3,262 research outputs found

    Fluctuations of the correlation dimension at metal-insulator transitions

    Get PDF
    We investigate numerically the inverse participation ratio, P2P_2, of the 3D Anderson model and of the power-law random banded matrix (PRBM) model at criticality. We found that the variance of lnP2\ln P_2 scales with system size LL as σ2(L)=σ2()ALD2/2d\sigma^2(L)=\sigma^2(\infty)-A L^{-D_2/2d}, being D2D_2 the correlation dimension and dd the system dimension. Therefore the concept of a correlation dimension is well defined in the two models considered. The 3D Anderson transition and the PRBM transition for b=0.3b=0.3 (see the text for the definition of bb) are fairly similar with respect to all critical magnitudes studied.Comment: RevTex, 5 pages, 4 eps figures, to be published in Phys. Rev. Let

    Ozone Dosage is the Key Factor of Its Effect in Biological Systems

    Get PDF
    The applications of ozone are not only restricted to environmental remediation or industrial areas. This gas has been applied in medicine to treat several diseases, where positive effects have been confirmed by many clinical studies. According to the European Medical Society of Ozone and the National Center of Scientific Investigation in Cuba, it has not been possible to validate ozone’s effectiveness by traditional analytical methods. Thus, this investigation proposed evaluating the effect that ozone has on biological substrates (murine models with induced carcinogenic tumors, inflammation, and wounds), studying the variations that ozone (dissolved in physiological solution or ozonated vegetable oils) provokes over the total unsaturation of lipids (TUL), and by using the so-called method double bond index (DB-index), make a correlation with the dynamic reactions obtained by several analytical methods according to each experimental stage considered in this study

    Preliminary characterization of columnar aerosol properties (AOD-AE) at the Saharan Tamanrasset (Algeria) station [Póster]

    Get PDF
    Póster presentado en: 37th Annual European Meeting on Atmospheric Studies by Optical Methods, celebrado en 2010 en Valladolid.Financial supports from the Spanish MICIIN (ref.CGL2008-05939-CO3-00/CLIandCGL2009-09740) and from the GR-220 Project of the Junta de Castilla y León are gratefully acknowledged

    Caracterización preliminar de las propiedades del aerosol en columna (EOA-EA) en la estación sahariana de Tamanrasset (Argelia)

    Get PDF
    A Cimel sun photometer has been in operation at Tamanrasset station since late 2006. In this study, more than two years of aerosol measurements have been analyzed from October 2006 to January 2009. Two parameters, aerosol optical depth (AOD) and Ångström exponent (AE), have been used for this preliminar characterization. At this station, the mean AOD is 0.25±0.15 and the mean AE is 0.48±0.23. Both time series data show a clear seasonal cycle. A dry-cool season (fall and winter time), characterized by low AOD and high AE values, and a wet-hot season (in spring-summer), with strong and frequent mineral dust storms, giving high AOD and low AE values, are observed at Tamanrasset. Both, AOD and AE values show the behaviour of a station where desert mineral dust is the prevailing aerosol defining the characteristic of the site. However a significant number of episodes with AE values around 1 together with AOD greater than 0.2 have been found, what suggests the presence of pollution derived aerosols.Financial supports from the Spanish MICIIN (ref. CGL2008-05939-CO3-00/CLI and CGL 2009-09740) and from the GR-220 Project of the Junta de Castilla y León are gratefully acknowledged

    Soil Dust Aerosols and Wind as Predictors of Seasonal Meningitis Incidence in Niger

    Get PDF
    Background: Epidemics of meningococcal meningitis are concentrated in sub-Saharan Africa during the dry season, a period when the region is affected by the Harmattan, a dry and dusty northeasterly trade wind blowing from the Sahara into the Gulf of Guinea. Objectives: We examined the potential of climate-based statistical forecasting models to predict seasonal incidence of meningitis in Niger at both the national and district levels. Data and methods: We used time series of meningitis incidence from 1986 through 2006 for 38 districts in Niger. We tested models based on data that would be readily available in an operational framework, such as climate and dust, population, and the incidence of early cases before the onset of the meningitis season in January–May. Incidence was used as a proxy for immunological state, susceptibility, and carriage in the population. We compared a range of negative binomial generalized linear models fitted to the meningitis data. Results: At the national level, a model using early incidence in December and averaged November–December zonal wind provided the best fit (pseudo-R2 = 0.57), with zonal wind having the greatest impact. A model with surface dust concentration as a predictive variable performed indistinguishably well. At the district level, the best spatiotemporal model included zonal wind, dust concentration, early incidence in December, and population density (pseudo-R2 = 0.41). Conclusions: We showed that wind and dust information and incidence in the early dry season predict part of the year-to-year variability of the seasonal incidence of meningitis at both national and district levels in Niger. Models of this form could provide an early-season alert that wind, dust, and other conditions are potentially conducive to an epidemic

    Aerosol characterization at the Saharan AERONET site Tamanrasset

    Get PDF
    More than 2 years of columnar atmospheric aerosol measurements (2006-2009) at the Tamanrasset site (22.79° N, 5.53° E, 1377 m a.s.l.), in the heart of the Sahara, are analysed. Aerosol Robotic Network (AERONET) level 2.0 data were used. The KCICLO (K is the name of a constant and ciclo means cycle in Spanish) method was applied to a part of the level 1.5 data series to improve the quality of the results. The annual variability of aerosol optical depth (AOD) and Ångström exponent (AE) has been found to be strongly linked to the convective boundary layer (CBL) thermodynamic features. The dry-cool season (autumn and winter) is characterized by a shallow CBL and very low mean turbidity (AOD ∼0.09 at 440 nm, AE ∼0.62). The wet-hot season (spring and summer) is dominated by high turbidity of coarse dust particles (AE ∼0.28, AOD ∼0.39 at 440 nm) and a deep CBL. The aerosol-type characterization shows desert mineral dust as the prevailing aerosol. Both pure Saharan dust and very clear sky conditions are observed depending on the season. However, several case studies indicate an anthropogenic fine mode contribution from the industrial areas in Libya and Algeria. The concentration weighted trajectory (CWT) source apportionment method was used to identify potential sources of air masses arriving at Tamanrasset at several heights for each season. Microphysical and optical properties and precipitable water vapour were also investigated

    Assessment of nocturnal aerosol optical depth from lunar photometry at the Izaña high mountain observatory

    Get PDF
    This work involves a first analysis of the systematic errors observed in the AOD retrieved at nighttime using the Sun–sky–lunar CE318-T photometer. In this respect, this paper is a first attempt to correct the AOD uncertainties that currently affect the lunar photometry by means of an empirical regression model. We have detected and corrected an important bias correlated to the Moon's phase and zenith angles, especially at longer wavelength channels.AERONET Sun photometers at Izaña have been calibrated within the AERONET Europe TNA, supported by the European Union’s Horizon 2020 research and innovation program under grant agreement no. 654109 (ACTRIS-2)

    Localization of nonlinear excitations in curved waveguides

    Full text link
    Motivated by the example of a curved waveguide embedded in a photonic crystal, we examine the effects of geometry in a ``quantum channel'' of parabolic form. We study the linear case and derive exact as well as approximate expressions for the eigenvalues and eigenfunctions of the linear problem. We then proceed to the nonlinear setting and its stationary states in a number of limiting cases that allow for analytical treatment. The results of our analysis are used as initial conditions in direct numerical simulations of the nonlinear problem and localized excitations are found to persist, as well as to have interesting relaxational dynamics. Analogies of the present problem in contexts related to atomic physics and particularly to Bose-Einstein condensation are discussed.Comment: 14 pages, 4 figure

    Fullerene-based molecular nanobridges: A first-principles study

    Full text link
    Building upon traditional quantum chemistry calculations, we have implemented an {\em ab-initio} method to study the electrical transport in nanocontacts. We illustrate our technique calculating the conductance of C60_{60} molecules connected in various ways to Al electrodes characterized at the atomic level. Central to a correct estimate of the electrical current is a precise knowledge of the local charge transfer between molecule and metal which, in turn, guarantees the correct positioning of the Fermi level with respect to the molecular orbitals. Contrary to our expectations, ballistic transport seems to occur in this system.Comment: 4 pages in two-column forma

    Outcomes of COVID-19 Patients Admitted to the Intermediate Respiratory Care Unit: Non-Invasive Respiratory Therapy in a Sequential Protocol

    Full text link
    The intermediate respiratory care units (IRCUs) have a pivotal role managing escalation and de-escalation between the general wards and the intensive care units (ICUs). Since the COVID-19 pandemic began, the early detection of patients that could improve on non-invasive respiratory therapies (NRTs) in IRCUs without invasive approaches is crucial to ensure proper medical management and optimize limiting ICU resources. The aim of this study was to assess factors associated with survival, ICU admission and intubation likelihood in COVID-19 patients admitted to IRCUs. Observational retrospective study in consecutive patients admitted to the IRCU of a tertiary hospital from March 2020 to April 2021. Inclusion criteria: hypoxemic respiratory failure (SpO(2) = 25 rpm with FiO(2) > 50% supplementary oxygen) due to acute COVID-19 infection. Demographic, comorbidities, clinical and analytical data, and medical and NRT data were collected at IRCU admission. Multivariate logistic regression models assessed factors associated with survival, ICU admission, and intubation. From 679 patients, 79 patients (12%) had an order to not do intubation. From the remaining 600 (88%), 81% survived, 41% needed ICU admission and 37% required intubation. In the IRCU, 51% required non-invasive ventilation (NIV group) and 49% did not (non-NIV group). Older age and lack of corticosteroid treatment were associated with higher mortality and intubation risk in the scheme, which could be more beneficial in severe forms. Initial NIV does not always mean worse outcomes
    corecore