92 research outputs found

    NR4A2 Mutations Can Cause Intellectual Disability and Language Impairment With Persistent Dystonia-Parkinsonism

    Get PDF
    TheNR4A2/NURR1gene (MIM*601828) has recently been associated with autosomal-dominantearly-onset dystonia-parkinsonism with intellectual disability.1NR4A2codifies for a nuclear tran-scription factor and is expressed mainly in the substantia nigra, ventral tegmental area, and limbicareas.2To date, 14 different alterations inNR4A2have been described associated with variousclinical phenotypes, mainly with neurodevelopment disorders (table e-1, links.lww.com/NXG/A371). We describe here an interesting case suffering a persistent dystonia-parkinsonism syndrome(DPS) with motor tics, which expands the clinical phenotype ofNR4A2-associated DPS

    Targeted next generation sequencing in patients with inborn errors of metabolism

    Get PDF
    BACKGROUND: Next-generation sequencing (NGS) technology has allowed the promotion of genetic diagnosis and are becoming increasingly inexpensive and faster. To evaluate the utility of NGS in the clinical field, a targeted genetic panel approach was designed for the diagnosis of a set of inborn errors of metabolism (IEM). The final aim of the study was to compare the findings for the diagnostic yield of NGS in patients who presented with consistent clinical and biochemical suspicion of IEM with those obtained for patients who did not have specific biomarkers. METHODS: The subjects studied (n = 146) were classified into two categories: Group 1 (n = 81), which consisted of patients with clinical and biochemical suspicion of IEM, and Group 2 (n = 65), which consisted of IEM cases with clinical suspicion and unspecific biomarkers. A total of 171 genes were analyzed using a custom targeted panel of genes followed by Sanger validation. RESULTS: Genetic diagnosis was achieved in 50% of patients (73/146). In addition, the diagnostic yield obtained for Group 1 was 78% (63/81), and this rate decreased to 15.4% (10/65) in Group 2 (X2 = 76.171; p < 0.0001). CONCLUSIONS: A rapid and effective genetic diagnosis was achieved in our cohort, particularly the group that had both clinical and biochemical indications for the diagnosis

    Impaired proteasome activity and neurodegeneration with brain iron accumulation in FBXO7 defect

    Get PDF
    Altres ajuts: This work was funded by Instituto de Salud Carlos III; Ministerio de Educación, Cultura y Deporte; Spanish Foundation per Amor a l'Art (FPAA) grant ; Fundació la Marató de TV3 grants 20143130; and 20143131; Generalitat Valenciana grants OP ERDF of Comunitat Valenciana 2014-2020; and PROMETEO/2018/135.FBXO7 is implicated in the ubiquitin-proteasome system and parkin-mediated mitophagy. FBXO7defects cause a levodopa-responsive parkinsonian-pyramidal syndrome(PPS). Methods: We investigated the disease molecular bases in a child with PPS and brain iron accumulation. Results: A novel homozygous c.368C>G (p.S123*) FBXO7 mutation was identified in a child with spastic paraplegia, epilepsy, cerebellar degeneration, levodopa nonresponsive parkinsonism, and brain iron deposition. Patient's fibroblasts assays demonstrated an absence of FBXO7 RNA expression leading to impaired proteasome degradation and accumulation of poly-ubiquitinated proteins. Conclusion: This novel FBXO7 phenotype associated with impaired proteasome activity overlaps with neurodegeneration with brain iron accumulation disorders

    Thiamine transporter-2 deficiency: outcome and treatment monitoring

    Get PDF
    Background: The clinical characteristics distinguishing treatable thiamine transporter-2 deficiency (ThTR2) due to SLC19A3 genetic defects from the other devastating causes of Leigh syndrome are sparse. Methods. We report the clinical follow-up after thiamine and biotin supplementation in four children with ThTR2 deficiency presenting with Leigh and biotin-thiamine-responsive basal ganglia disease phenotypes. We established whole-blood thiamine reference values in 106 non-neurological affected children and monitored thiamine levels in SLC19A3 patients after the initiation of treatment. We compared our results with those of 69 patients with ThTR2 deficiency after a review of the literature. Results: At diagnosis, the patients were aged 1 month to 17 years, and all of them showed signs of acute encephalopathy, generalized dystonia, and brain lesions affecting the dorsal striatum and medial thalami. One patient died of septicemia, while the remaining patients evidenced clinical and radiological improvements shortly after the initiation of thiamine. Upon follow-up, the patients received a combination of thiamine (10-40 mg/kg/day) and biotin (1-2 mg/kg/day) and remained stable with residual dystonia and speech difficulties. After establishing reference values for the different age groups, whole-blood thiamine quantification was a useful method for treatment monitoring. Conclusions: ThTR2 deficiency is a reversible cause of acute dystonia and Leigh encephalopathy in the pediatric years. Brain lesions affecting the dorsal striatum and medial thalami may be useful in the differential diagnosis of other causes of Leigh syndrome. Further studies are needed to validate the therapeutic doses of thiamine and how to monitor them in these patientsAntecedentes: Las características clínicas distintivas del déficit tratable del trasportador de tiamina tipo 2 (ThTR2) debido a defectos genéticos del SLC19A3 de las otras causas devastadores del síndrome de Leigh son escasas. Métodos: Presentamos el seguimiento clínico después de la administración de suplementos de tiamina y biotina a cuatro niños con deficiencia ThTR2 que presentaban fenotipos de biotin-thiamine responsive basal ganglia disease y síndrome de Leigh. Hemos establecido valores de referencia de tiamina en sangre total en 106 niños sin patología neurológica y monitorizamos los niveles de tiamina en pacientes con mutación del SLC19A3 después del inicio del tratamiento. Hemos comparado nuestros resultados con los de 69 pacientes con deficiencia ThTR2 después de una revisión de la literatura. Resultados: Al momento del diagnóstico , los pacientes tenían entre 1 mes a 17 años, y todos ellos mostraron signos medial. Un paciente murió de septicemia, mientras que el resto de pacientes evidenciaron mejoras clínicas y radiológicas poco después del inicio de la tiamina. Al seguimiento, los pacientes recibieron una combinación de tiamina (10–40 mg/kg/día) y biotina (1–2 mg/kg/día) y se mantuvieron estables, aunque con distonía y dificultades del habla residual. Después de establecer valores de referencia para los diferentes grupos de edad, la cuantificación de tiamina en sangre total demuestra ser un método útil para el seguimiento del tratamiento. Conclusiones: La deficiencia ThTR2 es una causa reversible de la distonía aguda y síndrome de Leigh en la edad pediátrica. Las lesiones cerebrales que afectan el cuerpo estriado dorsal y tálamo medial pueden ser útiles en el diagnóstico diferencial de otras causas de síndrome de Leigh. Se necesitan más estudios para validar las dosis de tiamina y la monitorización terapéutica de estos pacientesSupported by Fondo de Investigación Sanitaria Grant PI12/02010 and PI12/02078; Centre for Biomedical Research on Rare Diseases, an initiative of the Instituto de Salud Carlos III, Barcelona, Spain; Agència de Gestio’ d’Ajuts Universitaris i de Recerca-Agaur FI-DGR 2014 (JD Ortigoza-Escobar

    Phosphomannomutase deficiency (PMM2-CDG): Ataxia and cerebellar assessment

    Get PDF
    Background: Phosphomannomutase deficiency (PMM2-CDG) is the most frequent congenital disorder of glycosylation. The cerebellum is nearly always affected in PMM2-CDG patients, a cerebellar atrophy progression is observed, and cerebellar dysfunction is their main daily functional limitation. Different therapeutic agents are under development, and clinical evaluation of drug candidates will require a standardized score of cerebellar dysfunction. We aim to assess the validity of the International Cooperative Ataxia Rating Scale (ICARS) in children and adolescents with genetically confirmed PMM2-CDG deficiency. We compare ICARS results with the Nijmegen Pediatric CDG Rating Scale (NPCRS), neuroimaging, intelligence quotient (IQ) and molecular data. Methods: Our observational study included 13 PMM2-CDG patients and 21 control subjects. Ethical permissions and informed consents were obtained. Three independent child neurologists rated PMM2-CDG patients and control subjects using the ICARS. A single clinician administered the NPCRS. All patients underwent brain MRI, and the relative diameter of the midsagittal vermis was measured. Psychometric evaluations were available in six patients. The Mann-Whitney U test was used to compare ICARS between patients and controls. To evaluate inter-observer agreement in patients' ICARS ratings, intraclass correlation coefficients (ICC) were calculated. ICARS internal consistency was evaluated using Cronbach's alpha. Spearman's rank correlation coefficient test was used to correlate ICARS with NPCRS, midsagittal vermis relative diameter and IQ. Results: ICARS and ICARS subscores differed between patients and controls (p < 0.001). Interobserver agreement of ICARS was "almost perfect" (ICC = 0.99), with a "good" internal reliability (Cronbach's alpha = 0.72). ICARS was significantly correlated with the total NPCRS score (rs 0.90, p < 0.001). However, there was no agreement regarding categories of severity. Regarding neuroimaging, inverse correlations between ICARS and midsagittal vermis relative diameter (rs -0.85, p = 0.003) and IQ (rs -0.94, p = 0.005) were found. Patients bearing p.E93A, p.C241S or p.R162W mutations presented a milder phenotype. Conclusions: ICARS is a reliable instrument for assessment of PMM2-CDG patients, without significant inter-rater variability. Despite our limited sample size, the results show a good correlation between functional cerebellar assessment, IQ and neuroimagingFor the first a correlation between ICARS, neuroimaging and IQ in PMM2-CDG patients has been demonstratedThe work was supported by national grants PI14/00021, PI11/01096, PI11/01250, and PI10/00455 from the National Plan on I+D+I, cofinanced by ISC-III (Subdirección General de Evaluación y Fomento de la Investigación Sanitaria) and FEDER (Fondo Europeo de Desarrollo Regional) and IPT-2012- 0561-010000 from MINECO. Three research groups (U-746, U-737 and U703) from the Centre for Biomedical Research on Rare Diseases (CIBER-ER), Instituto de Salud Carlos III, Spain, have worked together for the present stud

    Impaired proteasome activity and neurodegeneration with brain iron accumulation in FBXO7 defect

    Get PDF
    FBXO7 is implicated in the ubiquitin–proteasome system and parkin-mediated mitophagy. FBXO7defects cause a levodopa-responsive parkinsonian-pyramidal syndrome(PPS). Methods: We investigated the disease molecular bases in a child with PPS and brain iron accumulation. Results: A novel homozygous c.368C>G (p.S123*) FBXO7 mutation was identified in a child with spastic paraplegia, epilepsy, cerebellar degeneration, levodopa nonresponsive parkinsonism, and brain iron deposition. Patient’s fibroblasts assays demonstrated an absence of FBXO7 RNA expression leading to impaired proteasome degradation and accumulation of poly-ubiquitinated proteins. Conclusion: This novel FBXO7 phenotype associated with impaired proteasome activity overlaps with neurodegeneration with brain iron accumulation disorders.Fundacio La Marato de TV3 [Grants 20143130 to BPD, and 20143131 to CE], by the Instituto de Salud Carlos III (ISCIII) - Subdireccion General de Evaluacion y Fomento de la Investigacion within the framework of the National R + D+I Plan cofunded with ERDF funds [Grants PI18/01319 to BPD and PI18/00147 to CE], and by the Generalitat Valenciana [Grant PROMETEO/2018/ 135 to CE]. Part of the equipment employed in this work has been funded by Generalitat Valenciana and cofinanced with ERDF funds (OP ERDF of Comunitat Valenciana 2014-2020). SFR had a contract funded by the Spanish Foundation Per Amor a l’Art (FPAA). PS had a FPU-PhD fellowship funded by the Spanish Ministry of Education, Culture and Sport Inmunoterapia

    The Expanding Phenotypical Spectrum of WARS2 -Related Disorder : Four Novel Cases with a Common Recurrent Variant

    Get PDF
    Biallelic variants in the mitochondrial form of the tryptophanyl-tRNA synthetases (WARS2) can cause a neurodevelopmental disorder with movement disorders including early-onset tremor-parkinsonism syndrome. Here, we describe four new patients, who all presented at a young age with a tremor-parkinsonism syndrome and responded well to levodopa. All patients carry the same recurrent, hypomorphic missense variant (NM_015836.4: c.37T>G; p.Trp13Gly) either together with a previously described truncating variant (NM_015836.4: c.797Cdel; p.Pro266ArgfsTer10), a novel truncating variant (NM_015836.4: c.346C>T; p.Gln116Ter), a novel canonical splice site variant (NM_015836.4: c.349-1G>A), or a novel missense variant (NM_015836.4: c.475A>C, p.Thr159Pro). We investigated the mitochondrial function in patients and found increased levels of mitochondrially encoded cytochrome C Oxidase II as part of the mitochondrial respiratory chain as well as decreased mitochondrial integrity and branching. Finally, we conducted a literature review and here summarize the broad phenotypical spectrum of reported WARS2 -related disorders. In conclusion, WARS2 -related disorders are diagnostically challenging diseases due to the broad phenotypic spectrum and the disease relevance of a relatively common missense change that is often filtered out in a diagnostic setting since it occurs in ~0.5% of the general European population

    Clinical phenotypes of infantile onset CACNA1A-related disorder

    Get PDF
    BACKGROUND: CACNA1A-related disorders present with persistent progressive and non-progressive cerebellar ataxia and paroxysmal events: epileptic seizures and non-epileptic attacks. These phenotypes overlap and co-exist in the majority of patients. OBJECTIVE: To describe phenotypes in infantile onset CACNA1A-related disorder and to explore intra-familial variations and genotype-phenotype correlations. MATERIAL AND METHODS: This study was a multicenter international collaboration. A retrospective chart review of CACNA1A patients was performed. Clinical, radiological, and genetic data were collected and analyzed in 47 patients with infantile-onset disorder. RESULTS: Paroxysmal non-epileptic events (PNEE) were observed in 68% of infants, with paroxysmal tonic upward gaze (PTU) noticed in 47% of infants. Congenital cerebellar ataxia (CCA) was diagnosed in 51% of patients including four patients with developmental delay and only one neurological sign. PNEEs were found in 63% of patients at follow-up, with episodic ataxia (EA) in 40% of the sample. Cerebellar ataxia was found in 58% of the patients at follow-up. Four patients had epilepsy in infancy and nine in childhood. Seven infants had febrile convulsions, three of which developed epilepsy later; all three patients had CCA. Cognitive difficulties were demonstrated in 70% of the children. Cerebellar atrophy was found in only one infant but was depicted in 64% of MRIs after age two. CONCLUSIONS: Nearly all of the infants had CCA, PNEE or both. Cognitive difficulties were frequent and appeared to be associated with CCA. Epilepsy was more frequent after age two. Febrile convulsions in association with CCA may indicate risk of epilepsy in later childhood. Brain MRI was normal in infancy. There were no genotype-phenotype correlations found

    Protein misfolding and clearance in the pathogenesis of a new infantile onset ataxia caused by mutations in PRDX3

    Get PDF
    17 páginas, 8 figurasPeroxiredoxin 3 (PRDX3) encodes a mitochondrial antioxidant protein, which is essential for the control of reactive oxygen species homeostasis. So far, PRDX3 mutations are involved in mild-to-moderate progressive juvenile onset cerebellar ataxia. We aimed to unravel the molecular bases underlying the disease in an infant suffering from cerebellar ataxia that started at 19 months old and presented severe cerebellar atrophy and peripheral neuropathy early in the course of disease. By whole exome sequencing, we identified a novel homozygous mutation, PRDX3 p.D163E, which impaired the mitochondrial ROS defense system. In mouse primary cortical neurons, the exogenous expression of PRDX3 p.D163E was reduced and triggered alterations in neurite morphology and in mitochondria. Mitochondrial computational parameters showed that p.D163E led to serious mitochondrial alterations. In transfected HeLa cells expressing the mutation, mitochondria accumulation was detected by correlative light electron microscopy. Mitochondrial morphology showed severe changes, including extremely damaged outer and inner membranes with a notable cristae disorganization. Moreover, spherical structures compatible with lipid droplets were identified, which can be associated with a generalized response to stress and can be involved in the removal of unfolded proteins. In the patient's fibroblasts, PRDX3 expression was nearly absent. The biochemical analysis suggested that the mutation p.D163E would result in an unstable structure tending to form aggregates that trigger unfolded protein responses via mitochondria and endoplasmic reticulum. Altogether, our findings broaden the clinical spectrum of the recently described PRDX3-associated neurodegeneration and provide new insight into the pathological mechanisms underlying this new form of cerebellar ataxia.The Instituto de Salud Carlos III (ISCIII)—Subdirección General de Evaluación y Fomento de la Investigación within the framework of the National R + D + I Plan cofunded with European Regional Development Funds (ERDF) (grants PI18/00147 and PI21/00103 to C.E.); the Spanish Ministry of Economy and Competitiveness (grant SAF2017-89020-R to P.F.); the Fundació La Marató TV3 (grants 20143130 and 20143131 to B.P.-D. and C.E.) and the Generalitat Valenciana (grant PROMETEO/2018/135 to C.E.). Part of the equipment employed in this work was funded by Generalitat Valenciana and co-financed with ERDF (OP ERDF of Comunitat Valenciana 2014-2020). P.F. and A.R.-P. are supported by the Spanish Ministry of Science and Innovation (grants RyC-2014-16410 to P.F. and PRE2018-083562 to A.R.-P.).Peer reviewe

    The Genetic Landscape of Complex Childhood-Onset Hyperkinetic Movement Disorders

    Get PDF
    Acord transformatiu CRUE-CSICThis work was supported by an NIHR Professorship (to M.A.K.). M.A.K. has received funding from the Sir Jules Thorn Award for Biomedical Research and Wellcome Trust. B.P.-D. was supported by Instituto de Salud Carlos III, PI 18/01319 and PI21/00248, and has received funding from Beca José Castillejos (CAS14/00328). K.J.P. was supported by an MRC Clinician-Scientist Fellowship (511015) and was supported by the Dystonia Medical Research Foundation and Fight for Sight. S.S.M. has received funding from the Winston Churchill Memorial trust and Cerebral Palsy Alliance.Background and Objective: The objective of this study was to better delineate the genetic landscape and key clinical characteristics of complex, early-onset, monogenic hyperkinetic movement disorders. Methods: Patients were recruited from 14 international centers. Participating clinicians completed standardized proformas capturing demographic, clinical, and genetic data. Two pediatric movement disorder experts reviewed available video footage, classifying hyperkinetic movements according to published criteria. Results: One hundred forty patients with pathogenic variants in 17 different genes (ADCY5, ATP1A3, DDC, DHPR, FOXG1, GCH1, GNAO1, KMT2B, MICU1, NKX2.1, PDE10A, PTPS, SGCE, SLC2A1, SLC6A3, SPR, and TH) were identified. In the majority, hyperkinetic movements were generalized (77%), with most patients (69%) manifesting combined motor semiologies. Parkinsonism-dystonia was characteristic of primary neurotransmitter disorders (DDC, DHPR, PTPS, SLC6A3, SPR, TH); chorea predominated in ADCY5-, ATP1A3-, FOXG1-, NKX2.1-, SLC2A1-, GNAO1-, and PDE10A-related disorders; and stereotypies were a prominent feature in FOXG1- and GNAO1-related disease. Those with generalized hyperkinetic movements had an earlier disease onset than those with focal/segmental distribution (2.5 ± 0.3 vs. 4.7 ± 0.7 years; P = 0.007). Patients with developmental delay also presented with hyperkinetic movements earlier than those with normal neurodevelopment (1.5 ± 2.9 vs. 4.7 ± 3.8 years; P < 0.001). Effective disease-specific therapies included dopaminergic agents for neurotransmitters disorders, ketogenic diet for glucose transporter deficiency, and deep brain stimulation for SGCE-, KMT2B-, and GNAO1-related hyperkinesia. Conclusions: This study highlights the complex phenotypes observed in children with genetic hyperkinetic movement disorders that can lead to diagnostic difficulty. We provide a comprehensive analysis of motor semiology to guide physicians in the genetic investigation of these patients, to facilitate early diagnosis, precision medicine treatments, and genetic counseling. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
    corecore