood and target tissues of non vaccinated ibexes. Clinical signs were unapparent and no gross lesions were found at necropsy. Our results show for the first time that Spanish ibex is susceptible and asymptomatic to BTV infection and also that a single dose of vaccine prevents viraemia against BTV-1 and BTV-8 replication

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits

    Get PDF
    Anthocyanins are colored water-soluble pigments belonging to the phenolic group. The pigments are in glycosylated forms. Anthocyanins responsible for the colors, red, purple, and blue, are in fruits and vegetables. Berries, currants, grapes, and some tropical fruits have high anthocyanins content. Red to purplish blue-colored leafy vegetables, grains, roots, and tubers are the edible vegetables that contain a high level of anthocyanins. Among the anthocyanin pigments, cyanidin-3-glucoside is the major anthocyanin found in most of the plants. The colored anthocyanin pigments have been traditionally used as a natural food colorant. The color and stability of these pigments are influenced by pH, light, temperature, and structure. In acidic condition, anthocyanins appear as red but turn blue when the pH increases. Chromatography has been largely applied in extraction, separation, and quantification of anthocyanins. Besides the use of anthocyanidins and anthocyanins as natural dyes, these colored pigments are potential pharmaceutical ingredients that give various beneficial health effects. Scientific studies, such as cell culture studies, animal models, and human clinical trials, show that anthocyanidins and anthocyanins possess antioxidative and antimicrobial activities, improve visual and neurological health, and protect against various non-communicable diseases. These studies confer the health effects of anthocyanidins and anthocyanins, which are due to their potent antioxidant properties. Different mechanisms and pathways are involved in the protective effects, including free-radical scavenging pathway, cyclooxygenase pathway, mitogen-activated protein kinase pathway, and inflammatory cytokines signaling. Therefore, this review focuses on the role of anthocyanidins and anthocyanins as natural food colorants and their nutraceutical properties for health. Abbreviations: CVD: Cardiovascular disease VEGF: Vascular endothelial growth factor

    Evaluation of phenolics and cysteine sulfoxides in local onion and shallot germplasm from Italy and Ukraine

    No full text
    Onions (Allium cepa L.) are the most important Allium vegetables whose increasing popu- larity is related to their pungent taste and richness in non-nutrient bioactive compounds. Many diverse local types are present and valued in several areas, although still poorly characterized. In the present study, fresh edible parts from Italian and Ukrainian bulb onion, potato onion, and shallot populations were analyzed for their phenolic and cysteine sulfoxide content and antioxidant capacity. Fifteen phenolic compounds, belonging to flavonols and anthocyanins, and two cysteine sulfoxides, methiin and isoalliin, were quan- tified. Total phenolics and cysteine sulfoxides were in the range 2595\u20139840 and 6777\u201318,916 mg kg-1 d.m., respectively. On average, potato onion phenolic con- tent was 55 and 59 % higher than in bulb onion and shallot accessions, respectively. Bulb and potato onions showed a similar cysteine sulfoxide content, whereas in shallots sulfoxide level was about 17 % lower. Flavonols were related to antioxidant capacity in both low and high anthocyanin types; however anthocyanins gave a prominent contribution to total antioxidant capacity in red onions. Quantitative vari- ations of some components allowed a clear discrimi- nation among the three groups of onions, highlighting the possibility of selection for both low or high content of specific components
    corecore