220 research outputs found

    Time Scales in Evolutionary Dynamics

    Get PDF
    Evolutionary game theory has traditionally assumed that all individuals in a population interact with each other between reproduction events. We show that eliminating this restriction by explicitly considering the time scales of interaction and selection leads to dramatic changes in the outcome of evolution. Examples include the selection of the inefficient strategy in the Harmony and Stag-Hunt games, and the disappearance of the coexistence state in the Snowdrift game. Our results hold for any population size and in the presence of a background of fitness.Comment: Final version with minor changes, accepted for publication in Physical Review Letter

    The importance of selection rate in the evolution of cooperation

    Get PDF
    8 pages, 4 figures.-- ArXiv pre-print available at: http://arxiv.org/abs/q-bio/0512045Final publisher version available Open Access at: http://gisc.uc3m.es/~cuesta/papers-year.htmlHow cooperation emerges in human societies is still a puzzle. Evolutionary game theory has been the standard framework to address this issue. In most models, every individual plays with all others, and then reproduces and dies according to what she earns. This amounts to assuming that selection takes place at a slow pace with respect to the interaction time scale. We show that, quite generally, if selection speeds up, the evolution outcome changes dramatically. Thus, in games such as Harmony, where cooperation is the only equilibrium and the only rational outcome, rapid selection leads to dominance of defectors. Similar non trivial phenomena arise in other binary games and even in more complicated settings such as the Ultimatum game. We conclude that the rate of selection is a key element to understand and model the emergence of cooperation, and one that has so far been overlooked.This work is supported by MEC (Spain) under grants BFM2003-0180, BFM2003-07749-C05-01, FIS2004-1001 and NAN2004-9087-C03-03 and by Comunidad de Madrid (Spain) under grants UC3M-FI-05-007, SIMUMAT-CM and MOSSNOHO-CM.Publicad

    Effect of spatial structure on the evolution of cooperation

    Get PDF
    16 pages, 14 figures.-- PACS nrs.: 89.65.−s, 87.23.Ge, 87.23.Kg, 02.50.Le.-- ArXiv pre-print available at: http://arxiv.org/abs/0806.1649Spatial structure is known to have an impact on the evolution of cooperation, and so it has been intensively studied during recent years. Previous work has shown the relevance of some features, such as the synchronicity of the updating, the clustering of the network, or the influence of the update rule. This has been done, however, for concrete settings with particular games, networks, and update rules, with the consequence that some contradictions have arisen and a general understanding of these topics is missing in the broader context of the space of 2×2 games. To address this issue, we have performed a systematic and exhaustive simulation in the different degrees of freedom of the problem. In some cases, we generalize previous knowledge to the broader context of our study and explain the apparent contradictions. In other cases, however, our conclusions refute what seems to be established opinions in the field, as for example the robustness of the effect of spatial structure against changes in the update rule, or offer new insights into the subject, e.g., the relation between the intensity of selection and the asymmetry between the effects on games with mixed equilibria.This work is partially supported by Ministerio de Educación y Ciencia (Spain) under Grants Ingenio-MATHEMATICA and MOSAICO, and by Comunidad de Madrid (Spain) under Grants SIMUMAT-CM and MOSSNOHO-CM.Publicad

    Toward the network of the future: from enabling technologies to 5G concepts

    Get PDF
    There is a wide consensus by the research community and the industry that it will not be possible to satisfy future mobile traffic demand and application requirements by simply evolving the current fourth-generation architecture. Instead, there is a need for a considerable revision of the mobile network system: such an effort is commonly referred to as the future fifth-generation (5G) architecture, and large-scale initiatives all around the globe have been launched worldwide to address this challenge. While these initiatives have not yet defined the future 5G architecture, the research community has already invested a very substantial effort on the definition of new individual technologies. The fact that all new proposals are tagged as 5G has created a lot of confusion on what 5G really is. The aim of this article is to shed some light on the current status of the 5G architecture definition and the trends on the required technologies. Our key contributions are the following: (1) we review the requirements for 5G identified by the different worldwide initiatives, highlighting similarities and differences; (2) we discuss current trends in technologies, showing that there is a wide consensus on the key enablers for 5G; and (3) we make an effort to understand the new concepts that need to be devised, building on the enablers, to satisfy the desired requirements.This work has been performed in the framework of the H2020-ICT-2014-2 project 5G NORMA. This work has also been performed in the framework of the H2020-ICT-2014 project 5GEx (Grant Agreement no. 671636), which is partially funded by the European Commission

    QSAR Classification Models for Predicting the Activity of Inhibitors of Beta-Secretase (BACE1) Associated with Alzheimer’s Disease

    Get PDF
    Alzheimer’s disease is one of the most common neurodegenerative disorders in elder population. The β-site amyloid cleavage enzyme 1 (BACE1) is the major constituent of amyloid plaques and plays a central role in this brain pathogenesis, thus it constitutes an auspicious pharmacological target for its treatment. In this paper, a QSAR model for identification of potential inhibitors of BACE1 protein is designed by using classification methods. For building this model, a database with 215 molecules collected from different sources has been assembled. This dataset contains diverse compounds with different scaffolds and physical-chemical properties, covering a wide chemical space in the drug-like range. The most distinctive aspect of the applied QSAR strategy is the combination of hybridization with backward elimination of models, which contributes to improve the quality of the final QSAR model. Another relevant step is the visual analysis of the molecular descriptors that allows guaranteeing the absence of information redundancy in the model. The QSAR model performances have been assessed by traditional metrics, and the final proposed model has low cardinality, and reaches a high percentage of chemical compounds correctly classified.Fil: Ponzoni, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Sebastián Pérez, Víctor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Consejo Superior de Investigaciones Científicas. Centro de Investigaciones Biológicas; EspañaFil: Martínez, María J.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Roca, Carlos. Consejo Superior de Investigaciones Científicas. Centro de Investigaciones Biológicas; EspañaFil: De la Cruz Pérez, Carlos. Consejo Superior de Investigaciones Científicas. Centro de Investigaciones Biológicas; EspañaFil: Cravero, Fiorella. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Vazquez, Gustavo Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Católica del Uruguay; UruguayFil: Páez, Juan A.. Consejo Superior de Investigaciones Científicas. Instituto de Química Médica; EspañaFil: Diaz, Monica Fatima. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; ArgentinaFil: Campillo Martín, Nuria Eugenia. Consejo Superior de Investigaciones Científicas. Centro de Investigaciones Biológicas; Españ

    A dynamic load balancing method for the evaluation of chemical reaction rates in parallel combustion simulations

    Get PDF
    The development and assessment of an efficient parallelization method for the evaluation of reaction rates in combustion simulations is presented. Combustion simulations where the finite-rate chemistry model is employed are computationally expensive. In such simulations, a transport equation for each species in the chemical reaction mechanism has to be solved, and the resulting system of equations is typically stiff. As a result, advanced implicit methods must be applied to obtain accurate solutions using reasonable time-steps at expenses of higher computational resources than explicit or classical implicit methods. In the present work, a new algorithm aimed to enhance the numerical performance of the time integration of stiffsystems of equations in parallel combustion simulations is presented. The algorithm is based on a runtime load balancing mechanism, increasing noteworthy the computational performance of the simulations, and consequently, reducing significantly the computer time required to perform the numerical combustion studies.Peer ReviewedPostprint (published version

    Modelo de evaluación de la eficiencia energética y ambiental, de la estructura de actividades y la movilidad: región metropolitana de Barcelona: diseño funcional y resultados parciales

    Get PDF
    Se propone la construcción de un modelo de sostenibilidad funcional de áreas metropolitanas, basado en un modelo integrado de transporte y uso del suelo que permita evaluar explícitamente la eficiencia social, y sobre todo la eficiencia ambiental del funcionamiento de las ciudades en relación a los flujos y a las actividades instaladas en los territorios. El ámbito de implementación del modelo es la Región Metropolitana de Barcelona, y la unidad de análisis son sus 164 municipios.Peer Reviewe

    Looking twice at the gender equity index for public health impact

    Get PDF
    Background: It has been shown that gender equity has a positive impact on the everyday activities of people (decision making, income allocation, application and observance of norms/rules) which affect their health. Gender equity is also a crucial determinant of health inequalities at national level; thus, monitoring is important for surveillance of women’s and men’s health as well as for future health policy initiatives. The Gender Equity Index (GEI) was designed to show inequity solely towards women. Given that the value under scrutiny is equity, in this paper a modified version of the GEI is proposed, the MGEI, which highlights the inequities affecting both sexes. Methods: Rather than calculating gender gaps by means of a quotient of proportions, gaps in the MGEI are expressed in absolute terms (differences in proportions). The Spearman’s rank coefficient, calculated from country rankings obtained according to both indexes, was used to evaluate the level of concordance between both classifications. To compare the degree of sensitivity and obtain the inequity by the two methods, the variation coefficient of the GEI and MGEI values was calculated. Results: Country rankings according to GEI and MGEI values showed a high correlation (rank coef. = 0.95). The MGEI presented greater dispersion (43.8%) than the GEI (19.27%). Inequity towards men was identified in the education gap (rank coef. = 0.36) when using the MGEI. According to this method, many countries shared the same absolute value for education but with opposite signs, for example Azerbaijan (−0.022) and Belgium (0.022), reflecting inequity towards women and men, respectively. This also occurred in the empowerment gap with the technical and professional job component (Brunei:-0.120 vs. Australia, Canada Iceland and the U.S.A.: 0.120). Conclusion: The MGEI identifies and highlights the different areas of inequities between gender groups. It thus overcomes the shortcomings of the GEI related to the aim for which this latter was created, namely measuring gender equity, and is therefore of great use to policy makers who wish to understand and monitor the results of specific equity policies and to determine the length of time for which these policies should be maintained in order to correct long-standing structural discrimination against women.This research was funded by the Institute of Women, Spanish Ministry of Health, Social Services and Equality (Ref. 112–09) and has been presented orally in “Health and equity in all policies” (SEE-SESPAS), Madrid, October 6-7th 2011

    Looking twice at the gender equity index for public health impact.

    Get PDF
    Background: It has been shown that gender equity has a positive impact on the everyday activities of people (decision making, income allocation, application and observance of norms/rules) which affect their health. Gender equity is also a crucial determinant of health inequalities at national level; thus, monitoring is important for surveillance of women’s and men’s health as well as for future health policy initiatives. The Gender Equity Index (GEI) was designed to show inequity solely towards women. Given that the value under scrutiny is equity, in this paper a modified version of the GEI is proposed, the MGEI, which highlights the inequities affecting both sexes. Methods: Rather than calculating gender gaps by means of a quotient of proportions, gaps in the MGEI are expressed in absolute terms (differences in proportions). The Spearman’s rank coefficient, calculated from country rankings obtained according to both indexes, was used to evaluate the level of concordance between both classifications. To compare the degree of sensitivity and obtain the inequity by the two methods, the variation coefficient of the GEI and MGEI values was calculated. Results: Country rankings according to GEI and MGEI values showed a high correlation (rank coef. = 0.95). The MGEI presented greater dispersion (43.8%) than the GEI (19.27%). Inequity towards men was identified in the education gap (rank coef. = 0.36) when using the MGEI. According to this method, many countries shared the same absolute value for education but with opposite signs, for example Azerbaijan (−0.022) and Belgium (0.022), reflecting inequity towards women and men, respectively. This also occurred in the empowerment gap with the technical and professional job component (Brunei:-0.120 vs. Australia, Canada Iceland and the U.S.A.: 0.120). Conclusion: The MGEI identifies and highlights the different areas of inequities between gender groups. It thus overcomes the shortcomings of the GEI related to the aim for which this latter was created, namely measuring gender equity, and is therefore of great use to policy makers who wish to understand and monitor the results of specific equity policies and to determine the length of time for which these policies should be maintained in order to correct long-standing structural discrimination against women

    Hybridizing Feature Selection and Feature Learning Approaches in QSAR Modeling for Drug Discovery

    Get PDF
    Quantitative structure–activity relationship modeling using machine learning techniques constitutes a complex computational problem, where the identification of the most informative molecular descriptors for predicting a specific target property plays a critical role. Two main general approaches can be used for this modeling procedure: feature selection and feature learning. In this paper, a performance comparative study of two state-of-art methods related to these two approaches is carried out. In particular, regression and classification models for three different issues are inferred using both methods under different experimental scenarios: two drug-like properties, such as blood-brain-barrier and human intestinal absorption, and enantiomeric excess, as a measurement of purity used for chiral substances. Beyond the contrastive analysis of feature selection and feature learning methods as competitive approaches, the hybridization of these strategies is also evaluated based on previous results obtained in material sciences. From the experimental results, it can be concluded that there is not a clear winner between both approaches because the performance depends on the characteristics of the compound databases used for modeling. Nevertheless, in several cases, it was observed that the accuracy of the models can be improved by combining both approaches when the molecular descriptor sets provided by feature selection and feature learning contain complementary information.Fil: Ponzoni, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Sebastián Pérez, Víctor. Consejo Superior de Investigaciones Científicas. Centro de Investigaciones Biológicas; EspañaFil: Requena Triguero, Carlos. Consejo Superior de Investigaciones Científicas. Centro de Investigaciones Biológicas; EspañaFil: Roca, Carlos. Consejo Superior de Investigaciones Científicas. Centro de Investigaciones Biológicas; EspañaFil: Martínez, María Jimena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Cravero, Fiorella. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Diaz, Monica Fatima. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Páez, Juan A.. Consejo Superior de Investigaciones Científicas. Instituto de Química Médica; EspañaFil: Gómez Arrayás, Ramón. Universidad Autónoma de Madrid; EspañaFil: Adrio, Javier. Universidad Autónoma de Madrid; España. Institute for Advanced Research in Chemical Sciences; EspañaFil: Campillo, Nuria E.. Consejo Superior de Investigaciones Científicas. Centro de Investigaciones Biológicas; Españ
    corecore