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Introduction
The meningitis belt in sub-Saharan Africa is 
the region where most epidemics of meningo
coccal meningitis occur and which suf-
fers the greatest burden of endemic disease 
(Molesworth et al. 2002). Meningitis is an 
infection of the thin lining that surrounds 
the brain and spinal cord. Although there 
are many causes of meningitis, the epidemic 
form of the disease is caused by the bacterium 
Neisseria meningitidis. Human carriers transmit 
these bacteria through respiratory droplets or 
throat secretions. Under certain circumstances 
the bacteria become pathogenic, invading the 
nasopharyngeal epithelial cells and entering 
the blood stream, thus instigating disease. 
Epidemics in the meningitis belt are caused 
by serogroups A, C, X, and W135, with sero-
group A meningococcus accounting for an 
estimated 80–85% of all cases.

Epidemic control and response has been 
based on reactive mass vaccination with 
meningococcal polysaccharide (PS) vac-
cines and effective case management. The 

deployment of PS is usually based on early 
detection of epidemics through the effective 
application of alert and epidemic thresh-
olds as recommended by the World Health 
Organization (WHO 2000). Consequently, 
the impact of the vaccination response 
depends largely on the quality and timeliness 
of the surveillance system, and would benefit 
from forecasting tools.

Epidemics and seasonal upsurges in 
endemic disease occur in the latter part of the 
dry season after the onset of the Harmattan—a 
ground-level stream of dry and dusty desert 
air, which is part of the African continental 
trade wind system that sweeps southwestward 
between the end of November and the middle 
of March—and usually subside at the onset 
of the rains (Lapeysonnie 1963; Molesworth 
et al. 2002). The location and seasonality of 
meningitis epidemics suggest that environ-
mental factors, such as low absolute and rela-
tive humidity, high temperatures, and dusty 
atmospheric conditions may play an impor-
tant role (e.g., Agier et al. 2013; Cheesbrough 

et al. 1995; Dukić et al. 2012; Martiny and 
Chiapello 2013; Sultan et al. 2005). It also has 
been suggested that climate conditions may 
contribute to the year-to-year variation in the 
incidence of meningitis in specific locations 
(Thomson et al. 2006; Yaka et al. 2008).

The mechanism by which climate and 
dust may influence meningitis occurrence 
along with epidemic location and intensity 
remains unclear. The mechanisms of the inter-
action between N. meningitidis and the muco-
sal epithelial cells are well known (van Deuren 
et al. 2000), but, to our knowledge, there are 
no in vivo studies of the effects of climate and 
dust on the pathogenesis and transmission of 
N. meningitidis (Palmgren 2009). The most 
common proposed mechanism has been that 
physical damage to the epithelial cells lining 
the nose and throat in dry and dusty con-
ditions permits easy passage of the bacteria 
into the blood stream, causing invasive dis-
ease. Other more controversial mechanisms 
involve potential effects of dust particles on 
the fluid dynamics of airborne bacteria trans-
mission, the potential impact of climate (high 
dust levels, low humidity, and cold nights) on 

Address correspondence to C. Pérez García-Pando, 
2880 Broadway, New York, NY 10025 USA. 
Telephone: (212) 678-5585. E-mail: carlos.perezga@
nasa.gov

Supplemental Material is available online (http://
dx.doi.org/10.1289/ehp.1306640).

C.P.G.-P. acknowledges the Earth Institute (EI) 
Fellows program at Columbia University, the 
National Oceanic and Atmospheric Administration 
and Department of Energy. Dust simulations were 
performed on the MareNostrum supercomputer at 
the Barcelona Supercomputing Center.

This study was supported by the EI Cross-
Cutting Initiative project: “Atmospheric aerosol 
impacts on health in sub-Saharan Africa,” NASA 
(National Aeronautics and Space Administration) 
ROSES (Research Opportunities in Space and 
Earth Sciences) applications feasibility studies, and 
European Global Monitoring for Environment and 
Security–Monitoring Atmospheric Composition 
and Climate (GMES-MACC) project Working 
Package 3.1. 

The authors declare they have no actual or potential 
competing financial interests.

Received: 11 February 2013; Accepted: 12 March 
2014; Advance Publication: 17 March 2014; Final 
Publication: 1 July 2014.

Soil Dust Aerosols and Wind as Predictors of Seasonal Meningitis Incidence 
in Niger
Carlos Pérez García-Pando,1,2* Michelle C. Stanton,3,4,* Peter J. Diggle,3,5 Sylwia Trzaska,6 Ron L. Miller,1,2 
Jan P. Perlwitz,1,2 José M. Baldasano,7 Emilio Cuevas,8 Pietro Ceccato,6 Pascal Yaka,9 and Madeleine C. Thomson6,10

1NASA Goddard Institute for Space Studies, New York, New York, USA; 2Department of Applied Physics and Applied Math, Columbia 
University, New York, New York, USA; 3Lancaster Medical School, Lancaster University, Lancaster, United Kingdom; 4Liverpool 
School of Tropical Medicine, Liverpool, United Kingdom; 5Department of Epidemiology and Population Health, University of 
Liverpool, Liverpool, United Kingdom; 6International Research Institute for Climate and Society, Palisades, New York, USA; 7Barcelona 
Supercomputing Center–Centro Nacional de Supercomputación, Barcelona, Spain; 8Izaña Atmospheric Research Center, Agencia 
Estatal de Meteorología, Tenerife, Spain; 9Office of Civil Aviation and Meteorology General Direction, Ouagadougou, Burkina Faso; 
10Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA 

*These authors contributed equally.

Background: Epidemics of meningococcal meningitis are concentrated in sub-Saharan Africa 
during the dry season, a period when the region is affected by the Harmattan, a dry and dusty 
northeasterly trade wind blowing from the Sahara into the Gulf of Guinea.

Objectives: We examined the potential of climate-based statistical forecasting models to predict 
seasonal incidence of meningitis in Niger at both the national and district levels.

Data and methods: We used time series of meningitis incidence from 1986 through 2006 for 
38 districts in Niger. We tested models based on data that would be readily available in an opera-
tional framework, such as climate and dust, population, and the incidence of early cases before the 
onset of the meningitis season in January–May. Incidence was used as a proxy for immunological 
state, susceptibility, and carriage in the population. We compared a range of negative binomial 
generalized linear models fitted to the meningitis data.

Results: At the national level, a model using early incidence in December and averaged 
November–December zonal wind provided the best fit (pseudo-R2 = 0.57), with zonal wind having 
the greatest impact. A model with surface dust concentration as a predictive variable performed 
indistinguishably well. At the district level, the best spatiotemporal model included zonal wind, dust 
concentration, early incidence in December, and population density (pseudo-R2 = 0.41).

Conclusions: We showed that wind and dust information and incidence in the early dry season 
predict part of the year-to-year variability of the seasonal incidence of meningitis at both national 
and district levels in Niger. Models of this form could provide an early-season alert that wind, dust, 
and other conditions are potentially conducive to an epidemic.
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preceding viral infections that may increase 
susceptibility, effects of iron in dust particles 
on the activation of the meningococci, and 
effects of high dust levels on human behavior, 
including crowding and reduced ventilation 
(e.g., blocking windows). 

Factors other than climate conditions, 
such as herd (i.e., population) and natural 
immunity levels, vaccination type and cover-
age, serogroup type, new strains, clonal viru-
lence, and coincident respiratory infections, 
are likely to contribute to the temporal and 
spatial variation in meningitis epidemics (e.g., 
Mueller and Gessner 2010). However, despite 
progress in surveillance and research, efforts 
to predict epidemics have been hindered 
by an incomplete understanding of menin
gitis epidemic patterns and a lack of data 
(Moore 1992).

In this study we extended the work of 
Yaka et  al. (2008) at the national level in 
Niger by testing seasonal forecast models 
based on climate and dust information, along 
with other determinants at both national and 
district levels, using data that would be readily 
available in an operational framework. We 
analyzed and compared a range of negative 
binomial generalized linear models that were 
fitted to the meningitis data.

Data and Methods
Epidemiological data: early and seasonal cases. 
We used the number of weekly suspected cases 
compiled by the Multidisease Surveillance 
Center (MDSC) based on information pro-
vided by the Ministry of Public Health in 
Niger for 38 districts as defined before 2002. 
The period used in this study was 1986–2006. 
The reported data include all suspected cases 
of acute meningitis, according to the standard 
clinical diagnosis by the WHO (1998): a sud-
den onset of fever (> 38.5°C rectal or 38.0°C 
axillary) and one or more of the following 
signs: stiff neck, altered consciousness, or other 
meningeal signs. In patients < 1 year of age, a 
suspected case occurs when fever is accompa-
nied by a bulging fontanelle. Suspected cases 
may include meningitis caused by Streptococcus 
pneumonia and Haemophius influenzae  b. 
However, N. meningitidis is the only patho-
gen associated with epidemics of meningitis. 
Average population density per district was 
calculated by dividing the district population 
in each year by the district area.

We modeled the seasonal number of cases 
(counts), which we defined as cases reported 
from January through May (the meningitis 
season). Weekly data for this period were 
aggregated at both national and district levels 
for each year. We examined whether climate 
conditions before January, including dust 
concentration, could be used to predict the 
meningitis incidence during January through 
May. There is a lack of historical and spatially 

resolved data on predictors related to popu-
lation immunity, such as carriage preva-
lence, seroprevalence, vaccination coverage, 
and introduction of new clones. Therefore, 
we used the early incidence (i.e., cases per 
100,000 population diagnosed in December) 
as a proxy measure of population carriage 
and/or susceptibility. de  Chabalier et  al. 
(2000) reported that major epidemics in Niger 
often showed higher incidence early in the 
season than minor epidemics. 

Climate and dust model data. The atmo-
spheric and dust data used in this study were 
derived using the recently developed online 
regional atmospheric dust model NMMB/
BSC-Dust (Pérez et al. 2011), which simu
lates soil dust aerosol emission, transport 
within the atmosphere, and deposition. The 
resolution of the model was set to 1° × 1° 
and the simulation covered 1986–2006, 
coincident with the MDSC epidemiologi-
cal data. The simulation was initialized every 
24 hr, and the boundary conditions were 
taken from the global National Centers 
for Environmental Prediction Reanalysis-I 
(Kistler et al. 2001) for pressure level data, 
and from the Global Land Data Assimilation 
System II database (Rodell at al. 2004) for 
soil moisture and temperature. We used 
surface dust concentration estimates from a 
model given the paucity of direct in situ mea-
surements especially at district level. The soil 
dust aerosol component of the model was 
thoroughly evaluated with existing satellite 
and in  situ data over the region of interest 
(Ceccato et al. 2013; Pérez et al. 2011), show-
ing daily aerosol optical depth correlations 
around 0.6 (p < 0.05). Additional details on 
the dust model and its suitability for the pres-
ent study are provided in the Supplemental 
Material (“NMMB/BSC-Dust model”).

We considered model variables that 
characterize the Harmattan: zonal wind [i.e., 
the component of the horizontal wind toward 
east (meters per second)], meridional wind 
[i.e., the component of the horizontal wind 
toward north (meters per second)], wind 
speed (meters per second), humidity [spe-
cific (kilograms per cubic meter), absolute 
(kilograms per kilogram), and relative (per-
cent)], temperature (kelvin), and surface dust 
concentration (micrograms per cubic meter). 
For wind, humidity, and temperature we 
used outputs at the pressure level of 925 hPa, 
which were consistent with values close to 
ground level in Niger. For dust concentra-
tion we used the particulate matter fraction 
≤ 10 μm in size at 10 m above ground level.

For the national level, data were spatially 
averaged over the region 0.1° E to 14.2° E 
longitude and 12.3° N to 17.3° N latitude, 
which encompasses southern Niger. The 
northern region of Niger was excluded from 
this analysis because this region is scarcely 

populated due to the presence of the Sahara 
desert, and few meningitis cases occur.

We considered climate variables aver-
aged over a range of consecutive months from 
September through December to explore 
whether climate and dust conditions lead-
ing up to January (before alert and epidemic 
thresholds are typically crossed) could be used 
to predict the extent of the following meningitis 
season. We applied a natural log (ln)–transform 
to the climate and dust variables, so they were 
approximately normally distributed. Because 
the monthly-averaged zonal and meridional 
wind components over the period and region 
of interest were negative (the Harmattan 
blows from north to south and from east to 
west), the absolute value of these variables was 
applied before the ln-transform. For inclu-
sion in our models, we considered the avail-
able ln‑transformed climate/dust variables with 
the largest Pearson correlation coefficients with 
the ln-transformed national seasonal menin-
gitis count data: temperature from September 
through December at 925 hPa (TSDt), average 
zonal wind from November through December 
at 925 hPa (UNDt), average meridional wind 
from November through December at 925 hPa 
(VNDt), average wind speed at 925 hPa from 
November through December (UVNDt) and 
in December (UVDt), and average dust con-
centration from September through December 
(DustSDt) and from October through December 
(DustODt). The largest correlation value had the 
greatest magnitude of all the statistically sig-
nificant (p < 0.05) correlation coefficients cal-
culated for each climate variable. Interestingly, 
humidity before January did not show a signifi-
cant correlation with the seasonal incidence.

Modeling approach and evaluation 
criteria. Under the assumption that the 
meningitis count data were overdispersed, 
we initially assumed that Yt, the number of 
cases observed in the January–May period 
of year t (where t = 1986…2006), followed 
a negative binomial distribution, with mean 
parameter μt, overdispersion parameter θ, and 
variance σt =  (μt + μt

2)/θt (Lawless 1987). 
We determined the linear combination of 
risk factors that best represented the variabil-
ity in the mean meningitis counts on the ln 
scale, ln(μt). Maximum likelihood techniques 
were used to fit each of the models using the 
R statistical package (version 2.14.1; http://
www.r-project.org/).

National-level models. At the national 
level, we modeled the seasonal counts Yt using 
a negative binomial distribution, and con-
sidered three different approaches to model 
the mean, μt. First, we tested to what extent 
meningitis incidence before the onset of the 
disease in January could explain the seasonal 
incidence during January through May:

	 ln(μt) = α + βEt + ln(Nt),	 [1]
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where Et is the ln-transformed December 
incidence and Nt is the national population 
count in meningitis-year t. The second model 
was specified as

	 ln(μt) = α + ΣK
k = 1γkXkt + ln(Nt),	 [2]

where Xkt is the k selected ln-transformed 
climate and dust variables. Finally, we used 
both climate/dust variables and December 
incidence as

ln(μt) = α + βEt + ΣK
k = 1γkXkt + ln(Nt).	 [3]

A key concept of our model building and 
model selection was parsimony: Our goal was 
to build and select a model that was as simple 
as possible, while still explaining a significant 
amount of variability in the data. We used 
backward-selection to determine which of 
the climate/dust variables to include in the 
final national-level models. All of the short-
listed variables were included in an initial full 
model, and variables that did not explain a 
sufficient amount of variability in the data 
were removed from the model one at a time. 
We used likelihood ratio tests (Vuong 1989) 
to determine whether a variable’s contri-
bution was sufficient or not (p < 0.05), in 
addition to testing for the significance of the 
overdispersion parameter. The final model 
was limited to variables that were significant 
predictors of seasonal meningitis incidence. 

To evaluate the performance of each of 
the models, we used comparison measures and 
goodness-of-fit statistics including the Akaike 
information criterion (AIC), the pseudo‑R2, 
and the Pearson correlation between the 
observed data and the resulting cross-validated 
predictions on the ln‑incidence scale (CVC). 
CVC estimates were derived by fitting the 
model to the data with 1 year excluded and 
using the fitted parameter estimates to predict 
the excluded data. We used the “deviance-
based” pseudo‑R2 (Mittlböck and Waldhör 
2000), which is restricted to the interval [0,1] 
and is interpreted as the amount of variability 
explained by the model.

We also analyzed each model’s ability to 
detect whether or not a particular incidence-
based threshold had been exceeded, such 
that if the fitted probability of yt exceeding 
a threshold K was greater than some value c 
(where 0 < c < 1), then we predict that yt > K. 
To account for the case where a small num-
ber of years had a large influence on the fit 
of the models, we used the cross-validated 
predicted values ~yt as opposed to the fitted 
time series ŷt to calculate the exceedance 
probabilities. We assumed a threshold K of 
100 per 100,000 population (de Chabalier 
et al. 2000), and for a sequence of values for 
c—that is, 51 evenly spaced values between 
0 and 1 (0.02 increments)—we calculated 

the sensitivity [SENS = true positives/(true 
positives  +  false negatives)], specificity 
[SPEC = true negatives/(true negatives + false 
positives)], and the scaled Hanssen and 
Kuipers score [HKS =  (SENS + SPEC)/2, 
where HKS = 1 when the model generates 
perfect predictions, and HKS = 0.5 when the 
model performs no better than random]. The 
results presented are those corresponding to 
the value of c that minimized the equation 
(1-SENS)2 + (1-SPEC)2—that is, the value 
of c that simultaneously maximized the SENS 
and SPEC of the model estimates.

District-level models. At the district level, 
we analyzed whether the estimated effects of 
climate/dust and early incidence observed at 
the national level persisted at the district level, 
and whether the size of the estimated effect 
differed from that observed at the national 
level. For climate/dust, we considered both 
large-scale (national-level) covariates and local 
(district-level) deviations from the large-scale 
covariates—the difference between the dis-
trict level and national level in the models 
under consideration.

We considered three model categories 
(based on early incidence, climate/dust, and 
both). For each category, we applied the 
corresponding selected national-level model 
to the district-level count data, and we con-
sidered two additional models including 
district-level covariates to assess the influence 
of including district-level information: one 
model with a universal intercept α, and one 
with a district-specific intercept αi (for each 
district i) to account for unexplained district 
differences. We used likelihood ratio tests to 
determine which covariates to include in the 
models including district-level covariates. In 
these models, we considered national-level 
ln‑transformed climate/dust covariates (Xkt), 
district-level climate/dust deviations from 
the national average (Δxkit) (Δxkit = xkit – Xkt, 
where xkit is the district-level ln-transformed 
climate/dust variable), and ln‑transformed 

early incidence in December at the national 
level (Et) and at the district-level (eit). As 
additional between-district variability is to 
be expected (since the spatiotemporal vari-
ability of climate in the region is lower than 
that of meningitis) we considered additional 
covariates that may explain part of the spatial 
variability including population density (dit), 
whether the district was classed as urban (1Ui) 
or rural (1Ri) (where 1Ui = 1 and 1Ri = 0 if 
the district is classified as urban, and 1Ui = 0 
and 1Ri = 1 if the district is classified as rural), 
and the longitude (loni) and latitude (lati) of 
the centroid of the district. We also included 
the ln‑transformed average early incidence 
of meningitis in December over all districts 
adjacent to each district (referred to as neigh-
boring districts) (–eit) and the ln‑transformed 
population size (Nit) as an offset.

With regard to the climate/dust covariates, 
if one of the national level or the district-level 
deviation from the national average was sig-
nificant, we retained both in the model. Three 
districts were classified as urban: Maradi, 
Niamey, and Zinder.

We also evaluated the performance of the 
district-level models with respect to detect-
ing whether a particular incidence threshold 
K was exceeded using similar methods to 
those described for the national-level mod-
els, with the additional calculation of positive 
predictive value [PPV = true positives/(true 
positives + false positives)] and negative predic-
tive value [NPV = true negatives/(true nega-
tives + false negatives)]. We initially used a 
threshold of 100 per 100,000, and we then 
explored the dependence of the results on both 
the incidence threshold K and the method of 
selecting the cutoff value c.

Results
National level. Summary data for the 
national-level models are presented in Table 1. 
In applying the stepwise backward model 
selection process, the final climate-only and 

Table 1. Model comparison and goodness-of-fit summaries for national-level negative binomial models 
fitted to the ln-incidence count data over the period 1987–2006.

Model AIC Pseudo-R2 CVC SENS SPEC HKS
Et 395 0.24 0.38 0.40 1.00 0.70
UNDta 387 0.49 0.51 1.00 0.60 0.80
UNDt + Eta 385 0.57 0.59 0.80 0.87 0.83
UVNDt 388 0.47 0.51 1.00 0.53 0.77
UVNDt + Et 385 0.57 0.60 0.80 0.80 0.80
DustODt 388 0.47 0.46 1.00 0.60 0.80
DustODt + Et 386 0.55 0.56 0.80 0.93 0.87
VNDt 394 0.29 0.34 0.60 0.53 0.57
VNDt + Et 392 0.42 0.48 0.60 0.87 0.73

Abbreviations: AIC, Akaike’s information criterion; CVC, Pearson correlation between the observed data and the result-
ing cross-validated predictions on the ln-incidence scale; DustODt, ln-transformed average dust concentration during 
October–December (μg/m3); Et, ln-transformed early incidence in December; HKS, scaled Hanssen and Kuipers score; 
SENS, sensitivity; SPEC, specificity; UNDt, VNDt, and UVNDt, ln-transformed average values during November–December 
for zonal wind (m/sec), meridional wind (m/sec), and wind speed (m/sec) at 925 hPA. 
aIndicates the models selected during the model selection process. SENS, SPEC, and HKS were calculated using a 
threshold of 100 cases per 100,000. 
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climate-plus-early-incidence models contained 
a single climate variable, namely the aver-
age zonal wind during November through 
December (UNDt). The climate-plus-early-
incidence model had pseudo‑R2 = 0.57 and 
CVC = 0.59. The fit of the model where the 
single climate variable was the average wind 
speed during November through December 
(UVNDt) or the average dust concentration 
during October through December (DustODt) 
was statistically indistinguishable from the 
model that included UNDt, consistent with 
the high correlations among these variables 
(Pearson correlation coefficients 0.84–0.86). 
In contrast to results of Yaka et al. (2008), the 
meridional wind component (VNDt) model 
resulted in inferior scores.

Models that incorporated both climate/
dust and early incidence were superior in fit to 
both the early-incidence-only model, and the 
climate-only models (Table 1). Climate and 
dust had a greater impact on model fit than 
early incidence, as shown by the increases in 
pseudo‑R2 and CVC, and decreases in AIC, 
between the climate-plus-early-incidence mod-
els and the corresponding models with early 
incidence or the climate component only.

Figure  1 presents the cross-validated 
results of the model with both average zonal 
wind during November through December 
(UNDt) and early incidence (Et) as covari-
ates. Using a probability decision cutoff  c 
of 0.42 and cross-validated predictions ~yt, 4 
of 5 years were correctly predicted to have 
exceeded 100 cases per 100,000 over the 
20-year period, whereas 2 of the remaining 
15 years were incorrectly predicted to exceed 
it (SENS = 0.80, SPEC = 0.87, HKS = 0.83). 
The model captured the maximum incidence 
in 1995, although the magnitude was under-
estimated. Figure 1 also includes the results 
of the model with average dust concentra-
tion during October through December 
(DustODt) and early incidence as covariates. 
Using a probability decision cutoff of 0.36 
and cross-validated predictions ~yt, 4 of 5 years 
were correctly predicted to have exceeded 
the threshold, whereas 1 of the remaining 
15 years was incorrectly predicted to exceed 
it (SENS = 0.80, SPEC = 0.93, HKS = 0.87).

District level. Table 2 presents the model 
comparison and goodness-of-fit statistics for 
the district-level models. The climate/dust 
variables selected for inclusion in the models 
were the average zonal wind (November–
December) at the national level (UNDt), the 
district-level deviation of the zonal wind from 
the national-level average (ΔUNDit), the aver-
age wind speed (November–December) at 
the national level (UVNDt), the district-level 
deviation of the wind speed from national-
level average (ΔUVNDit), the average dust 
concentration (October–December) at the 
national level (DustODt), and the district-level 

Table 2. Model comparison and goodness-of-fit summaries of the district-level negative binomial models 
fitted to the ln-incidence count data over the period 1987–2006.

Model Covariates AIC pseudo-R2 CVC

1 Et 8,594 0.10 0.17
2 Et, eit, 

–eit, IUi, IRi, dit, lati 8,478 0.21 0.43
3 Et, eit, 

–eit, αi 8,478 0.24 0.42
4 UNDt 8,531 0.16 0.25
5 UNDt, ΔUNDit, DustODt, ΔdustODit, dit, lati 8,421 0.26 0.41
6 UNDt, ΔUNDit, DustODt, ΔdustODit, dit, αi 8,369 0.34 0.44
7 Et, UNDt 8,499 0.19 0.28
8 Et, eit, 

–eit, UNDt, ΔUNDit, UVNDt, ΔUVNDit, DustODt,ΔdustODit, dit, lati 8,303 0.36 0.52
9 Et, eit, 

–eit, UNDt, ΔUNDit, DustODt, ΔdustODit, dit, αi 8,275 0.41 0.55
9N Et, UNDt, DustODt, dit, αi 7,994 0.32 0.46
9D eit, 

–eit, UNDit, dustODit, dit, αi 7,898 0.40 0.56

Abbreviations: αi district-specific intercept; AIC, Akaike’s information criterion; CVC, Pearson correlation between the 
observed data and the resulting cross-validated predictions on the ln-incidence scale; dit, district population density; 
DustODt, ln-transformed average dust concentration at national level during October–December (μg/m3); dustODit, 
ln‑transformed average dust concentration at district level during October–December (μg/m3); Et, eit and –eit, ln-trans-
formed early incidence in December at national level, district level, and averaged over neighboring districts (cases 
per 100,000); IUi and IRi, urban and rural district indicators; lati, district latitude; UNDt and UVNDt, ln-transformed average 
values at national level during November–December for zonal wind (m/sec) and wind speed (m/sec) at 925 hPa; ΔUNDit, 
ΔUVNDit, and ΔdustODit, differences in the ln-transformed district-level zonal wind (m/sec), wind speed (m/sec), and dust 
concentration (μg/m3) compared with the ln-transformed national-level averages; UNDt, ln-transformed average zonal 
wind (m/sec) values at district level during November–December. Models 1–3 are based on early incidence. Models 4–6 
are based on climate/dust covariates. Models 7–9 are based on early incidence and climate/dust covariates. Models 9N 
and 9D are similar to model 9 but with national-level covariates only (model 9N) and with district-level covariates only 
(model 9D) (both 9N and 9D also include district-specific intercepts). 

Figure 1. Observed national incidence (solid black line) and cross-validated national incidence predic-
tions (circles), plus 95% CIs obtained by fitting a negative binomial model to the national count data, 
using November–December zonal wind (925 hPa) and December incidence as predictors (A), and using 
October–December dust concentration and December incidence as predictors (B). Black circles denote 
those predictions that were correctly assigned to be either above or below 100 cases per 100,000, whereas 
open circles are incorrect predictions. Decision cutoff values c of 0.42 (A) and 0.36 (B) were used. 
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deviation of the dust concentration from 
the national-level average (ΔdustODit). The 
inclusion of both national and district-level 
covariates (Table 2, models 2, 5, and 8), as 
opposed to using national-level only (models 
1, 4, and 7), resulted in a statistically signifi-
cant (p < 0.05) improvement in the fit of the 
model. Although the inclusion of district-
specific observed covariates such as popula-
tion density and latitude explained some of 
the between-district variability, there were still 
unexplained differences between the districts, 
as indicated by the significant improvements 
made in the fit of the models when a district-
specific intercept (αi) is included (models 3, 
6, and 9). Similar to the national-level results, 
both early incidence (national, district, and 
averaged over neighbors) and wind and dust 
information (national and district) contrib-
uted to the fit of the model, with wind and 
dust information having the greater influence.

Table  3 presents SENS, SPEC, HKS, 
PPV, and NPV for each of the models with 
respect to an incidence threshold of 100 cases 
per 100,000. The best model with respect to 
these criteria and AIC, pseudo‑R2, and CVC 
(Table 2) is model 9, which includes early 
incidence (national, district-level, and aver-
age of neighbors) and climate (national and 
district-level deviations from the national-level 
zonal wind and dust concentration), popula-
tion density, and a district-specific intercept. 
However, this model represented only a small 
improvement over a model where the district-
specific intercept was replaced by latitude and 
November–December wind speed (national 
level and the district-level deviation from the 
national level) (Table 2, model 8).

Table 4 includes the estimated coefficients 
for model  9. Both the national-level and 
district-level deviation coefficients for zonal 
wind and dust concentration are statistically 
significant, indicating that the national and 
district-level data make independent contri-
butions to the fit of the model. A positive 
relationship was observed between zonal 
wind and meningitis incidence, indicating 
that stronger winds from an easterly direc-
tion were followed by an increase in cases. 
Despite the negative coefficient multiplying 
the district-level deviation dust covariate, the 
overall effect of dust [2.09 × DustODt – 1.36 × 
(dustODit – DustODt)] is never to reduce men-
ingitis incidence because the district-level dust 
concentration is never greater than roughly 
twice the national average (note that we refer 
to non–ln-transformed values). This negative 
coefficient means that dustier districts have 
lower incidence in this model. However, the 
incidence variations between districts due to 
dust is small compared with the estimated 
effect of the national-level dust concentration. 
The negative coefficient may be an artifact of 
uncertainties in district-level dust variations 

that are supplied by our climate model in the 
absence of direct measurements.

Model 9 had the unusual feature that 
district-level seasonal incidence decreased 
as national-level early incidence increases. 
(The coefficient of Et in Table 4 is negative.) 
However, the coefficient is not statistically 
distinct from zero, and its influence is small in 
practice, compared with the estimated effect 
of early incidence in the district (eit) and the 
immediate neighbors (–eit). The negative value 
of Et may be partly an artifact of our simple 
model, which does not distinguish between 
early incidence within remote districts and 
districts that are nearby but not neighboring 
(and whose influence is not included within 
–eit). The use of the national average to rep-
resent the influence of both these districts 
may be too restrictive, resulting in the coun-
terintuitive negative (but small) estimated 
effect of Et.

In Table 2 and Table 4 we compared 
the results of model 9 with model 9N, based 
upon national-level covariates only, and 
model 9D, constructed from district-level 
covariates only. (All models include district-
specific intercepts.) These additional models 
show the expected increase of seasonal inci-
dence with increasing wind, dust, early inci-
dence, and population density. In contrast 
to model 9, early incidence at the national 
level is associated positively with meningitis 

incidence when district-level deviation 
covariates are not included (model 9N). In 
model 9D, the removal of national-level early 
incidence only slightly weakened the influ-
ence of early incidence in adjacent districts. 
The comparison of goodness-of-fit among 
models 9, 9N, and 9D in Table 2 demon-
strates that the inclusion of district-level 
variables provides a better fit and that the 
addition of the national-level data does little 
to improve predictions at district-level.

Figure 2 shows district-level sensitivity 
and specificity estimates for model 7 (which 
includes early incidence and zonal wind at 
the national level only) and model 9. For 
both models, sensitivity was rather heteroge-
neous across the country, with model predic-
tions for the central southern districts close 
to the border with Nigeria, where popula-
tion density is highest, showing the high-
est sensitivity. District-level specificity was 
more homogeneous across the country, with 
model 9 estimates showing greater specificity 
than model 7 estimates, except in some of the 
southern districts.

Threshold-based model evaluations are 
highly dependent on the selected threshold 
and the method to select the cutoff value c. 
Typically the threshold under consideration 
is policy driven—for example, there may be 
a particular threshold from which certain 
actions are initiated. For seasonal meningitis 

Table 3. Threshold-based results obtained for a range of district-level models produced using a thresh-
old of 100 cases per 100,000 and using both sensitivity (SENS) and specificity (SPEC) to select the cutoff 
value c.

Modela SENS SPEC HKS PPV NPV
1 0.5970 0.6451 0.6211 0.2778 0.8750
2 0.6119 0.6843 0.6481 0.3071 0.8852
3 0.5448 0.7457 0.6423 0.3288 0.8775
4 0.7015 0.5461 0.6238 0.2611 0.8889
5 0.7164 0.5973 0.6569 0.2892 0.9021
6 0.7090 0.6263 0.6677 0.3025 0.9039
7 0.6045 0.7082 0.6564 0.3214 0.8868
8 0.6493 0.7287 0.6890 0.3537 0.9008
9 0.6791 0.7218 0.7005 0.3583 0.9077
aModel numbers correspond to the models listed in Table 2.

Table 4. Estimated coefficients (95% CIs) and p-values obtained by fitting model 9, model 9N, and 
model 9D.

Variablea
Model 9 Model 9N Model 9D

Estimate (95% CI) p-Value Estimate (95% CI) p-Value Estimate (95% CI) p-Value
UNDt 1.94 (0.79, 3.11) 0.0003 2.40 (1.19, 3.62) < 0.0001
ΔUNDit 4.31 (2.94, 5.67) < 0.0001
UNDit 3.19 (2.44, 3.93) < 0.0001
DustODt 2.09 (1.18, 2.98) < 0.0001 1.26 (0.34, 2.16) 0.0016
ΔdustODit –1.36 (–2.48,–0.27) 0.0051
dustODit 0.51 (–0.02, 1.02) 0.0298
Et –0.18 (–0.37, 0.01) 0.0330 0.40 (0.23, 0.57) < 0.0001
eit 0.23 (0.13, 0.32) < 0.0001 0.21 (0.12, 0.32) < 0.0001
–eit 0.38 (0.24, 0.51) < 0.0001 0.33 (0.21, 0.45) < 0.0001
dit 2.00 (1.43, 2.57) < 0.0001 1.54 (0.95, 2.13) < 0.0001 2.05 (1.46, 2.62) < 0.0001

Models 9N and 9D are similar to model 9 but with national-level covariates only (model 9N) and with district-level 
covariates only (model 9D) (both 9N and 9D also include district-specific intercepts).
aVariables are described in Table 2.
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incidence there is no universally recognized 
threshold to categorize the season to be either 
“normal” or “high.” In the above analysis we 
used a threshold of 100 cases per 100,000 
(de Chabalier et al. 2000). We additionally 
explored the dependence of our results on 
this threshold using a range between 50 and 
300 cases per 100,000 for which 35% and 
5% of district-seasons crossed the threshold, 
respectively. Figure 3 presents plots of SENS, 
SPEC, PPV, and NPV for four different mod-
els over this range. Models considered included 
a model with early incidence and zonal wind at 
925 hPa at the national level only (model 7); 
a model with both national and district-level 
early incidence, average early incidence aver-
aged over neighboring districts, and a district-
specific intercept (model 3); a model with 
national and district-level zonal wind and dust 
concentrations and a district-specific intercept 
(model 6); and a model with both national- 
and district-level early incidence, national- and 
district-level zonal wind and dust concentra-
tions, average early incidence in neighboring 
districts, population density, and a district-
specific intercept (model 9). Models 6 and 9 
generally outperformed the other models with 
regard to sensitivity (around 0.7 for thresholds 
between 50 and 170 per 100,000), PPV, and 
NPV. With respect to specificity, none of the 
models considered consistently outperformed 
the other three. As expected, PPV decreased 
and NPV increased as the threshold increased 
because, as the number of epidemics decreased, 
the number of false positive and true negative 
predictions increased while true positive and 
false negative predictions decreased.

When determining how the cutoff value c 
is selected, the relative importance of sensitiv-
ity, specificity, PPV, and NPV needs to be 
considered with respect to some form of cost–
benefit measure: For example, is it feasible to 
vaccinate a large number of people unneces-
sarily if it means that a large proportion of 
cases are prevented? We performed additional 
analyses in which simultaneous optimization 
of sensitivity, specificity, PPV, and NPV was 
the criterion used to select c [i.e., the value of 
c that minimized the equation (1-SENS)2 + 
(1-SPEC)2 + (1‑PPV)2 + (1‑NPV)2], instead 
of using optimization of sensitivity and speci
ficity only (Table 5). The method had no 
influence on results obtained for model 3. For 
results obtained for model 6 and model 9, we 
observed that generally NPV was not essen-
tially affected by the optimization technique, 
specificity was greater using the alternative 
optimization technique, whereas sensitivity 
and PPV decreased and increased, respec-
tively, by approximately equal amounts. 
These results highlight the need to prioritize 
these parameters for optimization according 
to the specific public health context when 
developing the model.

Figure 2. Maps of sensitivity and specificity based on predictions from a model that includes zonal wind 
and December incidence at national level (model 7, as defined in Table 2) (left) and a model with zonal 
wind, dust, and December incidence at the national and district levels, average December incidence of 
neighboring districts, population density, and a district-specific intercept (model 9, as defined in Table 2) 
(right). A threshold of 100 cases per 100,000 was used, and the value of c was selected as the value that 
simultaneously optimized both sensitivity and specificity.
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Discussion
At the national level, both the early incidence 
and  November–December  ave raged 
zonal wind together provided the best fit 
(pseudo‑R2 = 0.57), with the climate variable 
having a greater impact on the fit. The sen-
sitivity and specificity of this national model 
to predict epidemics > 100 cases per 100,000 
population were 0.8 and 0.87, respectively. A 
national model with October–December dust 
concentration and early incidence performed 
indistinguishably well (pseudo‑R2 = 0.55, 
SENS = 0.80, SPEC = 0.93). Our results 
suggest a significant influence of early-season 
conditions on the initial slope and final 
amplitude of the incidence of meningitis 
during epidemics in the study area. Indeed, 
de Chabalier et al. (2000) showed that epi-
demics that occurred early in the meningitis 
season in Niger were characterized by a more 
rapid increase and higher seasonal peaks in 
the incidence of meningitis. In our study, 
wind and dust conditions during the period 
January–March did not correlate with sea-
sonal incidence (data not shown). Therefore, 
with this approach, forecasting seasonal 
incidence (January–May) could be based on 
observed early-season climate/dust informa-
tion (November–December) and would not 
rely upon uncertain seasonal climate forecasts.

At the district level, early-season zonal 
wind and dust (i.e., in November–December), 
along with the early incidence in December 
and the district population density, represented 
the spatiotemporal variability of the disease 
with pseudo‑R2  =  0.41 and CVC  =  0.55. 
The inclusion of zonal wind and dust infor-
mation substantially increased our ability to 
predict which districts would exceed a particu-
lar incidence threshold, as it increased model 
sensitivity and/or PPV depending on optimiza-
tion criteria. District-specific intercepts also 
improved model performance by accounting 
for between-district variability that was not 
explained by other model covariates.

The use of suspected cases instead of con-
firmed cases and the lack of historical vaccina-
tion data are limitations of current modeling 
and forecasting approaches, including our 
study. Our model uses early incidence as a 
proxy measure of population susceptibility 
and/or carriage prevalence. Although this may 
at least partially account for vaccination in 
preceding years, the incidence reported in a 

given district may have been affected by the 
reactive vaccination within the same season. 
Following the outbreaks of meningitis in 
1995–1996 in West Africa, an International 
Coordinating Group on Vaccine Provision 
for Epidemic Meningitis Control (WHO, 
Geneva, Switzerland) was established in 
January 1997 to coordinate the best use of the 
limited amount of vaccine available and to 
ensure a better distribution of the meningitis 
vaccine. Therefore, the extent to which reac-
tive vaccination affected the dynamics of the 
disease is uncertain. Future modeling studies 
may attempt to reconstruct immunity pat-
terns (natural and vaccination-induced) from 
data on cases, population size, and climate 
seasonality and interannual variability. The 
use of more complex mechanistic models that 
account for the nonlinear interaction between 
climate and susceptibility, together with the 
availability of new data on carriage rates, 
vaccination coverage, and respiratory viral 
infections, is expected to enhance our under-
standing of the epidemics and eventually 
serve as more precise prediction tools.

The accuracy of our models to predict 
epidemics after the introduction of conju-
gate A vaccine in 2010 (LaForce et al. 2007) 
must be tested because of the possible near 
future elimination of large epidemics of sero-
group A. However, meningitis is likely to 
continue to be a problem within the belt due 
to the length of time it will take to vaccinate 
the entire at-risk population and the potential 
emergence of other serogroups such as W135 
and X. Further, a forecasting system based 
on pre-conjugate vaccination data could be 
used retrospectively to disentangle the con-
founding effect of climate in the assessment 
of the impact of the new vaccine on carriage 
and incidence.

Conclusions
We demonstrated the potential and limita-
tions of using early-season wind and soil dust 
information to predict meningitis epidemics 
in Niger based on data from 1986 to 2006. 
Precise predictions of epidemics cannot 
be based solely on climate data and coarse 
proxies of susceptibility. However, our model 
(if amended to account for the introduction 
of conjugate A vaccine) could lead to an early-
season alert that climate and other conditions 
are potentially conducive to an epidemic, 

which could initiate an early response strategy 
including increased surveillance, ensuring 
that stocks of vaccines are in-country, that 
protocols and procedures are in place, and 
that district health teams and members of the 
public likely to be affected are forewarned and 
prepared. If the presence of the pathogen or 
an increase in incidence is subsequently con-
firmed based on surveillance systems at dis-
trict or finer levels (Paireau et al. 2012; Tall 
et al. 2012), early warnings could be followed 
by additional actions as needed.
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